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Abstract: Cognitive ability in childhood is positively associated with economic productivity in adult-
hood. Expected gains in economic output from interventions that protect cognitive function can
be incorporated in benefit–cost and cost-effectiveness analyses conducted from a societal perspec-
tive. This review summarizes estimates from high-income countries of the association of general
cognitive ability, standardized as intelligence quotient (IQ), with annual and lifetime earnings among
adults. Estimates of the association of adult earnings with cognitive ability assessed in childhood
or adolescence vary from 0.5% to 2.5% per IQ point. That range reflects differences in data sources
and analytic methods. We take a conservative published estimate of a 1.4% difference in market
productivity per IQ point in the United States from a recent study that controlled for confounding by
family background and behavioral attributes. Using that estimate and the present value of lifetime
earnings calculated using a 3% discount rate, the implied lifetime monetary valuation of an IQ point
in the United States is USD 10,600–13,100. Despite uncertainty and the exclusion of non-market
productivity, incorporation of such estimates could lead to a fuller assessment of the benefits of
public health and clinical interventions that protect the developing brains of fetuses, infants, and
young children.

Keywords: economic evaluation; cost-of-illness; cost-effectiveness; IQ; productivity costs; newborn
screening; immunization; environmental health

1. Introduction

Experts increasingly recommend that economic evaluations of prevention strategies
be conducted from either a societal perspective, which includes impacts on other sectors
of the economy, or a limited societal perspective that encompasses impacts on time costs
and economic productivity [1]. Inclusion of productivity gains is of particular salience
for the assessments of strategies that target early childhood, because optimal health and
development can raise employment and earning potential over the lifespan. For example,
long-term outcome studies have demonstrated that disadvantaged children who receive
intensive early interventions can experience lasting gains in educational attainment and
occupational success as well as other benefits, the monetary valuation of which can greatly
exceed the costs of the interventions [2,3]. Methods for the calculation of economic benefits
of improved neurodevelopment may be useful for a range of interventions.

Adverse impacts on children’s neurodevelopment can be mitigated through preven-
tion or the early detection and treatment of exposures that cause cognitive impairment. In
general, cognitive impairment is defined as limitations in cognitive ability. Intellectual dis-
ability (ID) is a chronic condition defined as significant limitations in both cognitive ability
and adaptive behavior that are recognized before the age of 22. Most clinicians measure
cognitive ability with intelligence quotient (IQ) tests and define cognitive limitations as at
least one standard deviation (SD) below the mean, and significant cognitive limitations as
at least two SDs below the mean (e.g., roughly 70 or less on a scale in which the mean is
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100 and the standard deviation is 15) [4,5]. Some of the most common causes of ID in the
general population are genetic syndromes (e.g., Down syndrome and fragile X syndrome),
fetal alcohol spectrum disorder, and adverse birth outcomes (e.g., premature birth) [5].
Sociodemographic variables, e.g., low maternal education and poverty, are associated with
mild ID in the general population [6,7].

Economic evaluations of interventions to protect cognitive ability in young children of-
ten include estimates of the avoided costs of ID. For example, newborn screening followed
by the prompt diagnosis and treatment for conditions such as phenylketonuria (PKU), con-
genital hypothyroidism (CH), and medium-chain acyl-CoA dehydrogenase deficiency can
prevent ID and avert associated developmental consequences and economic costs [8–11].
Economic analysis of newborn screening for CH projected at least USD 2 in averted educa-
tion and productivity costs associated with ID per USD 1 spent on screening [12]. Similarly,
economic evaluations of vaccination against certain infections, notably bacterial meningitis
and congenital cytomegalovirus, include estimates of avoided productivity and direct costs
and lost productivity for cases of ID prevented [13–15].

The reported prevalence of ID is about 1.2% in U.S. children [16]. Many more persons
can have milder degrees of cognitive impairment, although few economic assessments
have incorporated estimates of impacts on the whole spectrum of cognitive ability. The one
area where such assessments are routinely conducted involves environmental exposures to
heavy metals, such as lead, which has dose–response associations with general intelligence,
the ability to pay attention, and educational attainment [17,18]. Economic assessments of
reductions in environmental lead exposure have typically modeled economic gains from
a shift in the distribution of IQ scores [19]. For example, Grosse et al. calculated that the
decline in blood lead levels between the late 1970s and early 1990s may have resulted in an
average increase of 2.2–4.7 IQ points for each birth cohort, and as a result, each year’s birth
cohort of four million children would earn at least USD 110 billion more (in 2000 USD) over
their lifespans using a 3% annual discount rate [20]. Other authors have modeled economic
gains from improvements in children’s intelligence attributable to full breastfeeding [21]
and fortification for the prevention of iron-deficiency anemia [22].

