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Abstract: Individual responses to methylphenidate (MPH) can significantly differ in children with
attention-deficit/hyperactivity disorder (ADHD) in terms of the extent of clinical amelioration,
optimal dosage needed, possible side effects, and short- and long-term duration of the benefits. In the
present repeated-measures observational study, we undertook a proof-of-concept study to determine
whether clustering analysis could be useful to characterize different clusters of responses to MPH
in children with ADHD. We recruited 33 children with ADHD who underwent a comprehensive
clinical, cognitive, and neurophysiological assessment before and after one month of MPH treatment.
Symptomatology changes were assessed by parents and clinicians. The neuropsychological measures
used comprised pen-and-paper and computerized tasks. Functional near-infrared spectroscopy
was used to measure cortical hemodynamic activation during an attentional task. We developed
an unsupervised machine learning algorithm to characterize the possible clusters of responses to
MPH in our multimodal data. A symptomatology improvement was observed for both clinical and
neuropsychological measures. Our model identified distinct clusters of amelioration that were related
to symptom severity and visual-attentional performances. The present findings provide preliminary
evidence that clustering analysis can potentially be useful in identifying different responses to MPH
in children with ADHD, highlighting the importance of a personalized medicine approach within
the clinical framework.

Keywords: attention-deficit/hyperactivity disorder; methylphenidate; near-infrared spectroscopy;
machine learning; clustering; personalized medicine

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevel-
opmental disorder that is characterized by a persistent behavioral and cognitive pattern
that includes inattention, motor hyperactivity, and impulsivity symptoms that manifest
inconsistently with age or developmental level [1,2]. ADHD is one of the most commonly
diagnosed neurodevelopmental disorders, affecting between 2 and 7% of children and
adolescents worldwide, with an average prevalence of approximately 5% [3,4]. According
to a recent review, the pooled prevalence of ADHD diagnosis in Italian children aged 5–17
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was 2.9% (range: 1.1–16.7%), whereas in studies based on symptoms criteria, the average
estimated prevalence was 5.9% (range: 1.4 to 16.7%) [5].

Treatment strategies for ADHD include the combination of cognitive-behavioral ther-
apy and pharmacological treatment; the latter is recommended for children aged 6–11 years
and preferred for children aged 12 years and older [6]. The first-line pharmacological treat-
ment for severe ADHD is stimulants, particularly methylphenidate (MPH) [7,8]. MPH
regulates the levels of catecholamines (i.e., dopamine and norepinephrine), which are
the neurotransmitters that are involved in prefrontal cortex (PFC) functions that are re-
sponsible for the maintenance of attention and cognitive control [9]. At a functional level,
MPH allosterically blocks the catecholamine transporters, thus inhibiting their presynaptic
reuptake [10].

Around 70% of children with ADHD show a clinically significant positive response
to MPH medication [11,12]. Hundreds of randomized controlled trials demonstrate that
MPH treatment is, in general, effective, safe, and well-tolerated [13,14]. The average
improvements following MPH treatment, in ADHD core symptomatology and other
associated manifestations (oppositional defiant, conduct, and social behavior problems),
have been reported by clinicians, parents, and teachers, with a large mean effect size of
about 1.41 [15,16]. However, several psychopharmacology research results highlighted
that individual responses to MPH can significantly differ in terms of the extent of clinical
amelioration, optimal dosage needed, possible side effects, and both short- and long-
term duration of the benefits [15,17]. These pharmacological effects, especially linked
to MPH treatment, were analyzed from different angles, such as the patient’s clinical
characteristics, IQ, symptom presentation, disorder severity, and biomarkers, such as those
from neuroimaging [18].

