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Abstract: Preterm infants with respiratory distress may require mechanical ventilation which is
associated with increased pulmonary morbidities. Prompt and successful extubation to noninvasive
support is a pressing goal. In this communication, we show original data that increased recurring
intermittent hypoxemia (IH, oxygen saturation <80%) may be associated with extubation failure at
72 h in a cohort of neonates <30 weeks gestational age. Current-generation bedside high-resolution
pulse oximeters provide saturation profiles that may be of use in identifying extubation readiness
and failure. A larger prospective study that utilizes intermittent hypoxemia as an adjunct predictor
for extubation readiness is warranted.
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1. Introduction

Mechanical ventilation is common in preterm infants in the treatment of respiratory
distress and respiratory failure [1]. Although essential and lifesaving, prolonged me-
chanical ventilation is associated with increased morbidities [2]. Nevertheless, untimely
extubation may also be harmful, as failure and subsequent reintubation is associated
with increased morbidity and mortality as well [3–5]. Therefore, it is imperative that a
timely and safe extubation be undertaken to shorten the duration of mechanical venti-
lation after the resolution of respiratory distress. However, there are no standardized
processes to assess for extubation readiness and marked variation among neonatal inten-
sive care units (NICUs) persists [6]. Multiple strategies have been investigated, such as
use of minute ventilation [7,8], spontaneous breathing tests [9], pulmonary and respiratory
testing [10–12], cardiorespiratory variability [11,13–16], and diverse demographics and ven-
tilator modes [17–21], all with variable success. The utility of the aforementioned predictors
is inconsistent or of limited availability at the bedside. Consequently, an objective, feasible,
and readily available assessment for extubation readiness is yet to be determined [22].

Pulse oximetry is commonly used in clinical practice, with adapted capabilities to
calculate and display cumulative intermittent hypoxemia (IH) in the form of oxygen
saturation (SpO2) histograms. Intermittent hypoxemia is likely underutilized in assessing
extubation readiness, since IH is the result of both lung disease and respiratory instability
in preterm infants [23–26]. In this communication, we explore the value of IH in extubation
successes and failures in preterm infants.
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2. Materials and Methods

Infants <30 weeks gestational age (GA) were prospectively enrolled upon admission
to the neonatal intensive care unit (NICU). High-resolution SpO2 data were collected
(sampling rate: 1 Hz, averaging time: 2 s) and archived as previously described [27].
Respiratory support and extubation data were retrospectively collected from the medical
records. Data timestamps related to IH and respiratory support were well organized in
a research database or medical records flow sheets, respectively. Informed consent was
obtained prior to SpO2 data collection. The study was approved by the University of
Kentucky’s Institutional Review Board.

IH is calculated as percent time spent with hypoxemia (SpO2 <80%) and number
of events per day when SpO2 dropped to less than 80% for a 4–180 s duration [28,29].
Software created through Matlab was utilized to quantify IH measures [29]. IH measures
were reported 24 h pre-extubation until 72 h post-extubation (or when reintubation became
necessary).

At our institution, patients are considered for extubation when initial respiratory
distress has improved and standardized readiness criteria are met (synchronized intermit-
tent mandatory ventilation respiratory rate (RR) ≤20 breaths/min, fraction of inspired
oxygen (FiO2) ≤40%, peak end expiratory pressure (PEEP) ≤6 cmH2O, peak inspiratory
pressure (PIP) ≤20 cmH2O, and tidal volume (Vt) ≤6 mL/kg). All infants were extubated
to non-invasive nasal support. We defined failure as reintubation within 72 h. Extubation
events were grouped as successes or failures.

Statistical analyses were conducted in SAS Version 9.4 software (SAS Institute, Cary,
NC, USA). Group comparisons of mean values for the percent time (%time IH- SpO2 <80)
and the number of events (IH- SpO2 <80) were square root transformed, if necessary, in
order to meet statistical assumptions as previously described [30]. Primary analyses defined
failure as re-intubation before 72 h post-extubation. Receiver operating characteristic (ROC)
curve analyses were used to find optimal cutoff values. Secondary analyses examined
differences between groups at 24 h post-extubation. All tests were two-sided at the 5%
significance level.

3. Results

Of the 91 extubations identified, a total of 68 extubation occurrences from 50 preterm
infants <30 weeks of gestation had complete data sets and were therefore included. De-
mographics and respiratory support data are presented in Table 1. Median GAs were
26-6/7 weeks and 25-5/7 weeks in success and failure groups, respectively. All infants were
extubated from conventional ventilator support to continuous positive airway pressure
(CPAP) or noninvasive positive-pressure ventilation (NIPPV). Overall, most extubation at-
tempts were successful (72% of events were successful at 72 h). As this was a pilot, we were
not appropriately powered to detect group differences. Medians and interquartile-ranges
are provided.

Continuous SpO2 waveforms were interrogated for IH events and SpO2 histograms
before and after extubation. Differences in IH measures between failure and success groups
are represented in Figure 1; both %time- SpO2 <80 and IH- SpO2 <80 were higher in the
failure group compared to successful group pre- and post-extubation, however, differences
were not statistically significant. On the secondary analyses for differences in 24 h post-
extubation, there were also increased IH measures in the failure group compared to the
success group (%time- SpO2 <80, p = 0.07, and IH- SpO2 <80, p = 0.03). Interestingly, there
was a statistically significant decrease in IH after extubation in the success group in both
the primary (72 h) and secondary (24 h) analyses (all p < 0.01) (Figure 1). The differences in
IH measures remained the same after adjusting for GA, birth weight, weight, and day of
life at time of extubation. We applied the same analyses to the first extubation events only;
these results were similar in IH trends.
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Table 1. Demographics and respiratory characteristics.