Economic evaluations that restrict estimates of lost productivity to avoided cases of
ID may understate the economic gains associated with the protection of brain development
in children overall. For example, while 15–20% of children with spina bifida experience
mild to severe ID [23], the distribution of cognitive ability among children with spina
bifida born with hydrocephalus appears to be shifted to the left by one SD (mean IQ of
roughly 85) [24]. The implication is that most individuals born with spina bifida and
hydrocephalus experience some reduction in cognitive potential, although most have IQ
scores within the normal range. Economic evaluations of folic acid fortification policies
that only include costs associated with physical and intellectual disability [25,26] may
understate the economic benefits of the prevention of mild cognitive impairment associated
with spina bifida and hydrocephaly.

Childhood immunizations can potentially lead to improvements in adult productivity,
which could make certain vaccines more economically attractive [27–29]. Studies conducted
in low- and middle-income countries have reported that the implementation of childhood
immunizations was associated with significantly higher educational attainments and
children’s cognitive scores [30–32]. An association of bacterial meningitis with IQ scores
in particular has been demonstrated; adult British survivors of certain types of bacterial
meningitis had mean IQ scores reduced by 4–5 points relative to siblings [33]. Nonetheless,
although economic evaluations of vaccination have quantified the benefits of prevention of
severe sequelae of bacterial meningitis [13,14], they have not incorporated overall gains in
cognitive ability and adult productivity.

Likewise, cost-effectiveness analyses of newborn screening have consistently failed
to take into account the fact that many late-treated children with PKU and CH achieve
final IQ scores within the normal range, albeit lower than in the reference population [8,34].
For example, researchers in Sweden reported that among 39 children aged 7–9 years with
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clinically diagnosed CH born prior to the introduction of screening for CH, the mean IQ
was 88, and range was 50–113; just three were educated in special schools for children
with intellectual disability [35]. However, although cost-effectiveness analyses of newborn
screening for such disorders have routinely included the avoided costs of managing ID,
they have not taken into account productivity gains associated with higher IQ scores for
children who would not have been diagnosed with ID in the absence of screening [9,10].

In this study, we critically review published estimates of monetary valuations of an IQ
point, independent of ID, used in U.S. assessments of the economic burden of exposures or
disorders and in economic evaluations of interventions or policies that improve cognitive
ability in early life. Unless otherwise stated, all estimates are reported in 2016 USD adjusted
using the Gross Domestic Product deflator [36].

2. Materials and Methods
2.1. Estimation of General Cognitive Ability

IQ tests measure general cognitive skills that comprise verbal and nonverbal com-
ponents. IQ scores have been shown to fluctuate during children’s early development,
although results from different intelligence tests generally agree with one another. From
early adolescence through adulthood, IQ scores on average remain stable, although in-
dividual scores can vary [37]. In addition, individual performance on IQ tests can vary
depending on personality traits, such as internal locus of control, motivation, and incen-
tives [38,39], as well as acquired factual knowledge.

Given the limited availability of IQ test results, estimates of the association of cognitive
ability with annual earnings typically use standardized achievement test scores as a proxy
for IQ scores. In particular, many U.S. researchers use the Armed Forces Qualifying Test
(AFQT) scores derived from the Armed Services Vocational Aptitude Battery (ASVAB).
The AFQT is normalized like an IQ test with a mean of 100 and SD of 15. The AFQT
measures the mastery of factual knowledge, such as trigonometry, unlike IQ tests, which
are intended to measure fluid intelligence [40,41]. Moreover, although AFQT scores are
correlated with IQ scores, AFQT scores can be strongly influenced by inter-individual
differences in personality traits, such as anxiety and inattention, and are an imperfect
proxy for general intelligence [38,42]. In addition, AFQT scores are highly correlated with
family socioeconomic status [40,43]. Achievement test scores are a function of age and
schooling attainment; therefore, economists have typically adjusted ASVAB or AFQT scores
for age and years of schooling attained at the time tests were taken [41,44–46]. In addition,
measurement error is an underappreciated source of potential bias in statistical estimates
of the association of ability and earnings [47]. The AFQT scores are censored, providing
relatively little discrimination among individuals with high ability, and the measurement
error in the AFQT is negatively correlated with true ability, unlike with IQ scores [48].

2.2. Estimation of Percentage Increase in Earnings per IQ Point

Calculation of the USD valuation of an IQ point can be divided into three steps. The
first step is the calculation of the expected percentage change in productivity associated
with a 1% difference in general cognitive ability. The second step is the calculation of
the present value of lifetime productivity. The third step involves the calculation of the
monetary valuation of an IQ point through multiplication of the estimates from the first
two steps.