Accordingly, over the last two decades, the psychopharmacological research field has
seen rapid growth in functional near-infrared spectroscopy (fNIRS) as a tool to monitor
functional brain activity in children with neurodevelopmental conditions and to explore
possible relationships between pharmacological improvement and neurophysiological acti-
vation. fNIRS has several advantages over other neuroimaging modalities, especially for
children with ADHD, since it is harmless, tolerant to body movements, and portable [19].
Interestingly, fNIRS also represents a promising tool to investigate possible cortical markers
of MPH treatment in ADHD. A recent review on PFC activation after MPH treatment
showed that fNIRS is an effective indicator of hemodynamic response to pharmacotherapy;
the reviewed studies highlighted the presence of increased oxygenated hemoglobin concen-
trations, with a higher frequency of right-hemisphere lateralization effects [20]. Previous
studies further demonstrated that a reduced right inferior frontal gyrus and middle frontal
gyrus activation in ADHD patients compared with typically developing children can be
eased using a single-dose MPH administration [21,22]. However, these recent studies using
fNIRS technology applied heterogeneous methods and no standardized signal processing
pipelines [20,23].

The above-mentioned research evidence suggests that, currently, there is an urgent
need to address individual characteristics that are associated with the response to MPH.
Personalized medicine can represent a useful approach to meet the needs of each patient,
to identify specific treatment plans that are based on possible clusters of response to
intervention, and, in conclusion, to reduce the long-term costs of mental health [24]. Within
this framework, increasing research efforts have been made recently to identify the possible
behavioral and biological specificities that are linked to MPH efficacy [25,26].

Within the personalized medicine field, recent studies have applied machine learning
(ML) algorithms to predict treatment outcomes (in the supervised framework) or to detect
clinical sample characteristics (in the unsupervised area). ML is an ensemble of traditional
statistical procedures and computer algorithms that are increasingly used as a useful tool
for identifying treatment response characteristics in health care applications [27,28]. Specif-
ically, the supervised framework in ML uses a sample of subjects that are characterized
by a set of features and labels (i.e., class membership) to predict class membership in new
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instances based on the feature characteristics [29]. On the other hand, unsupervised ML
uses a set of unlabeled features that describe the sample subjects to discover hidden data
subgroups through a bottom-up approach [29]. A specific unsupervised ML problem is
known as clustering [30,31], which consists of assigning labels (i.e., cluster membership)
to elements of a dataset based on how similar they are to each other. Instances (subjects)
who “look alike” regarding the considered features will fall into a homogeneous cluster,
whereas sample subjects who are not similar will fall into one or more different clusters,
based on specific distance metrics [32].

Through a bivariate model-based clustering analysis, Reimherr and colleagues [33]
found no differences in response to MPH (evaluated both by self- and clinician-reported
measures) in two groups of adults with ADHD, one with the ADHD-inattentive subtype
and one with the ADHD-emotional dysregulation subtype. Using a support vector machine
algorithm, Kim and colleagues [34] identified a multidimensional (demographical, cogni-
tive, genetics, environmental) ensemble of variables that discriminate responders versus
nonresponders on the basis of the clinician-rated Clinical Global Impressions-Improvement
scale. Wong and colleagues [27] combined existing knowledge in the literature about
clinical and demographic characteristics to predict the response to ADHD treatment using
“learning in the model space”. The model, which is based on sociodemographic and clinical
data, was capable of predicting the minimum dosage of medication required to have a
chance of achieving symptomatic remission for each individual.

Despite some studies using an ML approach, the unsupervised, bottom-up framework
in psychiatry is still barely explored; indeed, an ML model that addresses the specificities
that are detected in response to MPH is not currently available. Further progress in
this field could provide support for effective clinical decisions through a personalized
treatment approach.

Given those premises, the aim of our study was to evaluate the existence of clusters
of clinical, neuropsychological, and neurophysiological responses to MPH treatment in
children with ADHD after a period of standardized pharmacological intervention. Partic-
ularly, we aimed to evaluate the response to MPH therapy for ADHD children through
a bottom-up approach, without an a priori selection of treatment outcome measures. To
achieve this aim, we implemented an unsupervised algorithm (finite Gaussian mixture
model (FGMM)) for clustering [35]. We expected a heterogeneous modification in clinical
and neuropsychological presentation and, possibly, in brain hemodynamic activation after
MPH treatment.

