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Abstract: This article describes a system for analyzing acoustic data to assist in the diagnosis and
classification of children’s speech sound disorders (SSDs) using a computer. The analysis concen-
trated on identifying and categorizing four distinct types of Chinese SSDs. The study collected
and generated a speech corpus containing 2540 stopping, backing, final consonant deletion process
(FCDP), and affrication samples from 90 children aged 3–6 years with normal or pathological ar-
ticulatory features. Each recording was accompanied by a detailed diagnostic annotation by two
speech–language pathologists (SLPs). Classification of the speech samples was accomplished using
three well-established neural network models for image classification. The feature maps were created
using three sets of MFCC (Mel-frequency cepstral coefficients) parameters extracted from speech
sounds and aggregated into a three-dimensional data structure as model input. We employed six
techniques for data augmentation to augment the available dataset while avoiding overfitting. The
experiments examine the usability of four different categories of Chinese phrases and characters.
Experiments with different data subsets demonstrate the system’s ability to accurately detect the
analyzed pronunciation disorders. The best multi-class classification using a single Chinese phrase
achieves an accuracy of 74.4 percent.

Keywords: speech sound disorder; speech disfluency classification; Chinese speech sound disorder
dataset; machine learning; artificial intelligence

1. Introduction

Speech sound disorders (SSDs) are one of the most common disorders in preschool and
school-age children. Any issue or combination of difficulties with perception, motor pro-
duction, or phonological representation of speech sounds and speech segments—including
phonotactic rules controlling allowable speech sound sequences in a language is referred to
as an SSD. According to a 2012 National Center for Health Statistics study [1], 48.1 percent
of 3- to 10-year-old children and 24.4 percent of 11- to 17-year-old children with a commu-
nication impairment had just speech sound difficulties. Children with speech difficulties
had a 76.6 percent use rate of speech intervention services, as reported by their parents [1].
Based on [2], speech delay or SSDs affect 2.3 percent to 24.6 percent of school-aged children.

There are two types of SSDs: organic and functional. An underlying motor/neurological,
structural, or sensory/perceptual reason causes organic SSDs. There is no known cause for
functional speech sound disorders; they are idiopathic. Functional SSDs are divided into two
categories: motor production of speech and linguistic aspects of speech production. These
issues have been referred to as articulation and phonological disorders, respectively, in the
past. Errors (such as distortions and replacements) in producing particular speech sounds
focus on articulation disorders. Phonological disorders are characterized by predictable,
rule-based mistakes that influence several sounds (e.g., fronting, backing, and final consonant
deletion) [3].
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When a child has poor intelligibility, parents can visit a rehabilitation clinic and then
be referred to SLPs for examination and training following assessment. According to [4],
it takes an average of 54 min per case for assessment and analysis. Because there is a
shortage of speech–language pathologists (SLPs) in Taiwan [5], children with SSDs often
have to spend a longer waiting time visiting a clinic or the rehabilitation department of
a medical institution. The waiting period is also a golden opportunity to miss out on
treatment. Moreover, the lack of clarity in children’s speech can easily affect children’s
social and communication interactions. Some children’s poor mastery of phonological rules
can affect their future phonetic or intonation awareness [6]. According to the literature,
speech therapy effectively improves children’s condition if started early [7]. The diagnosis
of speech sounds varies depending on the method or location of the speech sound, so we
can classify and model the features of the speech sound into specific categories. Correct
diagnosis of pronunciations is the first step in clinical treatment, as the elicitation tech-
niques vary by class. However, now in Taiwan, there is a lack of standardized assessment
tools. The evaluation procedure may differ from one SLP to another due to differences in
auditory awareness and not having a standard evaluation tool. Furthermore, as there are
no normative models to compare evaluated instances to, it is difficult to make meaningful
comparisons between them. Additionally, the assessment content varies from monotone
vocabulary to spontaneous speech. The overall workflow is lengthy and laborious, and ther-
apists are frequently required to complete the assessment and health education in less than
30 min, which is exhausting and inconvenient. Therefore, the availability of automatic
classification assessment tools can save time for SLPs and quickly identify speech problems
in children and provide accurate treatment directions.

1.1. Disorders Characterizations

The phonological processes are divided into syllabic structure, substitution, and as-
similation. Substitution processes can be classified by their articulation method or location.
The term “place of articulation” refers to the point at which two speech organs, such as the
tongue and teeth, come into contact to produce speech sounds. The manner in which the
articulatory structures are shaped and coordinated determines the manner in which they
articulate, and common diagnoses such as stopping and affrication are extremely diverse.
To create different speech sounds, we experimented with various airflow methods, the de-
gree of airflow obstruction, and the duration of airflow. According to [8], the most common
types of errors in preschool children are backing, stopping, affrication, and unaspiration.
The current study focuses on four types of errors that are frequently encountered: stopping,
backing, final consonant deletion process (FCDP), and affrication.