The proportional increase in annual productivity with increased cognitive ability at
various times over the life cycle is typically estimated through linear regression analyses of
the natural logarithm of annual earnings that include standard predictors of earnings from
labor economics along with a measure or proxy for general cognitive ability assessed in
childhood or adolescence. The regression coefficient on the cognitive test score indicates
the percentage difference in earnings for a one-point different in cognitive ability. That
approach presumes a linear association of cognitive ability with the logarithm of earnings,
for which there is mixed evidence [49,50].
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The sources of published estimates summarized in the Results section are derived from
previous reviews of the literature on estimates of the IQ–earnings association published up
to 2014 [19,51–53], supplemented by searches of Google Scholar and PubMed to identify
more recent studies.

2.3. Estimation of Lifetime Earnings

Lifetime earnings refers to the expected sum of earnings over the lifetime of a statistical
individual who is representative of the general population. The lifetime is calculated using
survival probabilities from population life tables, which are used to calculate life expectancy.
Lifetime earnings are calculated by multiplying average annual earnings at each age by the
probability of survival to that age, discounted to present values, and summed over all ages.

Economic evaluations typically calculate the net present value (NPV) of both long-
term outcomes and costs by applying a “discount” rate to costs and outcomes in future
years. The rationale for discounting is two-fold: a higher valuation of current health and
income (i.e., time preference) and the opportunity cost of government borrowing [54,55].
Countries can specify standard discount rates, varying from 1.5% to 5%; since 1996, the
standard discount rate in the United States has been 3% [54,56].

In the human capital approach to the assessment of productivity (indirect) costs,
analysts calculate the expected economic output for a synthetic cohort of individuals
of a given age over the remaining lifetime [57–59]. The loss to society resulting from
the removal of a worker in this conceptual approach is the additional contribution they
make to aggregate economic output, which can exceed money income received. Most U.S.
analyses use gross employee compensation, inclusive of fringe benefits and other employer
costs [58,60–62], although some use only reported wage and salary income [63].

It is also standard practice in U.S. human capital analyses to include estimates of
the economic valuation of non-market services, e.g., household services. The valuation
of household services produced by women was included in the first U.S. human capital
estimates prepared by Weisbrod in 1961 in order to reduce the disparity in human capital
valuations of premature deaths between women and men [57,59]. Since the 1990s, national
estimates of average market productivity and the sum of market and non-market produc-
tivity have been published in various sources [58,60–62,64]. In those analyses, time spent
producing non-market services was valued using a replacement cost approach, i.e., what it
would cost to hire workers to perform household services [58,61,62]. Some analysts have
used opportunity cost approaches (e.g., median wage) to assign a monetary valuation to
unpaid time [65]. In studies conducted in other countries, human capital assessments are
typically restricted to estimates of market productivity, implicitly placing no economic
valuation on household or voluntary activities [63].

The human capital approach to the calculation of productivity costs (loss of output due
to premature mortality and disability) is used in the vast majority (92–95%) of cost-of-illness
analyses globally, although a few countries recommend analysts use the “friction cost”
approach that only takes into account short-run productivity losses associated with the
replacement of a worker [63]. In the United States, the Second Panel on Cost-Effectiveness
in Health and Medicine in 2016 likewise recommended use of the human capital approach
to estimate productivity costs in cost-effectiveness analyses (CEAs) that follow a societal
or modified societal perspective [66]. The Second Panel also recommended that societal
perspective CEAs subtract consumption during the added years of life from productivity
to calculate net resource use [67]. However, because guidance on calculating consumption
costs in childhood is lacking, CEAs of life-saving pediatric interventions that follow the
Second Panel guidance may exclude productivity costs [68].

The human capital approach has been used to calculate the loss of productivity from
disability that results in the partial or complete loss of earning potential. For example,
Waitzman et al. calculated the percentages of surveyed adults with and without spina
bifida who reported being unable to work or were limited in the amount or kind of work
they could perform [25]. They assumed a 100% loss in economic productivity (both market
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and non-market work) for the difference in percentages unable to work and a 50% reduction
in productivity for those limited in work due to spina bifida.

The calculation of the NPV of expected productivity for a synthetic cohort in the
human capital approach follows three steps. First, analysts calculate expected constant-
USD (corrected for inflation) annual earnings or economic production in future years on the
basis of cross-sectional data for adults at various ages. Secondly, analysts adjust projected
earnings in future years to account for projected gains in average labor productivity (output
per worker). Thirdly, analysts apply an exponential discount rate to productivity in future
years to calculate the NPV of expected lifetime earnings for a statistical individual in a
given year and sum up the overall NPV.

