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Abstract: Amelogenesis imperfecta (AI) is a heterogeneous group of rare genetic disorders affecting
amelogenesis during dental development. Therefore, the molecular genetic etiology of AI can provide
information about the nature and progress of the disease. To confirm the genetic etiology of AI in
a Korean family with an autosomal dominant inheritance, pedigree and mutational analyses were
performed. DNA was isolated from the participating family members and whole-exome sequencing
was performed with the DNA sample of the father of the proband. The identified mutation was
confirmed by Sanger sequencing. The mutational analysis revealed a novel nonsense mutation
in the FAM83H gene (NM_198488.5: c.1363C > T, p.(Gln455*)), confirming autosomal dominant
hypocalcified AI. Full-mouth restorative treatments of the affected children were performed after the
completion of the deciduous dentition. Early diagnosis of AI can be useful for understanding the
nature of the disease and for managing the condition and treatment planning.

Keywords: amelogenesis imperfecta; hypocalcified; general anesthesia; stainless steel crown; zirconia
crown; FAM83H

1. Introduction

Amelogenesis imperfecta (AI) is a rare genetic disorder affecting amelogenesis during
dental development [1]. The affected enamel can be categorized into three major types:
hypoplastic, hypomatured and hypocalcified AI [2]. Hypoplastic enamel is literally thin,
in that sometimes it is only a thin covering of unusual mineralization without the normal
enamel crystallite structure. The affected enamel is (sometimes extremely) sensitive to
cold and hot stimuli, and tooth wear is accelerated after the loss of the thin enamel due
to attrition. Wide interdental spacing is a common finding due to the insufficient enamel
thickness [3,4]. Hypomatured enamel is less mineralized, due to incomplete removal of
the residual enamel matrix proteins or reduced maturation of the enamel crystallite [5].
Dark- to yellow-brown discoloration of the affected enamel is a common finding, and
increased attrition and partial fracture of the enamel frequently occur due to hypomineral-
ization [6,7]. Hypocalcified enamel is extremely weak and soft due to improper calcification.
The affected enamel is rapidly lost by attrition soon after eruption, leaving a rough and
stained enamel [8].

Until now, more than a dozen genes have been identified as causing non-syndromic
AI [9–11]. Among them, FAM83H is the only gene related to the pathogenesis of autoso-
mal dominant hypocalcified AI (ADHCAI) [8,12]. Interestingly, it has been shown that
the severe enamel phenotype of ADHCAI, a very weak enamel even weaker than the
underlying normal dentin, is not associated with the lack or interruption of the biological
function of the wild-type FAM83H in the enamel forming process (amelogenesis) but with
the dominant negative effect, even though the exact mechanism of pathogenesis remains to
be further elucidated [13–15].
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Treatment of AI-affected dentition is difficult but important, not only for the oral
health, but also for the psychosocial health especially at younger ages [16]. This study
aimed to identify a molecular genetic etiology of a family and to report the dental treatments
performed on three children in the family.

2. Materials and Methods
2.1. Family Recruitment

This study was independently reviewed and approved by the institutional review
board of the Seoul National University Dental Hospital (SNUDH; IRB No. CRI05003G).
Informed consent was obtained from the participating family members for the genetic
analysis. Clinical examinations were performed, and blood samples were collected.

2.2. DNA Isolation and Whole Exome Sequencing

Genomic DNA was isolated from peripheral blood samples, and the quality and
quantity were measured as described before [17]. Whole-exome sequencing was performed
with the DNA sample of the father of the proband (III:5) (Theragen Etex, Seoul, Korea).
The exome was captured with the Agilent SureSelect Human All Exon Enrichment System,
and the 101-bp paired-end sequencing reads were generated using the Illumina HiSeq 2500
(Illumina, Inc., San Diego, CA, USA).

2.3. Bioinformatics

The obtained sequencing reads were aligned to the reference human genome assembly
(hg38) after trimming for the removal of the adapter sequences. Cutadapt and Burrows–
Wheeler aligner were used for the trimming and alignment, respectively [18,19]. A list of
sequence variants was obtained after a series of bioinformatics analysis programs, such as
Samtools and Genome Analysis Tool Kit [20,21]. Annotation of the variants was performed
with the Annovar with dbSNP build 147 [22]. A minor allele frequency of 0.01 was applied
as a cutoff value to filter the variants.