Using spectrograms to analyze speech problems can reveal a wealth of information
that cannot be analyzed by the ear. The horizontal axis of the spectrogram is the time scale,
and the vertical axis is the frequency of the sound. The vertical axis is the frequency of the
sound, and from the bottom to the top is the logarithmic scale from 0 to 20,000 Hz, which
represents the range of audible sound. Using a logarithmic scale emphasizes the range of
frequencies emitted by the vocal cords. The spectrum’s brightness indicates the sound’s
magnitude at the corresponding time and frequency. The higher the dB value, the brighter
the color, and the lower the dB value, the darker the color.

1.1.1. Stopping

Stopping refers to when non-stop sounds are incorrectly pronounced as stop; in
Chinese, stop sounds includeㄅ/p/,ㄆ/ph/,ㄉ/t/,ㄊ/th/,ㄍ/k/, andㄎ/kh/; therefore,
when we mispronounce other sounds into the above six sounds in our daily lives, we will
experience stopping. It is referred to as stopping, as in /khu

Ă
£Ă£ tsWĂ£/ read as /tu

Ă
£Ă£ tsWĂ£/,

but the stop sound contains the two soundsㄍ/k/ andㄎ/kh/. When we mispronounce
the pronunciation as ㄍ/k/ or ㄎ/kh/ speech in clinical practice, we do not refer to it
as stopping but rather as backing, as explained in the following subsection. When the
sound spectrum is analyzed, we can see that the stop exhibits the following characteristics.
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The first is the duration of silence, which is the duration of the stop being blocked; The
time interval between the burst and the beginning of the vowel is referred to as the
voice onset time (VOT). We can distinguish various speech sounds based on the acoustic
characteristics listed above. Figure 1 depicts the spectrogram difference between the
stopping and normal pronunciation.

(a) (b)
Figure 1. Spectrum comparison of stopping and correct: (a) stopping; (b) correct.

1.1.2. Backing

The Chinese backing consonants include ㄍ/k/, ㄎ/kh/ and ㄏ/x/.When we pro-
nounce Chinese pronunciation, the stop, affrication, fricative, etc. are replaced by theㄍ/k/
and ㄎ/kh/, and we call it backing. For example, /thu

Ă
£Ă£ tsWĂ£/ becomes /khu

Ă
£Ă£ tsWĂ£/.

In English, backing can occur at any point in the word, but in Chinese, the phonological
progression of backing occurs exclusively in consonants, and thus the error occurs at the
beginning of the word, which is referred to as the initial consonant in Chinese. The term
“backing” refers to a speech sound produced by the soft palate being held upward by the
tongue bulging at the back of the mouth. As a result, the acoustic characteristics of stopping
are also present in backing, such as silence gap, burst, VOT, and noise. Figure 2 depicts the
spectrogram difference between the backing and normal pronunciation.

(a) (b)
Figure 2. Spectrum comparison of backing and correct: (a) backing; (b) correct.

1.1.3. FCDP

The final consonant is composed of a vowel and a coda and is pronounced by progress-
ing from vowel to consonant. The final consonant is divided into two segments: the stop
coda and the nasal coda. However, only the nasal coda contains the following consonants
in the Chinese phonetic alphabet: ㄢ/an/, ㄣ/@n/, ㄤ/AN/, ㄥ/7N/. Therefore, the final
consonant is considered as syllable structure component, and the deletion of the final
consonant is referred to as the FCDP. The following section discusses the final consonant’s
composition. The final consonant is categorized by the vowelㄚ/ä/ orㄜ/7/, followed by
/n/ or /N/ at the end of the rhyme (coda), which can be roughly divided into two groups:
ㄤ/AN/,ㄢ/an/ andㄣ/@n/,ㄥ/7N/. When we pronounceㄢ/an/, we place our tongue
at its lowest point and slowly raise the tip of the tongue, allowing air to flow out of the
nasal cavity; when we pronounce ㄤ/AN/, we also place our tongue at its lowest point
and slightly open our mouth, allowing air to flow out of the nasal cavity while we keep
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our mouth open and pronounce the velar nasal /N/. When pronouncingㄣ/@n/ orㄥ/7N/,
the tongue is positioned in the mouth without moving up, down, forward, or backward,
forming the vowel position ofㄜ/7/, and the tongue tip moves up and out through the
nasal cavity, producing an alveolar nasal /n/. To produce a response, on the other hand,
a vowel position ofㄜ/7/ is formed first; then the mouth remains open, and the airflows
out of the nasal cavity, maintaining the mouth open and producing the velar nasal /N/.
Figure 3 depicts the spectrogram difference between the FCDP and normal pronunciation.

(a) (b)
Figure 3. Spectrum comparison of FCDP and correct: (a) FCDP; (b) correct.

1.1.4. Affrication

An affricate contains both stop and fricative features, so when it is pronounced, the oral
constellation will first produce the stop feature and then the fricative feature. In Chinese
pronunciation, there are six affricates: ㄗ/

>
ts/,ㄘ/

>
úùh/,ㄓ/

>
úù/,ㄔ/

>
tsh/,ㄐ/

>
tC/ andㄑ/

>
tCh/.