2. Materials and Methods

The present work is a repeated-measures observational study representing the exten-
sion of a cross-sectional observational work that was previously published by our research
group [36]. We recruited drug-naïve children with ADHD with a high Clinical Global
Impression-Severity (CGI-S) score (≥4) [37], who received an MPH prescription after being
admitted to our institute’s Child Psychopathology Unit. Subjects taking immediate-release
MPH were assessed weekly. Doses were adjusted based on the treatment response and
tolerability, according to Italian prescription guidelines for children and adolescents. After
the second week, the doses were maintained until the second evaluation of the study (T1).
Our protocol was approved by our institute’s ethics committee, “Comitato Etico IRCCS
E. Medea—Sezione Scientifica Associazione La Nostra Famiglia”, in accordance with the
Declaration of Helsinki (1989). Written informed consent and assent were obtained from
all caregivers and participants.

2.1. Study Design

The study design is depicted in Table 1. The evaluations were performed during two
time waves: T0 (one week before MPH intake) and T1 (after one month of continuous
MPH intake). Study participation at T0 was also proposed to a control group of typically
developing children (TD) for comparison purposes.
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Table 1. Study Design. The evaluations were performed before (T0) and after (T1, for the ADHD
group) MPH intake.

T0 T1

ADHD Group TD Group ADHD Group

FSIQ 4 4 X

SES 4 4 X

Clinical 4 4 4

CPRS-R 4 4 4

Neuropsychological 4 4 4

fNIRS 4 4 4

Notes: 4—performed; X—not performed; ADHD—attention-deficit/hyperactivity disorder patients group;
Clinical—clinical severity and global functioning assessed by the clinician; CPRS-R—Conners’ Parent Rating
Scales-Revised; fNIRS—functional near-infrared spectroscopy recording; FSIQ—Full-Scale Intelligence Quotient;
MPH—Methylphenidate; SES—socio-economic status; T0—first evaluation; T1—second evaluation; TD—typically
developing peers group.

2.1.1. Participants

A sample of thirty-three drug-naïve children with ADHD between the ages of 6 and
16 years (mean age = 11 ± 3.2 years) was recruited. For all patients, the ADHD diagnosis
was made according to the DSM-5 criteria [1] by a child neuropsychiatrist with experience
in ADHD. A child psychologist (M.Ma.) independently confirmed the diagnosis through
direct clinical observation and administration of the Development and Well-Being Assess-
ment (DAWBA) semi-structured interview with parents [38]. Thirty-one percent of patients
exhibited ADHD with a predominantly inattentive presentation, 11% with a predominantly
hyperactive/impulsive presentation, and 58% with a combined presentation.

The control group was composed of twenty-seven TD children that were recruited
by local pediatricians and from schools in the same areas of ADHD children to be age-
and gender-matched with the clinical group. The presence of psychiatric disorders was
excluded using the DAWBA parent diagnostic interview.

The exclusion criteria included the presence of intellectual disability, neurological
diseases, epilepsy, genetic syndromes, and previous treatment with psychoactive drugs. A
diagnosis of other psychiatric disorders (e.g., autism spectrum disorder, anxiety, specific
learning disorders (SLDs)) was not an exclusion criterion: 50% of the participants also had a
diagnosis of an SLD, 17% of the participants also had an oppositional defiant disorder, 13%
of the participants also suffered from an anxiety disorder, 8% of the participants also had
autism spectrum disorder, and 13% of the participants also had a mood disorder. A total of
21% of the patient’s sample received ADHD as a single diagnosis. All participants were
Caucasian, spoke fluent Italian, and had normal or corrected-to-normal vision. Familial
socioeconomic status (SES) was coded according to the Hollingshead scale for parental
employment [39].

2.1.2. Materials

(1) Full-Scale Intelligence Quotient (FSIQ)

The FSIQ was calculated using a short form of the Wechsler Intelligence Scale for
Children-III or -IV (WISC-III or -IV) [40–42] for all participants. Only participants with
FSIQ scores higher than 80 were included in the study.

(2) Clinical and behavioral measures

Conners’ Parent Rating Scales-Revised (CPRS-R): Clinical and behavioral profiles were
assessed through the Italian version of the CPRS-R [43,44], which was filled out by parents.
The CPRS-R is one of the most widely used instruments for assessing symptomatology in
children with ADHD, offering a measure for inattention, hyperactivity, and other behav-
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ioral domains. We considered the seven factorial-derived subscales (cognitive problems,
oppositional, hyperactivity–impulsivity, anxious–shy, perfectionism, social problems, and
psychosomatic) and the ADHD index scale as variables for the analysis.