2.4. Sanger Sequencing

The identified mutation was confirmed by Sanger sequencing with the following
primers (713 bp, sense: 5′-ACTTCCTGTCGGCCTTCC-3′; antisense: 5′-GTAGGAGGCCAA-
ACGCC-3′). Sanger sequencing was performed for all three participating family members
(Macrogen, Seoul, Korea).

3. Results
3.1. Mutational Analysis

Mutational analysis revealed two variations in proven AI-causing genes, ENAM and
FAM83H. The variation in ENAM was a missense mutation (NM_031889: c.1348C > T) in
the last exon, changing a proline to a serine at codon position 450. In silico predictions
gave contradictory results: benign by the SIFT, disease causing by the Mutation taster,
and probably damaging by PolyPhen-2 [23–25]. Most importantly, the variant was listed
in the single nucleotide polymorphism database (dbSNP) with an accession number of
rs180899807. The minor allele frequency was as high as 0.027 depending on the study
population. The variation in FAM83H was a nonsense mutation in exon 5 (NM_198488.5:
c.1363C > T) changing a glutamine to an amber stop codon at the 455 position (p.(Gln455*)).
This mutation was novel and the nonsense or frameshift mutations in exon 5 in the nearby
positions were already proven as ADHCAI-causing mutations [11]. Sanger sequencing
confirmed the mutation and segregation within the participating family members (Figure 1).
The mutation has been submitted to the ClinVar database (http://www.ncbi.nlm.nih.gov/
clinvar, accessed on 18 February 2022) with an accession ID: SCV001976360.
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somal dominant inheritance pattern. The plus symbols indicate the participating members for the 
genetic analysis. A black arrow indicates the proband. (B) Clinical photo of the father (III:5) shows 
a full-mouth restoration. (C) A periapical radiograph of the maxillary anterior teeth of the proband 
at age 2 years 9 months. (D) Sequencing chromatograms of the mother (III:6) and the father (III:5). 
Nucleotide sequence is shown above the chromatogram and the mutated nucleotide is indicated by 
a red arrow. 

3.2. Clinical Phenotype and Treatment of the Proband 
At 1 year and 10 months (1Y10M) old, the proband (IV:3) presented to the department 

of pediatric dentistry, SNUDH, for the management of brown-discolored and hypominer-
alized dentition. There were no significant problems during pregnancy and delivery, and 
the family members did not have a remarkable past medical history. The pedigree, clinical 
photo of the father, periapical radiograph of the proband and sequencing chromatograms 
are shown in Figure 1. The family history highly suggested autosomal dominant AI and 
genetic study indeed revealed a novel nonsense FAM83H mutation. Therefore, it was an-
ticipated that the extremely soft hypocalcified enamel would be lost and the attrition 
would be accelerated. Therefore, the treatment for the posterior teeth was planned under 
general anesthesia (GA). Until the eruption of the deciduous second molars, thorough oral 
hygiene was instructed, and caution was given about using excessive masticatory force. 
Additionally, the use of a prevention agent containing casein phosphopeptide-amorphous 
calcium phosphate (CPP-ACP), GC Tooth Mousse (GC Korea, Seoul, Korea), was recom-
mended. She had a finger sucking habit; therefore, advice for habit control was given. 

Figure 1. Pedigree, clinical photo of the father, periapical radiograph of the maxillary anterior teeth of
the proband, and sequencing chromatograms. (A) The pedigree of the family indicates an autosomal
dominant inheritance pattern. The plus symbols indicate the participating members for the genetic
analysis. A black arrow indicates the proband. (B) Clinical photo of the father (III:5) shows a full-
mouth restoration. (C) A periapical radiograph of the maxillary anterior teeth of the proband at age
2 years 9 months. (D) Sequencing chromatograms of the mother (III:6) and the father (III:5).
Nucleotide sequence is shown above the chromatogram and the mutated nucleotide is indicated by a
red arrow.