When other phonemes are mispronounced as the six phonemes listed above, they become
affrication. The so-called affricate is a closed tone that lasts for a period of time, forming a
block and holding it. However, during the burst, the mouth does not completely release
the airflow, or rather forms a small gap between the tongue and the hard palate, allowing
the airflow to pass through the gap and produce a friction noise. When we examine the
spectrogram, we can see that the affricate consonant has the acoustic characteristics of both
the stop consonant and the fricative consonant, such as a silent period, a burst, and a short
noise. However, the characteristics of the stop consonant are very dynamic, as they can
change quickly and dramatically, and we can usually distinguish between them based on
this characteristic. Figure 4 depicts the spectrogram difference between the affrication and
normal pronunciation.

(a) (b)
Figure 4. Spectrum comparison of affrication and correct: (a) affrication; (b) correct.

1.2. State of the Art

Despite the enormous potential demand for automatic SSDs classification, some schol-
ars have also researched SSD in different languages. Anjos et al. [9] proposed identifying
sibilant phonemes in European Portuguese using deep convolutional neural networks.
According to [10], it identified six dental errors in Polish-speaking youngsters using a deep
network. Hammami et al. [11] presented a method based on a real-world database of native
Arabic-speaking children’s voice recordings. Based on the aforementioned research, it
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is evident that SSD classification using deep learning is feasible, although it is currently
only used to identify and classify specific single consonants. On the other hand, relatively
few studies have been conducted on Standard Chinese. There are two issues that make
detecting the features of different construal errors challenging. First, when growing chil-
dren attempt to pronounce constantly, the instability of co-constructive motions manifests.
Second, the numerous features included in a single construal category are diverse, resulting
in the difficulty of classification. Recent studies have classified and identified phonetic
categories using deep learning architectures. Numerous model architectures are used, such
as recurrent neural networks [12], convolutional neural networks [13], long short-term
memory [14], and other deep learning frameworks. The model is fed a two-dimensional
spectrogram or Mel-frequency cepstral coefficients (MFCC) data.

1.3. Aims and Scope

Our study aims to develop a reliable data analysis procedure for the computer-assisted
diagnosis of SSDs in children. The goal is to provide a solution of detecting and classifying
four types of speech sound errors in Mandarin Chinese. We collected a corpus of speech
samples from 90 children aged 3 to 6, along with detailed diagnostic instructions provided
by an SLP. The study is divided into three groups of experiments on pronunciation disorders.
We train and compare our gathered dataset for speech sample categorization using three
standard architectures: EfficientNet [15], DenseNet [16], and InceptionV3 [17]. We extract
acoustic characteristics from sounds using a three-channel Mel-Spectrogram [18]. To aid the
model’s learning when trained on custom datasets, we employ various data augmentation
techniques [19] on our dataset.

1.4. Paper Structure

The following is the overall structure of this paper. Section 2 discusses the methods
for pre-use treatment and model training. Section 3 provides a thorough description of
the experimental findings. Section 4 discusses the potential reasons why different sound
samples influence the accuracy and the bottleneck in the results. Section 5 concludes the
work and future directions.

2. Materials and Methods

The SSD classification task was carried out in accordance with the workflow depicted
in Figure 5 and detailed in the following sections.

Figure 5. Overall workflow of the speech sound disorders classification.
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2.1. Collecting and Labeling Audio Samples

The study enrolled preschool children aged 3–6 years who had been diagnosed with
speech and language impairment at a rehabilitation clinic or were referred by their kinder-
garten teachers as having a possible speech and language impairment. Between January
and December 2021, a total of 90 children were enrolled, with the age and gender dis-
tributions shown in Table 1. We excluded cases with the following conditions: speech
disorders caused by congenital central nerve injury (e.g., cerebral palsy); speech disorders
caused by abnormal oral structures (e.g., cleft lip and palate); co-occurring intellectual
disabilities; emotional behavior disorders (e.g., autism); speech disorders caused by hearing
impairment; and family reluctance. Prior to the trial, the protocol was approved by the
Cathay Hospital IRB. Consent was obtained verbally and in writing from the child’s parents
or legal guardians to participate in the study.

Table 1. Distribution of subjects’ ages and genders.