Clinical Global Impression-Severity (CGI-S): Clinical severity and global functioning
were also assessed by the clinician through the CGI-S [37], a one-item measure evaluating
the severity of psychopathology from 1 to 7 (1 = not at all ill; 7 = among the most extremely
ill patients).

Children-Global Assessment Scale (C-GAS): The clinician also compiled the C-GAS [45],
which is a numeric rating scale from 1 (poor functioning) to 100 (superior functioning), to
evaluate the overall functioning of a child during a specific period. The C-GAS values
correspond to the following scores: 1 = 10–1; 2 = 20–11; 3 = 30–21; 4 = 40–31; 5 = 50–41;
6 = 60–51; 7 = 70–61; 8 = 80–71; 9 = 90–81; 10 = 100–91.

(3) Neuropsychological measures

Amsterdam Neuropsychological Tasks (ANT): ANT [46] is a computer-based tool for
measuring the three attention networks in children and adults: alerting, orienting, and ex-
ecutive control. All children completed four computerized tasks, which were administered
in the following order: baseline speed (BS), focused attention four letters (FA4L), shifting
attentional set–visual (SSV), and sustained attention dots (SAD). BS consisted of a simple
reaction time (RT) task. During the FA4L, participants had to selectively respond to one
target letter among four, when it was presented in the relevant diagonal position, and to
ignore it when it was displayed on the irrelevant axis. SSV was used to investigate three
different cognitive dimensions: vigilance, inhibition, and cognitive flexibility. Lastly, SAD
was used to assess the fluctuation of attention over time. For further details about the ANT
measure, refer to our previous works [47,48].

NEPSY-Second Edition: NEPSY-II [49] is a multidomain neuropsychological battery
that is designed for assessing neurocognitive abilities in children from 3 to 16 years of age.
The visual attention subtest was included in this study. It evaluates the speed and accuracy
with which the child is able to selectively focus and maintain attention on visual targets
that are inserted within a series of distractors. The child scans a series of stimuli and points
to the targets as quickly and accurately as possible.

(4) Stimulation protocol

The Emotional Continuous Performance Task (e-CPT) [36,50] was performed by chil-
dren during the fNIRS recording. The e-CPT is a task that is designed to examine attentional,
executive, and emotional processes during the task. In the present work, the behavioral
performances on the e-CPT task were not considered for the analyses.

(5) fNIRS data acquisition

Details regarding the fNIRS data acquisition are described in Mauri and colleagues’
work [36]. Optode positions, source–detector combinations, and corresponding channel
numbers are illustrated in Figure 1. fNIRS oxyhemoglobin (HbO) and deoxyhemoglobin
(HbR) data were pre-processed using the Homer2 v2.8 software according to a validated
pipeline [51,52]. Time-point concentration data were averaged across the different task con-
ditions, thus obtaining an overall “Task” variable that measured the mean hemodynamic
activation during the whole task period. fNIRS data from bilateral temporal channels
were excluded from further analysis because of strong signal noise in more than 50% of
participants. HbO and HbR signals were averaged in four regions of interest (ROIs) that
were identified as follows: (i) left prefrontal (channels 1–3), (ii) right prefrontal (channels
8–10), (iii) left frontal (channels 4–7), and (iv) right frontal (channels 11–14). We focused the
statistical analyses on the HbO data because no significant effect was previously found for
HbR data [36].
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Figure 1. fNIRS optode localization. The probe center was positioned on Fpz and the lowest probe
line was positioned along the Fp1–Fp2 line. Red circles: sources; blue circles: detectors; regions
of interest: left prefrontal—source 1 (Fp1) and channels 1–3, right prefrontal—source 3 (Fp2) and
channels 8–10, left frontal—source 2 (F3) and channels 4–7, and right frontal—source 4 (F4) and
channels 11–14 (for further details about the fNIRS methodology used in this work, the reader is
referred to Mauri and colleagues [36,53].