Grosse, Krueger, and Pike recently published updated estimates of annual and lifetime
market and non-market productivity for the U.S. population stratified by age and sex,
based on 2016 data [62]. Like previous studies, they estimated market productivity by
adjusting survey data on reported gross money earnings to include employer payments on
payroll taxes and monetary benefits [58,60,61,64]. Unlike previous studies, which assumed
future growth in productivity of 1.0% per year, they reported estimates assuming either
0.5% or 1.0% annual productivity growth. The lower bound of 0.5% annual productivity
growth was included to reflect slower productivity growth experienced during 2000–2016
than was previously projected [62]. The authors estimated the monetary valuation of
non-market productivity using data from the American Community Survey on hours of
services generated within the household as well as volunteer work and multiplied this by
the estimated cost of hiring tasks to be performed. Lifetime productivity was estimated
twice, using discount rates of 3% and 7%, along with survival probabilities from the 2014
U.S. life tables.

2.4. Calculation of Present Value of an IQ Point

The multiplication of the NPV of lifetime earnings by the percentage difference in
earnings associated with a one IQ point difference in cognitive ability is a straightforward
calculation. However, that approach implicitly assumes that life expectancy is independent
of childhood cognitive ability, which is not correct. Individuals with ID, primarily moderate
to profound ID, have markedly lower life expectancy [69]. In addition, among the popula-
tion without ID, higher cognitive test scores in early life are associated with lower mortality
risk in middle and late adulthood, much of which appears to be mediated by differences in
educational attainment and socioeconomic status [70,71]. Higher IQ may lead to higher
lifetime income through both longer life expectancy and higher annual earnings; therefore,
existing estimates that ignore the positive association with life expectancy presumably
underestimate the overall association of IQ with lifetime earnings.

3. Results
3.1. Proportional Increase in Earnings with Increased Cognitive Ability

Economic assessments of child lead exposure prevention have frequently used esti-
mates of the IQ–earnings association [20,72–86]. Analyses conducted in the 1980s for the
U.S. Environmental Protection Agency (EPA) conservatively projected gains of 0.9–1.0%
in earnings per one IQ point [72,87]. In a more comprehensive analysis published in 1994
that improved on the earlier EPA analyses, Schwartz projected a 1.76% increase in annual
earnings per IQ point gain, of which 72% was mediated by education [72]. The following
year, Salkever estimated that a one-point increase in cognitive ability would raise annual
earnings by 2.09% for males and 3.63% for females, with a weighted average of 2.37% for
both genders [73]. The indirect mediating effect of education accounted for 41% of the
overall association of cognitive ability and earnings for males and 61% for females. Grosse
et al. used a 2.0% base-case estimate of the linear coefficient of earnings per IQ point with a
range from 1.76% to 2.37% [20].

Other estimates have been derived from regression analyses of the natural logarithm
of earnings in which cognitive test scores are included as a predictor along with covariates.
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Notably, in 1995, Salkever reported empirical estimates of the association of test scores and
annual earnings using data from the 1979 National Longitudinal Study of Youth (NLSY79)
cohort of individuals who had been tested at ages 14–23 in 1980 with the ASVAB, which
measures factual knowledge instead of general cognitive ability. Salkever used AFQT
scores derived from the ASVAB to predict earnings in 1990 at ages 25 to 33 [73]. Salkever
estimated direct effects of 1.24% for males and 1.40% for females of a one-point score
difference on earnings, adjusting for years of education.

Other researchers have reported more modest associations between IQ and annual
earnings in early adulthood. Like Salkever, we excluded estimates of the association of
IQ with hourly earnings because much of the effect of cognitive ability on earned income
is mediated through annual hours of paid work [88]. A Swedish cohort study found a
roughly 20% difference in earnings from ages 20 to 65 associated with a 1 SD difference in
IQ measured at ages 10 or 20 [89]. Unlike in U.S. data, the IQ–earnings association in the
Swedish cohort was similar for males and females. One SD in ability is equivalent to 15 IQ
points; thus, the Swedish study finding implies a roughly 1.3% difference in earnings per
IQ point. A different Swedish study that used earnings data at younger ages found that
one SD in cognitive ability, using a Swedish test equivalent to the AFQT, was associated
with only a 10% difference in earnings [49]. A recent cohort study from Canada found
smaller adjusted differences in earnings at ages 33–35 relative to a one SD difference in
verbal IQ assessed at age five or six, by up to 7.4% for males and 10.4% for females [90].
The relatively weak association of IQ and earnings in the Canadian study might reflect the
inclusion of statistical controls for several behavioral characteristics, notably inattention,
which is correlated with IQ scores, and reliance on verbal IQ instead of a full-measure IQ
score (Francis Vergunst, personal communication, 20 March 2020).