Age Sex TotalFemale Male

3 8 14 22
4 11 18 29
5 11 20 31
6 4 4 8

Total 34 56 90

Voice data were collected using a tablet computer with a microphone attached. We
used rode’s smartLav microphone clipped to the subject’s clothing collar. For this task, we
programmed an app to be installed on a Samsung Galaxy Tab S3 tablet. The microphone
acquired the signal at a sampling frequency of 44.1 kHz and transmitted it to the tablet
computer, and stored it in 16-bit depth. The database consists of 96 Chinese phrases, made
up of 37 Chinese phonetic alphabets, each of which appears at the beginning, middle,
and end of the word. The definition of Chinese words is shown in Figure 6. The Chinese
phrases were illustrated with pictures, and the task for the child was to name the pictures
spontaneously. For a detailed list of the Chinese phrases, please refer to Table A1. For each
recording, two SLPs prepared diagnostic notes. The evaluation was performed to identify
pathological pronunciation. In addition, abnormal intonation sounds were analyzed,
and pathological types were annotated. Four types of articulation were collected:

• Stopping.
• Backing.
• FCDP.
• Affrication.

Before collecting the corpus, we expected a single model to identify the corresponding
error category based on the phonetic sound of a single word. When compared to other
languages, Chinese SSDs have more then 15 different error categories. Still, statistical
analysis of the corpus we collected revealed that four or five of them are more common in
clinical cases, implying that the other categories are relatively rare. Because it is challenging
to train deep learning with extremely unbalanced or irregular data categories, we discussed
with the SLPs. We determined that it would be better to start with the most common types
in the clinical setting.

Two different kinds of speech samples were used: complete Chinese phrases and single
Chinese characters. Each recorded speech sample contains a complete Chinese phrase,
and a single Chinese character sample is extracted from each phrase sample. Following are
the justifications for this action: The phrases are designed to use the 37 Chinese phonetic
alphabets, arranging each phonetic symbol to appear in the front, middle, and back of
common Chinese phrases. It is possible for patients to make SSDs in different positions
when pronouncing a word or for various positions to contain different types of SSDs. In the
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case of the marker samples, only a single type of SSD is indicated in the SSD label of
Chinese phrases. The marker data do not contain possible locations and multiple classes.
To solve these problems, we designed Experiment 2 and recreated the dataset.

Figure 6. Definition of Chinese words.

All samples were re-syllabified by acoustic experts, and two SLPs rigorously labeled
all Chinese-single-character samples. To increase the accuracy and reliability of SLPs
diagnostic results, only samples with consistent SLPs labels were preserved for subsequent
studies. The SLPs labeling program used our custom-built labeling software to listen
to each audio file and click on the error category option to which the sample belonged,
after which the software generated a labeled file.

2.2. Data Pre-Processing

To preserve space and time information in the conversion of sound features, we
chose Mel spectrograms as the feature representation. To perform transfer learning in a
standard model pre-trained with image net, we used a three-channel Mel spectrogram.
On each channel, the MelSpectrogram was calculated using various window widths and
hop lengths of {25 ms, 10 ms}, {50 ms, 25 ms}, and {100 ms, 50 ms}. Different window
widths and hop lengths guaranteed that each channel had varying amounts of frequency
and temporal information.

To avoid overfitting during training and to make more efficient use of the limited
sample, we used a variety of standard sound augmentation methods, as shown in the
table below:

• Increase/decrease the pitch by two semitones.
• Shift the time by 10%.
• Scaling the speed by random number within ±25%.
• The input audio signal is compressed using dynamic range compression.
• Increase/decrease volume by a random number of decibels in [3, 3] dB.
• Random noise in the range [0, 10] dB is added (SNR).

All expansions were implemented using ffmpge [20] and python librosa packages [21].
After augmentation, we had nine times more data.

2.3. Models

We used three standard models to solve our problems. The following are the models:

1. EfficientNet [15]: They use neural architecture search to create a new baseline network
and scale it up to create the EfficientNet family of models, which outperform previous
ConvNets in accuracy and efficiency. EfficientNet uses a new scaling method that uses
a simple but highly effective compound coefficient to scale all depth/width/resolution
dimensions uniformly. EfficientNet shows how to scale up MobileNets and ResNets
with this method.

2. DenseNet [16]: Dense Convolutional Network (DenseNet) is a feed-forward network that
connects each layer to every other layer. The network has L(L + 1)/2 direct connections,
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whereas traditional convolutional networks with L layers have L connections between
each and its subsequent layers. All previous layers’ feature maps are used as inputs into
each layer, and their feature maps are used as inputs into all successive layers.

3. InceptionV3 [17]: The Inception architecture has been shown to achieve excellent
performance while using a small amount of computational power. Inception net-
work training is significantly accelerated when residual connections are used. By a
razor-thin margin, residual Inception networks outperform similarly priced Incep-
tion networks without residual connections. They present several new streamlined
Inception network architectures, both residual and non-residual.

The model’s trainable parameters and size are provided in Table 2.

Table 2. Trainable parameters and size of the model.