2.2. Statistical Analysis

Statistical analyses were performed using R version 4.1.0 statistical software [54] with
the additional “mclust” version 5 package for Gaussian mixture modeling [55]. The alpha
level was set to 0.05 for all analyses.

Primarily, a between-group analysis was performed to characterize the group of
children with ADHD compared to the TD group. More information about the between-
group analysis can be found in the Supplementary Materials section (Table S1).

According to the variable distribution, a Wilcoxon signed-rank test was used as a
repeated-measures analysis for evaluating the changes in clinical (C-GAS, CGI-S CPRS-R),
neuropsychological (ANT and NEPSY), and NIRS variables within the group of children
with ADHD after one month of MPH treatment.

Afterward, an FGMM was applied to the clinical and neuropsychological variables in
which the patients showed the highest significant improvement after the MPH treatment;
only subjects that were evaluated at both waves were included in the analyses. FGMMs
were built through an unsupervised learning algorithm, which selected the optimal number
of components from multivariate distributions [56]. The measurements obtained before and
after the MPH treatment were used to conduct a bivariate FGMM to evaluate whether the
within-group improvement should be considered homogeneous or heterogeneous (i.e., with
more than one homogeneous subgroup within the sample with ADHD). Models estimating
solutions of two or more clusters were compared using the Bayesian information criterion
(BIC), with the best model having a BIC value closer to 0 [55]. The best model was selected
based on the BIC and a selection heuristic based on a theoretical discussion regarding the
optimal obtained solution [57]. Each subject was then assigned to their highest probability
cluster. Each cluster was characterized by estimating its parameters (subgroup mean and
standard deviation) for the pre- and post-treatment clinical variables. Lastly, a chi-square
analysis was conducted to examine potential between-cluster differences in the psychiatric
comorbidities distribution.
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3. Results

Two participants with ADHD and two participants in the TD group were later ex-
cluded based on recruitment criteria, and four children with ADHD were excluded due to
noncompliance with behavioral tasks, as mentioned in our previous work [36]. Twenty-
seven children with ADHD were then evaluated. However, three patients were excluded
because of technical problems during the fNIRS acquisitions. Therefore, the final sample
consisted of 24 children with ADHD and 25 TD peers.

3.1. Between-Group Analyses

Between-group analyses were performed to characterize our sample and to identify
the differences and similarities from the TD group. The between-group analyses showed no
significant differences in FSIQ and SES between the ADHD group and TD, but significant
differences in several clinical, neuropsychological, and neurophysiological variables. For a
summary of the clinical, neuropsychological, and neurophysiological characteristics of the
two samples, see Table S1 in the Supplementary Materials section.

3.2. Within-Group Analyses

Repeated-measures analyses were performed to detect the differences between before
and after the MPH treatment. Several improvements (p < 0.05) were found in clinical and
neuropsychological domains (Table 2). Regarding the brain hemodynamic activation, no
significant HbO changes were found after the MPH administration (Table 2).

Table 2. Repeated-measures analyses results. Clinical, neuropsychological, and neurophysiological characteristics of the
sample before and after the treatment.

T0 T1 Statistic Value p

C-GAS
Value (percentage of subjects)

4 (18%)
5 (76%)
6 (6%)

5 (13%)
6 (13%)
7 (25%)
8 (30%)
9 (19%)

0 a <0.001

CGI-S
Value (percentage of subjects)

4 (18%)
5 (59%)
6 (23%)

2 (6%)
3 (19%)
4 (56%)
5 (19%)

136 a <0.001

CPRS-R (mean ± SD)
Oppositional 72.88 ± 16.55 61.52 ± 17.11 158 a 0.002

Cognitive problems 81.08 ± 11.62 70.57 ± 15.22 201.5 a <0.001
Hyperactivity–Impulsivity 77.33 ± 11.50 68.48 ± 17.06 161 a 0.008

Anxious–Shy 52.25 ± 11.10 48.05 ± 10.05 98.5 a 0.31
Perfectionism 53.66 ± 11.71 45.47 ± 8.28 111 a 0.004