3.2. Clinical Phenotype and Treatment of the Proband

At 1 year and 10 months (1Y10M) old, the proband (IV:3) presented to the department
of pediatric dentistry, SNUDH, for the management of brown-discolored and hypomineral-
ized dentition. There were no significant problems during pregnancy and delivery, and
the family members did not have a remarkable past medical history. The pedigree, clinical
photo of the father, periapical radiograph of the proband and sequencing chromatograms
are shown in Figure 1. The family history highly suggested autosomal dominant AI and
genetic study indeed revealed a novel nonsense FAM83H mutation. Therefore, it was antic-
ipated that the extremely soft hypocalcified enamel would be lost and the attrition would
be accelerated. Therefore, the treatment for the posterior teeth was planned under general
anesthesia (GA). Until the eruption of the deciduous second molars, thorough oral hygiene
was instructed, and caution was given about using excessive masticatory force. Addition-
ally, the use of a prevention agent containing casein phosphopeptide-amorphous calcium
phosphate (CPP-ACP), GC Tooth Mousse (GC Korea, Seoul, Korea), was recommended.
She had a finger sucking habit; therefore, advice for habit control was given.

At 2Y9M, full-mouth restoration was performed under outpatient GA (Figure 2). De-
ciduous molars were treated with stainless steel crowns. Deciduous canines and maxillary
anterior teeth were treated with zirconia crowns. Deciduous mandibular anterior teeth
were left untreated. At the 3Y11M follow-up (Figure 3), good oral health was maintained,
and the anterior open bite was spontaneously corrected with the discontinuance of the
finger sucking habit.
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Figure 2. Clinical photos of the proband (IV:3). (A–D) Clinical photos of the proband before the
treatment at age 2 years 9 months. (E–H) Clinical photos of the proband after the treatment. The
deciduous molars were treated with stainless steel crowns, and the deciduous canines and maxillary
anterior teeth were treated with zirconia crowns. The deciduous mandibular anterior teeth were
left untreated.
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Oral health and restorations were well maintained. Anterior open bite was spontaneously corrected 
with the discontinuance of the finger sucking habit. (F) Panoramic radiograph showed hypocalcified 
enamel in the developing permanent teeth. 
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Figure 3. Clinical photos and panoramic radiograph of the proband at age 3 years 11 months. (A–E)
Oral health and restorations were well maintained. Anterior open bite was spontaneously corrected
with the discontinuance of the finger sucking habit. (F) Panoramic radiograph showed hypocalcified
enamel in the developing permanent teeth.

3.3. Treatment of the Affected Individual (IV:1)

About 10 months after the first visit of the proband, a cousin of the proband presented
for the management of the affected dentition at age 2Y. Oral hygiene instruction was given,
and the same preventive measure was recommended. Completion of deciduous dentition
was observed at the six-month follow-up, and discomfort in the mandibular posterior area
was reported a month later. Full-mouth restoration was performed under outpatient GA
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at age 2Y11M. The deciduous mandibular anterior teeth were treated with celluloid resin
crowns, because there was not enough interdental space for zirconia crowns (Figure 4).
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Figure 4. Clinical photos and panoramic radiograph of the affected individual (IV:1). (A–C) Clinical
photos of the proband before the treatment at age 2 years 11 months. (D–F) Clinical photos of the
proband after the treatment. The deciduous molars were treated with stainless steel crowns, and the
deciduous canines and maxillary anterior teeth were treated with zirconia crowns. The deciduous
mandibular anterior teeth were treated with celluloid resin crowns. (G) Panoramic radiograph at age
4 years 9 months.
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3.4. Treatment of the Affected Individual (IV:2)

Another cousin (IV:2) of the proband, a younger brother of the affected individual
(IV:1), presented for the same reason at age 1Y2M. The same treatment strategy was planned,
and full-mouth restoration was performed at age 2Y9M. Deciduous molars and canines
were treated with stainless steel crowns and all anterior teeth were treated with zirconia
crowns (Figure 5).
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Figure 5. Clinical photos and panoramic radiograph of the affected individual (IV:2). (A–C) Clinical
photos of the proband before the treatment at age 2 years 9 months. (D–F) Clinical photos of the
proband after the treatment at age 3 years 6 months. The deciduous molars and canines were treated
with stainless steel crowns and all anterior teeth were treated with zirconia crowns. (G) Panoramic
radiograph at age 3 years 6 months.
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4. Discussion