Experiment Model Trainable Params Size (mb)

e1
DenseNet121 6,957,956 82

EfficientNetB2 7,706,630 91
InceptionV3 21,776,548 251

e2
DenseNet121 6,955,906 82

EfficientNetB2 7,703,812 91
InceptionV3 21,772,450 251

e3
DenseNet121 6,957,956 82

EfficientNetB2 7,706,630 91
InceptionV3 21,776,548 251

2.4. Training Environments

Due to the dataset’s small sample size and data imbalance, we resolved the issue using
class weights. We created a 5-folder cross-validation dataset for training and evaluating the
model. We separated the data into training and validation at 80%, 20%, respectively. We
configured the batch size to be 128, the number of epochs to 15, the training optimizer to be
Adam, and the learning rate to 0.0001. Our loss function used categorical cross-entropy in
Experiments 1 and 3 and binary cross-entropy in Experiment 2. The model with the lowest
validation loss was saved as the result of each training session. Training and validation
were carried out by a Keras-based TensorFlow platform (version 2.4) on Nvidia Tesla V100
with 32GB RAM. For training the same model, the same framework, hyperparameter
settings, and training procedures were used.

2.5. Experiment Methods
2.5.1. Experiment 1—Multi-Class Classification Using a Single Chinese Phrase

In this experiment, three standard models were used to predict four error categories
by entering complete Chinese phrases. First, all audio files were labeled according to
the category corresponding to the diagnostic label of SLPs. Then the feature map was
processed to [128, 256, 3] size according to the preprocessing method in Section 2.3. Finally,
five folders were created for cross-validation, and the number of data is shown in Table 3.

Table 3. The amount of data on single-Chinese-phrase dataset. Training segment contains aug-
mented data.

CV Training Segments Test Segments
FCDP Affrication Backing Stopping FCDP Affrication Backing Stopping

Fold1 4401 2628 1332 9936 122 72 37 276
Fold2 4401 2619 1332 9936 122 73 37 276
Fold3 4401 2619 1332 9936 122 73 37 276
Fold4 4401 2619 1332 9936 122 73 37 276
Fold5 4401 2619 1332 9936 123 73 37 276
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2.5.2. Experiment 2—Binary Classification Using a Single Chinese Character

To mark the location of the misconstructions more precisely, the acoustic experts re-cut
all Chinese phrases into individual sound files according to the Chinese characters. It
means that each sample will contain only one Chinese character. The two SLPs re-evaluated
the segmented samples and selected those with more significant error characteristics to
produce a single-Chinese-character dataset. To evaluate the model’s ability to discriminate
among the accurate samples, the new dataset with corresponding correctly pronounced
samples was used to test the performance of the model for binary classification. Since the
length of the sound sample becomes shorter after cutting, a feature size of [128, 128, 3] in
the pre-processing is sufficient to include the sample features. In Experiment 2, the model
took single-Chinese-character samples as input and output them as a correct category or
incorrect category, and the amount of data is shown in Tables 4 and 5.

Table 4. The amount of data on the single-Chinese-character dataset for training.

CV Backing Stopping Affrication FCDP
Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct

Fold1 1125 5724 1728 11,655 2853 5283 1089 3636
Fold2 1125 5724 1728 11,655 2853 5283 1089 3636
Fold3 1125 5724 1728 11,655 2853 5283 1089 3636
Fold4 1125 5724 1728 11,655 2853 5283 1089 3636
Fold5 1116 5715 1728 11,646 2844 5274 1080 3636

Table 5. The amount of data on the single-Chinese-character dataset for validation.

CV Backing Stopping Affrication FCDP
Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct

Fold1 31 158 48 323 79 146 30 101
Fold2 31 159 48 324 79 147 30 101
Fold3 31 159 48 323 79 146 30 101
Fold4 31 159 48 324 79 147 30 101
Fold5 32 159 48 324 80 147 31 101

2.5.3. Experiment 3—Multi-Class Classification Using a Single Chinese Character

In Experiment 3, to further verify the ability of the model to discriminate the four
types of errors in a single model, we repackaged the dataset from Experiment 2 to leave
only the samples of error tones. The sample size of the dataset is shown in Table 6. In this
experiment, the input of the model was a single Chinese character sample and the output
was four error categories.

Table 6. The amount of data on single-Chinese-character dataset.

CV Training Segments Test Segments
Backing Stopping Affrication FCDP Backing Stopping Affrication FCDP

Fold1 1125 1728 2853 1089 31 48 79 30
Fold2 1125 1728 2853 1089 31 48 79 30
Fold3 1125 1728 2853 1089 31 48 79 30
Fold4 1125 1728 2853 1089 31 48 79 30
Fold5 1116 1728 2844 1080 32 48 80 31

2.5.4. Runtime of the Developed Application

We converted the trained models into TensorFlow Lite models (.tflite), and measured
the inference time of all models on an Android mobile device. Given that the model is
intended to be used in real-time by physicians or patients via smartphones, the time taken
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to infer is also critical. We used the performance measurement application [22] provided
by the official Tensorflow website for performance evaluation. We tested all the models
used using Google Pixel 6 with Android 12.