Social Problems 71.29 ± 19.89 62.90 ± 18.96 99 a 0.028
Psychosomatic Problems 53.04 ± 13.80 47.00 ± 6.20 76.5 a 0.032

ADHD index 81.54 ± 9.61 71.52 ± 13.70 201 a <0.001

NEPSY (mean ± SD)
Visual Attention 9.30 ± 3.52 11.95 ± 3.57 5.0 a <0.001

ANT (ms) (mean ± SD)

Baseline Speed

RT 406.35 ± 134.82 384 ± 130.34 73.0 a 0.890
SD of RT 234.30 ± 195.08 192.52 ± 160.83 75.0 a 0.963

Focused Attention Four Letters

RT correct responses 1304.89 ± 491.08 1001.77 ± 318.87 147.0 a <0.001
SD of correct responses RT 558 ± 304.17 341.66 ± 173.54 146.5 a <0.001
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Table 2. Cont.

T0 T1 Statistic Value p

Shifting Attentional Set—Visual

RT inhibition 270.81 ± 292.63 258. 53 ± 237.83 62.0 a 0.583
RT flexibility 453.06 ± 492.93 457.43 ± 249.18 63.5 a 0.221

Sustained Attention Dots

Time × Series 17.27 ± 5.96 14.65 ± 5.91 119.0 a 0.009
SD 3.88 ± 1.45 3.01 ± 1.35 108.5 a 0.006

fNIRS signal

Right prefrontal 1.43 ± 3.64 0.31 ± 2.72 64.0 a 0.850
Right frontal 0.78 ± 3.70 0.31 ± 2.72 60.0 a 0.670

Left prefrontal 0.95 ± 3.58 −0.88 ± 3.90 91.0 a 0.252
Left frontal 1.08 ± 2.44 −0.49 ± 3.41 62.0 a 0.273

Notes: ANT—Amsterdam Neuropsychological Task; C-GAS—Children’s Global Assessment Scale; CGI-S—Clinical Global Impression–
Severity; CPRS-R—Conners Parent Rating Scale-Revised; fNIRS—functional near-infrared spectroscopy recording; MPH—methylphenidate;
ms—milliseconds; NEPSY—Developmental Neuropsychological Assessment; RT—reaction time; SD—standard deviation; T0—first
evaluation; T1—second evaluation; a—Wilcoxon signed-rank test.

3.3. Clustering Analysis
3.3.1. Clinical Measures

CPRS-R subscales in which the patients showed a significant improvement were
considered jointly (T0 and T1) in bivariate FGMMs, separately for each subscale. Table A1
(in Appendix A) shows the BIC values that are associated with the top three ordered
clustering models for each CPRS-R subscale. The BIC values of the CPRS-R cognitive
problems–inattention, perfectionism, and ADHD index subscale models suggested the
presence of two clusters. The clusters’ estimated results are summarized in Table 3. For the
other CPRS-R subscales, the BIC suggested the existence of three clusters of subjects. These
results were not deemed valid and parsimonious on a clinical and theoretical basis; hence,
no FGMM was built, and the patients’ changes in oppositional, hyperactivity–impulsivity,
psychosomatic problems, and social problems were considered homogeneous. Lastly,
psychiatric comorbidities were not balanced across clusters in the cognitive problems
subscale, with cluster 2 having a greater number of children with ADHD and comorbid
SLDs. No additional differences in the distribution of psychiatric comorbidities were found.

Table 3. CPRS-R clusters characteristics.

Cognitive problems

Cluster 1 2
Number of subjects (%) 58% 42%

Mean before MPH (± sd) 72.99 (±6.79) 91.93 (±6.79)
Mean after MPH (± sd) 59.54 (±6.79) 85.95 (±6.79)

Comorbidities SLD: 25% * SLD: 80% *

Perfectionism

Cluster 1 2
Number of subjects (%) 57% 43%

Mean before MPH (± sd) 43.09 (±8) 76.15 (±3.38)
Mean after MPH (± sd) 40.41 (±8) 45.75 (±3.38)

ADHD index

Cluster 1 2
Number of subjects (%) 51% 49%

Mean before MPH (± sd) 87.03 (±6.81) 74.34 (±6.81)
Mean after MPH (± sd) 82.85 (±6.81) 59.76 (±6.81)