Zax and Rees used data from the Wisconsin Longitudinal Study of Social and Psycho-
logical Factors in Aspiration and Attainment (WLS), which followed a cohort of Wisconsin
high school graduates from 1957 for four decades. In regressions of annual earnings for
males in 1974 and 1992 on adolescent IQ scores without covariates, each one-point dif-
ference in IQ scores was associated with 0.75% higher annual earnings in 1974 (age 35)
and 1.39% higher earnings in 1992 (age 53) [91]. In a regression analysis with controls for
family background, one IQ point was associated with 0.58% higher earnings at age 35.
However, these estimates may understate the association of cognitive ability with earnings
in contemporary, representative U.S. samples. The WLS cohort excluded non-graduates
and females and had very few nonwhite participants, i.e., groups that have higher returns
to cognitive ability [88,92].

More recently, Lin, Lutter, and Ruhm used data for the NLSY79 cohort followed from
age 20 to age 50 with the 2006 renormed AFQT scores and reported results of a regression
model that included controls for family background and three behavioral attributes; a
retrospective assessment of sociability at age six, and adult self-assessments of locus of
control and self-esteem [92]. The results indicated that a 0.1 SD difference in cognitive
ability (equivalent to 1.5 IQ points) was associated with earnings differences of 2.0% at age
30, 2.7% at age 40, and 3.3% at age 50 (equivalent to 1.3%, 1.8%, and 2.2% differences in
earnings per one-point difference in ability, respectively). The authors estimated the effect
of a 0.1 SD increase in cognitive ability on the NPV of lifetime labor income from age 20 to
age 50 using a 3% discount rate of 2.09% overall, 1.67% for men and 2.66% for women. The
fact that the lifetime 2.09% estimate was only slightly higher than the 2.0% estimate at age
30 reflects the lower association of cognitive ability and earnings for individuals in their
early 20s as well as greater discounting of earnings at older ages. The 2.09% difference for
0.1 SD is equivalent to 1.4% difference per IQ point.

3.2. USD Estimates of Incremental Productivity per IQ Point

Multiple authors have estimated the USD valuation of IQ using relative differences
in earnings with IQ in combination with standardized estimates of the NPV of lifetime
market productivity. For example, Grosse et al. calculated the valuation of an IQ point
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as USD 14,500 (in 2000-value USD) in their base-case analysis, using an estimated USD
623,000 NPV of lifetime gross market earnings for the year 2000 [64] and a 2.0% difference
in earnings per IQ point. Grosse et al. also reported a range from USD 12,700 to USD 17,200
corresponding to 1.76% and 2.37% relative difference per IQ point, respectively [20]. Two
subsequent studies took the USD 14,500 base-case valuation from Grosse et al. and adjusted
it for inflation [78,79]. Other studies either used the rough USD 18,000 estimate in 2006
USD from the second of those studies without inflation adjustment [81–83] or modified it
for purchasing power [85].

A few authors have a reported substantially higher human capital estimates of the
valuation of IQ despite using the same percentage differences in earnings used in previous
studies. Trasande and Liu in 2011 reported a USD 26,000 estimate of the valuation of an
IQ point in 2007 USD. They applied the 2.0% difference in earnings from Grosse et al. to
an unpublished (and unexplained) USD 1.3 million estimate of lifetime productivity [80],
citing unpublished tabulations of lifetime earnings from Wendy Max and colleagues. Attina
and Trasande followed the same approach in 2013, using the 1.76–2.37% difference per
IQ point range [84], and a recent publication by Boyle et al. borrowed a cost estimate of
USD 26,553 per IQ point from that study [86]. Attina and Trasande reporting estimates of
discounted lifetime earnings at males and females aged five of USD 1,413,313 and USD
1,156,157, respectively, in 2007 USD, citing a report by Max et al. which in fact reported
lifetime earnings estimates for 1–4-year-old boys and girls of USD 1,085,807 and USD
803,102, respectively, in 2000 USD [60]. They may have used a tabulation of combined
market and non-market production provided to them directly, but that was not documented
or explained. Grosse, Krueger, and Mvundura reported USD 1.2 million as the NPV in
early childhood of combined market and non-market (household) productivity in 2007
USD with a 3% discount rate; the NPV of market productivity alone was USD 821,000 [61].