3. Results

To describe the experimental results, this chapter is divided into several subheadings.
The first section will look into the efficacy of using Chinese phrases as classifier input.
The second section investigates the effectiveness of Chinese characters in contrast. The third
subsection investigates the efficacy of Chinese characters in the classifier. Furthermore,
real-time inference on mobile devices is provided to demonstrate the viability of edge
prediction. Initially, the unbalanced dataset led to ineffective training outcomes, which
were not significantly enhanced until we implemented the balancing measures of class
weights and data augmentation.

3.1. Experiment 1—Multi-Class Classification Using a Single Chinese Phrase

To verify the feasibility of the model for classifying SSDs, we performed cross-training
on three standard models. Figure 7 shows the training results of the dataset on each model.
The average cross-validation results for the three models were as follows: InceptionV3 with
a result of 70%, DenseNet121 with a result of 74%, and EfficientNetB2 with a result of 69%.
Table 7 shows the confusion matrix with the best accuracy among all the results.

Figure 7. Validation accuracy of single Chinese phrase multi-category classification box plot
(Experiment-1). The top and bottom of the box are the interquartile ranges (75th and 25th per-
centile) centered around the median value (50th percentile). The whiskers represent the minimum
and maximum validation accuracy values. Table 8 presents the results in detail.

Table 7. One of the most effective confusion matrices in Experiment 1 when the DenseNet121 model
was used. Rows indicate output classes, columns indicate target classes.

FCDP Affrication Backing Stopping

FCDP 120 0 0 2
Affrication 4 65 0 4

Backing 7 2 20 8
Stopping 8 3 3 262
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Table 8. Validation accuracy of single Chinese phrase multi-category classification.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 69.0 74.4 66.3
2 72.1 74.0 69.1
3 72.4 79.5 73.8
4 64.8 69.5 62.6
5 71.1 74.7 72.3

Average Value 69.9 74.4 68.8

3.2. Experiment 2—Binary Classification Using a Single Chinese Character

Figure 8 shows the accuracy results of the four types of binary classifications with
phonetic errors on the three models. The displayed numbers are the average of the cross-
validation results, and the following are the best results in each category: backing is
86.8 percent of DenseNet121; stopping is 86.9 percent of InceptionV3; Affricate is 76.3 per-
cent of InceptionV3; and FCDP is 76 percent of EffcientNetB2. It can be found that the
results of affrication and FCDP in each folder are relatively different, which we speculate is
due to the fact that these two categories contain more Chinese characters, and the number
of samples currently collected is not enough to satisfy the plurality of data.

Figure 8. Validation accuracy of single Chinese character binary classification box plot (Experiment-2).
Tables 9–12 present the results in detail.

Table 9. Validation accuracy of single Chinese character binary classification of backing class.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 83.8 88.4 79.9
2 79.8 83.7 83.9
3 83.8 85.8 84.0
4 80.5 88.4 82.8
5 85.5 88.0 83.7

Average Value 82.7 86.8 82.8

Table 10. Validation accuracy of single Chinese character multi-category classification of stopping class.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 87.3 86.5 86.2
2 88.2 86.1 86.0
3 87.4 83.7 86.3
4 85.4 86.0 86.0
5 86.3 83.7 87.1

Average Value 86.9 85.2 86.3
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Table 11. Validation accuracy of single Chinese character multi-category classification of affrication class.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 80.1 69.8 69.9
2 74.0 60.7 70.7
3 74.2 67.4 72.9
4 72.9 61.3 76.4
5 80.1 68.1 70.4

Average Value 76.3 65.4 72.0

Table 12. Validation accuracy of single Chinese character multi-category classification of FCDP class.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 71.8 74.8 77.9
2 76.5 76.6 77.1
3 61.8 73.7 81.7
4 80.9 72.2 78.6
5 77.1 76.0 71.2

Average Value 73.6 74.6 77.3

3.3. Experiment 3—Multi-Class Classification Using a Single Chinese Character

The experimental results are shown in Figure 9. It can be found that the overall
accuracy of the model has decreased somewhat compared with that of Experiment 1,
but the confusion matrix in Table 13 shows that the model still has a certain level of
discriminatory ability.

Figure 9. Validation accuracy of single Chinese character multi-category classification box plot
(Experiment-3). Table 14 presents the results in detail.

Table 13. One of the most effective confusion matrices in Experiment 3 when the InceptionV3 model
was used. Rows indicate output classes, columns indicate target classes.

Backing Stopping Affrication FCDP

Backing 19 3 5 5
Stopping 7 27 11 3

Affrication 1 10 65 2
FCDP 2 0 7 22
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Table 14. Validation accuracy of single Chinese character multi-category classification.

Fold Number InceptionV3 DenseNet121 EfficientNetB2

1 55.3 65.4 51.6
2 60.6 61.7 58.0
3 64.9 66.5 58.0
4 57.5 67.0 59.2
5 67.0 68.1 33.3

Average Value 61.1 65.7 52.0

3.4. Runtime of the Developed Application

The performance of all the models is summarized in Table 15, and it is clear that the
models we used meet the requirements for real-world usage scenarios. In other words,
it only takes about three seconds for the GPU to predict all 96 Chinese phrases on the
phone. The accuracy of the TFLite model run on a cell phone was nearly identical (less
than one percent) to that of the original model run on a computer.