Hypocalcified AI is the most frequent form among heterogeneous AI types, and a
single gene, FAM83H, is responsible for the pathogenesis [1,8]. Therefore, mutations in
the FAM83H gene could be the most common culprit causing AI. To date, more than
30 mutations have been identified in the FAM83H gene [11]. The FAM83H gene locates on
the long arm of chromosome 8 (8q24.3) and contains five exons. Translation begins from
exon 2, and most of the amino acids are encoded by exon 5 (933 out of a total 1179 amino
acids). All AI-causing mutations identified to date are nonsense or frameshift mutations
occurring in exon 5 (from p.Ser287* to p.Glu694*) [11]. Because of the location in the
last exon, the mutation escapes from the surveillance system, nonsense-mediated mRNA
decay, and encodes a truncated protein. The C-terminus part seems to be needed for
the localization of the wild-type FAM83H in the cytoplasm, even though the functional
role is still unclear [15]. Without the C-terminus, the truncated FAM83H moves into the
nucleus and is believed to exert a dominant-negative effect disturbing the normal enamel
calcification process [14]. It is believed that the novel mutation identified in this study
expands the mutational spectrum of the AI-causing FAM83H mutation based on the type
and location of the mutation (p.(Gln455*)).

It has been shown that AI patients have higher levels of psychosocial problems such
as social avoidance and distress in addition to higher levels of dysfunction, discomfort
and disability from the affected oral condition compared with individuals without AI [16].
Additionally, they concluded that AI negatively affects the psychosocial health of affected
patients to a degree comparable to that of systemic disease, especially at younger ages.
Therefore, the treatment for the AI condition is important not only for the prevention of
infection or tooth loss but also for improving the psychosocial development or relationship
of AI patients by improving their oral health and appearance [26].

The treatment of hypocalcified AI is even more difficult than the other types of AI.
Because the enamel calcification itself is not proper, very little help can be obtained from
state-of-the-art esthetic resin bonding system. Deproteination from the hypocalcified
enamel matrix was suggested to improve the bonding strength; however, long-term stability
cannot be guaranteed [27]. If the child is uncooperative or too young to be expected to
cooperate during the treatment of sensitive teeth and many teeth need to be treated,
treatment under GA can be considered.

In this study, we identified a young patient (proband) with hypomineralized deciduous
dentition and found the underlying mutation in the FAM83H gene, confirming ADHCAI.
It was predicted that the affected enamel would be easily destroyed or lost with attrition or
mastication, leaving a rough enamel surface with discoloration and thermal sensitivity [28].
Therefore, full-mouth treatment under GA was planned; however, the primary second
molars were not erupted yet. Until the deciduous dentition was complete and ready
for treatment under GA, instructions for oral hygiene and precaution to avoid excessive
masticatory force were given. Moreover, the CPP-ACP containing agent was recommended
to help the mineralization of the hypocalcified enamel or reduce the loss of enamel at
least [29]. Even though there is no direct supporting evidence for the hypocalcified enamel,
we thought that the calcium and phosphate in the agent would help mineralization if it was
used on a daily basis with good oral health [30]. Future studies regarding new or better
remineralization agents for hypocalcified enamel are necessary.

Since it has been reported that restoration with crown shows better prognosis than
direct composite resin restorations [31], most teeth were treated with zirconia and stainless
steel crowns in this study. Long term treatment checkup will be required.

5. Conclusions

In this study, a novel FAM83H mutation causing ADHCAI was identified and full-
mouth treatments of three affected young children were successfully performed under
an outpatient GA protocol. If the dentition is not severely affected and the patients are
cooperative for the treatment, conventional dental treatment or treatment under sedation
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could be better treatment options. Dental treatment for the AI condition can prevent
infection or tooth loss and improve the psychosocial development in AI patients. In
addition to restorative treatment, active preventive measures are also required for AI
patients. Further studies would be necessary to find the most effective methods for caries
prevention (and/or hypersensitivity reduction) and treatment in AI patients.
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