Updated estimates for the U.S. population in 2016 projected an NPV at birth of market
productivity of USD 934,583 assuming 1% annual growth in future real earnings, and USD
758,954 assuming 0.5% annual growth productivity, both using a 3% discount rate [62].
The first valuation when multiplied by 2.0%, as in the 2002 study by Grosse et al., yielded a
valuation of USD 18,700 per IQ point in 2016 USD, and multiplied by 1.4%, as in the study
by Lin et al., which equates to a valuation of USD 13,100 per IQ point. Assuming annual
productivity growth of 0.5%, the valuation of an IQ point is USD 10,600 if one assumes
1.4% higher earnings per IQ point, and USD 7600 if one assumes 1.0% higher earnings per
IQ point.

Lin et al. calculated a valuation of USD 7862 per IQ point by applying the 1.4%
difference in earnings per IQ point to the NPV of historical lifetime earnings reported by
the NLSY79 cohort, extrapolated to age 65 [92]. This is comparable to an estimate using the
NPV of future lifetime earnings in 2016 in combination with a conservative assumption
of a 1.0% difference in earnings per IQ point. The use of historical earnings data can
substantially understate expected earnings for future cohorts because of the long-term
positive trend in real gross productivity and earnings.

4. Discussion

In addition to estimates of the economic costs associated with ID, the monetary valua-
tion of IQ can be incorporated in both the burden of disease assessments and economic
evaluations of preventive measures to enhance cognitive ability from the societal perspec-
tive. To date, estimates of the monetary valuation of IQ losses in the general population,
as opposed to reductions in the occurrence of ID, have been incorporated in assessments
of the economic burden of environmental contamination with lead, mercury, and other
neurotoxicants, as well as in benefit–cost analyses (BCAs) of associated environmental
regulations in the United States [19], but not in BCAs of interventions, such as newborn
screening [11]. BCA experts recommend monetary valuations of major health outcomes,
notably premature death, using either “willingness to pay (WTP)” estimates of utility gains
in health or “willingness to accept (WTA)” losses in health [93]. However, BCA guidance
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suggests that other forms of monetary valuation, notably the human capital approach, can
be appropriately used for the monetary valuation of mild adverse health impacts [94], such
as mild cognitive losses caused by environmental contaminants.

Estimates of WTP/WTA valuations are derived from either revealed preference stud-
ies, in which real-world behaviors and outcomes are assessed, or stated preference studies,
in which valuations are elicited through contingent valuation surveys or discrete choice
experiments. In the United States, WTA estimates of the “value of a statistical life (VSL)”
are based on “hedonic wage” regressions that relate occupational earnings to the risk of on-
the-job death across occupations, controlling for other job and individual attributes [95,96].
The estimated VSL is typically about USD 10 million, independent of age [96–98], whereas
the NPV of lifetime economic productivity for the U.S. population in 2016 was roughly
USD 1.5 million at birth and USD 2 million at age 30 [62].

Limited attempts to generate revealed or stated preference WTA/WTP valuations of
children’s cognitive ability in the United States have yielded valuations of either a range of
USD 1600–2800 [99,100] or a point estimate of USD 600 per IQ point [101], all expressed
in 2016 USD. The last estimate came from contingent valuation surveys of U.S. adults for
WTP to reduce PCB contamination, which can affect children’s neurological development.
Von Stackelberg and Hammitt noted that many of the respondents did not believe that PCB
could lower IQ, and the authors speculated that the respondents were either not thinking
of the effect of child IQ on adult earnings or heavily discounted the future [101]. The other
WTP estimates came from a re-analysis by Lutter of contingent valuation data on parental
WTP for lead chelation therapy for children with lead exposure collected by Agee and
Crocker [99,100]. Lutter’s valuation estimates were used in a BCA prepared by critics
of the regulation of mercury emissions [102]. Lutter noted, however, that only a small
number of parents chose chelation therapy and that the average WTP for parents who
chose therapy was USD 10,000 per IQ point [100]. This is roughly equivalent to human
capital estimates of the NPV of post-tax lifetime earnings per IQ point, assuming 1% annual
productivity growth and a 3% discount rate, which suggests that the two approaches
may yield comparable estimates. However, evidence indicates that chelation therapy
may have no long-term effects on children’s blood lead concentrations [103]. Given the
extremely limited preference-based evidence available, further research might illuminate
the difference in valuation of IQ using WTP and human capital approaches, if researchers
are able to establish a validated method for assessing parental WTP for IQ differences.

Human capital estimates of the USD valuation of IQ as a function of the presumed
log-linear association of annual earnings and cognitive ability could be characterized as
an estimate of WTP for cognitive ability from the perspective of an employer who is
purchasing work effort. In addition, a fully specified hedonic wage equation includes
characteristics of individual workers, such as ability [95]. Therefore, use of human capital
estimates of the monetary valuation of IQ based on the revealed preferences of employers in
combination with individual behaviors in terms of educational attainment and labor force
attachment may be justifiable within the WTP/WTA framework of welfare maximization
used in BCA.