Table 15. The performance values below are measured on Android 12 from Google Pixel 6.

Experiment Model Name CPU GPU Model Size (MB)

e1
DenseNet 121 489 ms 32 ms 27

EfficientNet B2 438 ms - 29
Inception V3 399 ms 35 ms 83

e2
DenseNet 121 231 ms 29 ms 27

EfficientNet B2 241 ms - 29
Inception V3 170 ms 36 ms 83

e3
DenseNet 121 236 ms 30 ms 27

EfficientNet B2 235 ms - 29
Inception V3 171 ms 36 ms 83

4. Discussion

The research presented in this article aims to develop a tool for analyzing SSD error
classes based on deep learning. A workflow has been created to collect and train a model
that categorizes SSDs. SLPs, who will be the primary beneficiaries, were involved in every
aspect of the study. Experts tagged the data, then analyzed and experimented with it to
train the model to detect and classify SSDs. The system is designed to help preschool
children because diagnosis and intervention are most beneficial at this age.

The results show that the use of Chinese phrase samples for the current dataset
is more effective than single Chinese character samples for model training. In general,
the four types of error categories using either Chinese phrases or single Chinese characters
can achieve good results in the current mainstream image classification neural networks.
However, using Chinese phrase samples as model input is easier to train than single
Chinese characters samples, contrary to the original expectation. Before the experiment, we
hypothesized that reducing the range of speech marks would make it easier for the model
to distinguish SSD classes.

Several factors may account for this, including the re-screening of all samples in the
Chinese single-character dataset and the elimination of ambiguous or imprecise phonetic
samples by SLPs. This reduced the number of samples in the dataset. Another possible
reason is that the reduced sample length also means that the model cannot find the position
of the Chinese character in the original vocabulary and the combination or variation with
the preceding and following sounds. This may require further refinement of the tagging
method and model design to verify whether the Chinese phrase or the Chinese character is
more suitable for the composition of the SSDs classification input.

Experiments reveal that when all three models are trained under the identical con-
ditions, the best achievable accuracy is comparable. However, the disparity between
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individual cross-training results is enormous. We believe this may have something to
do with the size of the dataset. The corpus that we have compiled must continue to be
expanded so that the model can completely learn the diversity of data and more specifics
during the learning process. Based on the existing training environment, all three models
can effectively train usable outcomes, but if we wish to further enhance the accuracy, we
must increase the size of the voice samples.

5. Conclusions

In this paper, we investigated the idea of using neural networks to classify SSD
categories in both binary and multi-category classifications. The task is to identify the error
category by the pronunciation of common Chinese words. The categories include stopping,
backing, FCDP, and affrication. With the progressive development of multi-dimensional
CNN models, we used several standard models which are well established and powerful in
image classification tasks for identification and classification. We used multi-dimensional
spectral signals as input to the model, and the input features are composed of three two-
dimensional Mel-Spectrogram feature maps.

We were able to classify four common types of SSD errors using monosyllabic speech
samples and neural network models. This study is the first in Taiwan to apply deep learning
to the treatment of SSDs, and its findings are based on the four most common articulation
errors in Taiwan. Possibly in the near future, machine learning will be able to aid SLP and
the patient’s treatment process. We found that with sufficient data, the neural network
model is able to identify subtle differences in the characteristics of different prosodic errors
in single Chinese characters. Other rare categories, in theory, can be successfully identified
if sufficient samples of speech sounds are collected.

Currently, we are converting the trained models into models that can be predicted on
smartphones in a timely manner through tensorflow lite. The pre-developed app provides
a complete experience of real-time recording and analysis and is being clinically tested
in the rehabilitation department of a hospital. The demo of the application is shown in
Figure A1. The current accuracy of 86% is sufficient for rapid screening for parents prior to
medical treatment or self-assessment for long-term review and correction. This will save
many patients or SLPs a lot of time.
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Abbreviations
The following abbreviations are used in this manuscript:

SSDs Speech sound disorders
SLPs Speech-language pathologists
MFCC Mel-frequency cepstral coefficients
FCDP Final consonant deletion process

Appendix A

Table A1 shows the list of Chinese phrases collected in this experiment. Each partici-
pant’s pronunciation sample was recorded according to the phrases in the list. On average,
it took about 30 min to record one participant. The length of each Chinese phrase was
limited to less than three seconds.

Table A1. Chinese phrase list.