Baseline Characteristics
Success Failure
n = 49 n = 19

Gestational age (weeks) 26.6 (25.3–27.6) 25.5 (25.1–26.1)
Birth weight (grams) 890 (730–1040) 730 (650–905)
Weight at time of extubation (grams) 1140 (960–1253) 970 (830–1150)
Age at time of extubation (days) 18 (5–37) 21 (9–33)
Baseline Ventilator Setting
• Set respiratory rate (breaths/min) 15 (15–20) 20 (15–20)
• FiO2 (%) 25 (21–30) 29 (25–32)
• PEEP (cmH2O) 6 (5–6) 6 (6–7)
• PIP (cmH2O) 15 (13–21) 16 (13–18)
• TV (mL/kg) 5 (5–6) 5 (4–6)
Post-extubation non-invasive support
• CPAP 10/49 (20%) 0/19 (0%)
• NIPPV 39/49 (79%) 19/19 (100%)
• FiO2 (%) 32 (25–38) 40 (30–44)
• PEEP (cmH2O) 7 (6–8) 8 (7–9)

Median (interquartile range). FiO2: fraction of inspired oxygen, PEEP: positive end expiratory pressure, PIP:
peak inspiratory pressure, TV: Tidal volume. CPAP: Continuous positive airway pressure. NIPPV: Noninvasive
positive-pressure ventilation.

Children 2021, 8, 237 4 of 7 
 

 

 
Figure 1. Intermittent hypoxemia (IH) measures 24 h pre- and up to 72 h post-extubation in suc-
cess and failure groups. (A) Percent time in hypoxemia. (B) Frequency of IH. Mean ± SE. 
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role of IH in early detection of impending failures and prompt re-intubation. It has been 
reported that infants continue to have frequent IH events during mechanical ventilation 
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a reliable marker for both timely identification of extubation readiness and impending 

%
 T

im
e 

w
ith

  H
yp

ox
em

ia
Fr

eq
ue

nc
y 

of
 IH

 p
er

 d
ay

A

B

Figure 1. Intermittent hypoxemia (IH) measures 24 h pre- and up to 72 h post-extubation in success
and failure groups. (A) Percent time in hypoxemia. (B) Frequency of IH. Mean ± SE.
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Based on the ROC assessment, the optimal cutoffs of pre-extubation IH measures
associated with successful extubation were calculated. The cutoff of 193 IH-SpO2 <80 per
day and 7.5% with %time-SpO2 <80% had the highest sum of sensitivity and specificity.
Example 1: if a patient had less than 193 IH events/day during the 24 h prior to extubation,
there is a 73% likelihood of successful extubation for the patient. Example 2: if a patient
who spent more than 7.5% of the time with SpO2 <80% per day were to be extubated, there
is an 86% likelihood of failure for that patient.

4. Discussion

These pilot data demonstrate a potential and valuable role for IH in extubation success
or failure in preterm infants. First, there was a trend for increased IH pre-extubation in the
failure group as compared to the success group. Given that this was a pilot assessment
with a limited sample size, these data support the need for a larger appropriately powered
investigation of IH as a risk-predictor of extubation readiness. Second, the same trend
between failure and success groups occurred post-extubation, indicating a potential role of
IH in early detection of impending failures and prompt re-intubation. It has been reported
that infants continue to have frequent IH events during mechanical ventilation [31]. Here,
we document that infants who had successful extubations had a subsequent significant
decrease in IH measures post-extubation. This interesting phenomenon may be useful
for early identification of extubation success versus failure. IH may prove to be a reliable
marker for both timely identification of extubation readiness and impending failure, lend-
ing to safe reinsertion of the endotracheal tube. Many studies have investigated extubation
readiness in preterm infants [7–21]. Some studies utilized techniques such as pulmonary
function testing that, although valuable, are not readily available at the bedside in every
NICU. Other studies focused on ventilator settings and measures to assess for readiness.
However, not all ventilators settings are weaned in a timely manner, and most may not pro-
vide accurate measurements of pulmonary mechanics. The value of IH, as derived from the
SpO2 histogram, is both readily available in all NICUs and often an accurate consequence
of a cardio-respiratory compromise. Limitations include the single-center retrospective
nature of this study and limited power. In addition, while NICU criteria for extubation are
in place, the final decision to extubate, or the need to reintubate remained at the discretion
of the treating clinical team. Due to some subjects contributing multiple extubation obser-
vations, as well as the need to statistically account for repeated measures across time (pre-
and post-extubation) from the same observations, multilevel modeling was employed, and
thus we were under-powered to detect a significant difference. However, this is a novel
study as the value of IH has not been examined in this setting.

Utilization of the bedside SpO2 histogram for cumulative IH as a predictor for ex-
tubation readiness may be a pragmatic answer for this decades-long problem of when is
the optimal time to extubate infants recovering from respiratory distress [22]. Intermittent
hypoxemia is a promising, objective, and feasible adjunct predictor for extubation readi-
ness, as percent time with hypoxemia is readily available; often stored in the NICU bedside
monitors for more than 24 h (SpO2 histogram). This is a pilot assessment, and we caution
the readers from early implementation of the IH thresholds identified in this manuscript.
We plan on a larger study to better define IH thresholds predictive of extubation success or
failure in preterm infants.

5. Conclusions

Since IH is the result of respiratory instability and lung disease, we propose identifying
cumulative IH (SpO2 histogram) as a valuable tool that guides clinicians’ decision making
regarding extubation readiness or impending failure. A larger prospective study that
utilizes IH as an adjunct predictor for extubation readiness is warranted.
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