Human capital estimates of the USD valuation of IQ constitute the only currently
accepted means for incorporating economic estimates of mild cognitive deficits in economic
assessments. In addition to pediatric environmental health concerns, this approach has
received some attention in the field of nutrition; specifically, assessments of the economic
impacts of the prevention of micronutrient deficiencies through supplementation and of
non-human milk infant feeding [21,22,104].

To apply this approach, cost-effectiveness analysts would need to estimate the gain in
IQ points attributable to an intervention without double-counting benefits from the preven-
tion of diagnosed disability, which may require extrapolation from limited data. For exam-
ple, a Swedish retrospective screening study of stored blood spots from 100,239 children
aged five years old, who had been screened at birth during 1977–1978 for PKU and
galactosemia, administered the Griffith developmental assessment and laboratory tests to
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26 children whose stored blood spots were positive for elevated thyrotropin (indicative of
CH); six were found to be euthyroid and 20 had permanent hypothyroidism [105]. While
two children had developmental quotients (DQs) of 45 and 58, the other 18 with CH had
an average DQ of 95 (range 76–120), which was 12 points lower than the mean DQ of 107
(range 88–128) for six euthyroid children [105]. Assuming similar differences in mean DQ
and IQ scores, a difference of 12 points and a monetary valuation of USD 10,600–13,100 per
IQ point would imply an economic gain of USD 127,000–157,000 per U.S. infant detected
with permanent CH through newborn screening; if non-market productivity gains were
assumed, the estimates would be substantially greater.

Published estimates of the proportionate increase in earnings with general cognitive
ability assessed in children and adolescents vary from roughly 0.5% to 2.5% per IQ point.
Factors affecting the magnitude of estimates include the study population, the methods
used to measure or impute cognitive ability, the age span over which earnings are assessed,
and the covariates included in statistical analyses to control for confounding. Estimates of
the USD valuation of cognitive ability also depend on the measure of productivity used—
wages and salaries alone, gross earnings inclusive of fringe benefits or market earnings
plus non-market productivity, assumptions about increases in productivity in future years,
and the choice of discount rate.

Researchers may prefer to use combined market and non-market lifetime productivity
to generate estimates of the monetary valuation of childhood IQ. To the extent that cog-
nitive ability is positively associated with the performance of non-market activities, such
as parenting, the expected economic valuation of cognitive ability could be substantially
greater than is implied by the use of estimates of lifetime earnings. Total lifetime productiv-
ity based on 2016 U.S. data is estimated to be 57% greater than that of market productivity
alone [62]. The studies reviewed here based estimates of the monetary valuation of IQ
on U.S. data on what were said to be earnings data, although some may have actually
used combined market and non-market productivity estimates [80,84,86]. On the other
hand, some researchers used a human capital approach to estimate total productivity costs
associated with physical and cognitive deficits. For example, Waitzman et al. explicitly
assumed that adults with spina bifida and cerebral palsy experienced the same relative
reductions in market and non-market productivity [25].

Estimates of a USD 10,600–13,100 valuation of an IQ point derived from the findings
of Lin et al. on relative differences in earnings applied to the NPV of lifetime market
productivity in the United States in 2016 USD are low relative to some estimates in the
environmental health economics literature. Differences in the assumed percentage change
in earnings per IQ point in part reflect differences in adjustments for potential confounding.
Notably, Salkever did not adjust for confounding by family characteristics; failure to adjust
for confounding can result in upwardly biased estimates of the association of ability and
earnings [92,106–108].

Estimates of the monetary valuation of IQ are subject to substantial uncertainty. The
fact that educational attainment can be both a confounder and a mediating variable in the
causal pathway from ability to earnings creates inherent uncertainty in estimates of the
causal effect of general intelligence on lifetime earnings. Much of the association between
IQ and earnings appears to be mediated by educational attainment [89,108,109]; therefore,
a regression of the effect of IQ on earnings that includes years of schooling captures only
part of the overall effect of IQ. On the other hand, because education and intelligence
are symbiotic, it is difficult to assess the separate effects of each on individual earning
potential [110]. Individuals with higher cognitive ability are more likely to invest in post-
secondary education and other training opportunities, and the returns to post-secondary
education are greater for individuals with higher IQ test scores [111].