Chinese Phease IPA Translation in English Chinese Phease IPA Translation in English

布丁 Bùdı̄ng pudding 閃電 shǎndiàn lightning
麵包 miànbāo bread 牙刷 yáshuā toothbrush
大白菜 dàbáicài Chinese cabbage 直升機 zhíshēngjı̄ helicopter
螃蟹 pángxiè Crab 日歷 rìlì calendar
奶瓶 nǎipíng baby bottle 超人 chāorén superman
蓮蓬頭 liánpengtóu shower head 大榕樹 dàróngshù Large banyan
帽子 màozi hat 走路 zǒulù walk
玉米 yùmı̌ corn 洗澡 xı̌zǎo bath
捉迷藏 zhuōmícáng hide and seek 水族箱 shuı̌zúxiāng aquarium
鳳梨 fènglí pineapple 草莓 cǎoméi Strawberry
衣服 yı̄fú clothing 洋蔥 yángcōng onion
吹風機 chuı̄fēngjı̄ hair dryer 上廁所 shàngcèsuǒ To the restroom
動物 dòngwù animal 掃把 sàobǎ broom
蝴蝶 húdié Butterfly 垃圾 lèsè Rubbish
看電視 kàndiànshì watch TV 去散步 qùsànbù go for a walk
太陽 tàiyáng Sun 衣服 yı̄fú clothing
枕頭 zhěntou Pillow 果醬 guǒjiàng jam
一條魚 yı̄tiáoyú a fish 指甲刀 zhı̌jiǎdāo nail clippers
鈕扣 niǔkòu button 筷子 kuàizi Chopsticks
電腦 diànnǎo computer 烏龜 wūguı̄ tortoise
喝奶昔 hēnǎixı̄ drink milkshake 去公園 qùgōngyuán go to the park
老虎 lǎohǔ Tiger 杜鵑花 dùjuānhuā Rhododendron
恐龍 kǒnglóng Dinosaur 選擇 xuǎnzé choose
養樂多 yǎnglèduō Yakult 缺點 quēdiǎn shortcoming
果凍 guǒdòng jelly 太陽 tàiyáng Sun
烏龜 wūguı̄ tortoise 大海 dàhǎi the sea
去公園 qùgōngyuán go to the park 喝奶昔 hēnǎixı̄ drink milkshake
筷子 kuàizi Chopsticks 草莓 cǎoméi Strawberry
貝殼 bèiké shell 貝殼 bèiké shell
巧克力 qiǎokèlì chocolate 水族箱 shuı̌zúxiāng aquarium
漢堡 hànbǎo hamburger 帽子 màozi hat
大海 dàhǎi the sea 麵包 miànbāo bread
救護車 jiùhùchē ambulance 一條魚 yı̄tiáoyú a fish
膠帶 jiāodài adhesive tape 鈕扣 niǔkòu button
果醬 guǒjiàng jam 枕頭 zhěntou Pillow
指甲刀 zhı̌jiǎdāo nail clippers 中秋節 zhōngqiūjié Mid-Autumn Festival
鉛筆 qiānbı̌ pencil 漢堡 hànbǎo hamburger
鋼琴 gāngqín piano 電腦 diànnǎo computer
中秋節 zhōngqiūjié Mid-Autumn Festival 看電視 kàndiànshì watch TV
信封 xìnfēng envelope 信封 xìnfēng envelope
點心 diǎnxı̄n dessert 鋼琴 gāngqín piano
口香糖 kǒuxiāngtáng chewing gum 吃點心 chı̄diǎnxı̄n eat dessert
站牌 zhànpái stop sign 螃蟹 pángxiè Crab
蠟燭 làzhú Candle 果醬 guǒjiàng jam
擦桌子 cāzhuōzi wipe the table 口香糖 kǒuxiāngtáng chewing gum
抽屜 chōutì drawer 鳳梨 fènglí pineapple
警察 jı̌ngchá Policemen 奶瓶 nǎipíng baby bottle
柳橙汁 liǔchéngzhı̄ orange juice 蓮蓬頭 liánpengtóu shower head
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Appendix B

The following Figure A1 shows the final mobile application, which can be used by
users to perform real-time testing of the SSD category on their cell phones. The application
is divided into three main functions. First, users can download the latest version of the SSD
identification model from the first screen. Then, after filling out the basic questionnaire,
the user can enter the Chinese phrase recording stage, and after each phrase is recorded,
the user can listen to it again and again to confirm that it is completely recorded. The pro-
gram will calculate the prediction results for each phrase and present them to the user in a
report. Users can also choose whether or not to provide the recording data for backend
analysis and addition to the dataset.

(a) (b) (c)

(d) (e) (f)

Figure A1. Screenshot of the mobile application: (a) Application main page: Users have the option of
initiating a test or downloading the most recent classification model.; (b) User questionnaire page:
The first step in the test procedure is to complete the questionnaire, which is primarily used for SSD
background checks, such as whether the vocal organs are normal, etc.; (c) Recording interface: The
recording session is the following step. The user can record by clicking the microphone button or
play the sound file by clicking the play button.; (d) Analysis page: There are pages awaiting analysis.;
(e) Result report page: Results page gives results for different SSDs categories.; (f) Health information
link page: Links for Health Education and Promotion.
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