Estimates of the average association of cognitive ability with earnings do not necessar-
ily apply equally to all groups. Discrimination and structural disadvantages can adversely
affect both education and earnings. Nonetheless, it has been reported that the association of
cognitive ability with earnings is stronger within groups experiencing discrimination, such
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as women and disadvantaged minorities [88]. Relatively little is known about the extent to
which returns to cognitive ability vary depending on where one lies in the distributions
of IQ scores and earnings. Two analyses of Swedish data on military enlistees linked to
subsequent earnings both suggest that the association with cognitive ability is relatively
stable across the distribution [49,50]. Lundborg et al. used unconditional quantile regres-
sion stratified by income deciles and reported that proportional gains in income (mostly
earnings) with cognitive ability were generally higher for those in the upper half of the
income distribution but were highest for those in the bottom decile [49]. However, that
study did not stratify subjects by cognitive test scores. In a descriptive analysis stratified
by cognitive test score, Lindqvist et al. reported that the steepest slope with earnings was
among those with the lowest scores, and the slopes were similar for all other groups [50].

Estimates of the IQ–earnings association are also subject to potential bias due to
measurement error. Classic (random) measurement error in cognitive tests can attenuate
(downwardly bias) estimates of the associations of cognitive ability with variables, such
as earnings [47]. On the other hand, non-random measurement error, omitted variables,
and reverse causality can lead to overestimation of the effects of ability [112]. Heckman,
Stixrud, and Urzua used corrected test scores and a latent variable model to assess both
types of bias in the association of cognitive and noncognitive ability with hourly wages.
The authors found that the downward bias of measurement error was offset by the upward
biases from reverse causality and endogeneity, with the overall association of wages with
cognitive ability modestly lower after correcting for both types of errors [112].

Another important source of confounding is the correlation of noncognitive skills
or traits with cognitive ability. Behavioral traits, such as inattention and hyperactivity,
can adversely affect the performance of cognitive tasks [113]. Those same traits can have
substantial effects on adult earnings [110,114,115]. Indeed, studies have reported that
personality traits or “soft skills”, such as conscientiousness, perseverance, sociability, and
curiosity, can be even more predictive of adult earnings than cognitive ability [38,112].
Therefore, analyses that do not control for noncognitive characteristics may overstate the
effects of cognitive ability [92]. Furthermore, behavioral traits, such as attentiveness and
impulse control, have been shown to influence cognitive test scores [116].

We have presented a wide range of estimates of the IQ–earnings association. We advise
caution in applying these estimates. Motivated reasoning can lead economic evaluators
to select either high or low estimates of the monetary valuation of IQ, depending on
their policy preferences. The use of a relatively high estimate will increase the likelihood
that a policy which reduces the occurrence of cognitive deficits would be considered
economically justified. Conversely, lower estimates of the IQ–earnings association can
make interventions less likely to yield net benefit. This is not a hypothetical concern, as
suggested by the different monetary valuations that have been used by advocates and
critics of environmental regulations.

A monetary valuation of an IQ point in the range of USD 10,600–13,100 (2016 USD)
per IQ point in the United States, assuming that lifetime earnings increase by 1.4% per IQ
point and using a 3% discount rate, can be considered a conservative human capital-based
estimate for two reasons. Firstly, those estimates do not take into account the positive
association of childhood IQ with survival among working-age adults. Secondly, those
estimates exclude gains in non-market productivity associated with higher cognitive ability.
If cognitive ability were associated with relative productivity in non-market activities
comparable to market productivity as quantified by earnings, the USD valuation would be
in the range of USD 16,800–20,400 per IQ point. Three publications may have inadvertently
used estimates of combined market and non-market productivity [80,84,86], but to date no
published study has explicitly made that modeling choice or sought to justify the inclusion
of non-market productivity.

Researchers have often borrowed U.S. monetary estimates of IQ valuations to apply
to other countries [82,84,85]. A few researchers have generated their own estimates based
on national estimates of earnings. Monahan et al. took the mid-point estimate from
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Zax and Rees of a 1.0% gain in earnings per IQ point and applied it to an estimate of
average wage income in the United Kingdom from a labor force survey adjusted to assume
1% annual growth in future real earnings; their conservative base-case estimate of the
monetary valuation of IQ was GBP 3297 [104]. This is lower than our U.S. estimates owing
to between-country differences in average earnings, the exclusion of fringe benefits, and
the use of a lower-bound estimate of the association of IQ and earnings. Monahan et al.
used a range of estimates of IQ monetary valuations in a societal perspective CEA of a
proposal for routine iodine supplementation of pregnant women in the United Kingdom
for the prevention of cognitive impairment in children, which they concluded would be
potentially cost-saving [104]. The authors noted that their estimates were conservative and
cited reports of positive associations of IQ with various health outcomes in adults.

5. Conclusions

Although there is substantial imprecision and uncertainty in the available estimates of
the monetary valuation of cognitive ability, we suggest that analysts consider the inclusion
of such estimates in assessments of the economic benefits of public health and clinical
interventions that protect the developing brains of fetuses, infants, and young children.
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