ADHD—attention deficit hyperactivity disorder; CPRS-R—Conners’ Parent Rating Scale-Revised; MPH—methylphenidate; sd—standard
deviation; SLD—specific learning disorder. *—significant chi-square test.
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3.3.2. Neuropsychological Measures

The NEPSY and ANT scales in which the patients showed a significant improvement
were considered jointly (T0 and T1) in bivariate FGMMs, separately for each subscale.
Table A2 (in Appendix A) depicts the BIC values that were associated with the top three
ordered clustering models for each scale.

The BIC values of the ANT–FA4L reaction time scale model suggested the presence
of two clusters. Those clusters did not differ in terms of the distribution of psychiatric
comorbidities within each cluster. The clusters’ estimated results are summarized in Table 4.
For NEPSY–visual attention, the ANT–FA4L standard deviations of reaction time, and
the ANT–SAD reaction time scales, the BIC suggested the existence of six, five, and seven
clusters of subjects, respectively. These results were not considered valid and parsimonious
on a clinical and theoretical basis; hence, no FGMM was built, and the patients’ changes in
those dimensions were considered homogeneous. Lastly, the BIC that was associated with
the models that were evaluated for the ANT–SAD standard deviations of reaction time
suggested the presence of a single cluster, hence suggesting that the performance changes
were to be considered homogeneous.

Table 4. Cluster characteristics in neuropsychological variables.

ANT–FA4L RT

Cluster 1 2
Number of subjects (%) 63% 37%

Mean before MPH (± sd) 1586.08 (±252) 804.52 (±94)
Mean after MPH (± sd) 1231.25 (±252) 640.67 (±94)

Notes: ANT—Amsterdam Neuropsychological Task; FA4L—focused attention four letters; MPH—
methylphenidate; RT—reaction time; SAD—sustained attention dots; sd—standard deviation.

4. Discussion

The evaluation of the response to MPH treatment in ADHD is currently performed
through a top-down approach, with an a priori selection of an outcome measure and an
associated analysis that addresses the predictive ability of one or more other measures [15].
The main aim of the present repeated-measures observational study was to explore the
utility of a bottom-up, unsupervised approach by considering clinical, neuropsychological,
and hemodynamic measures to highlight the presence of distinct patterns of response to
MPH in a sample of 24 school-aged children with ADHD. To achieve this goal, we tested
the existence of homogeneous clusters of subjects possibly showing different responses to
MPH by using an ML algorithm (FGMM). Symptoms severity, attentive performances, and
brain activation were assessed before (T0) and after one month (T1) of MPH administration.

At T0, we also collected data from an age- and gender-matched sample of 25 typically
developing (TD) children in order to characterize our clinical sample compared to a control
group. As expected, children with ADHD presented higher psychopathological traits and
worse neuropsychological performances. Moreover, differences at the neurophysiological
level were found (for further discussion about the between-group differences, see the
previous work published by Mauri and colleagues [36]).

Regarding the response to MPH, children with ADHD exhibited a significant improve-
ment in clinical symptomatology after one month of MPH administration. These results
were expected and in line with the literature, highlighting the well-documented effects
of MPH administration [58–60]. Interestingly, the most severe symptoms were also those
that improved the most after pharmacological treatment. As expected [61], significant
amelioration was also observed in the neuropsychological profile across all cognitive tasks.
In particular, in line with previous works [62,63], the reaction time variability showed a
greater improvement after the MPH treatment.

Lastly, no significant change was found regarding the brain hemodynamic activation
after the MPH treatment. This result was not in line with the recent review of Grazioli
and colleagues [20] in which the majority of the reviewed studies indicated increased
oxygenated hemoglobin concentrations after pharmacological treatment. However, it is
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possible that subcortical changes evoked by MPH treatment [64] could be more evident in
brain regions that could not be detected by NIRS technology.

Next, in order to find possible patterns of behavioral and attentive responses to
MPH, FGMM clustering analyses were implemented using clinical and neuropsychological
measures that showed a significant improvement. To our knowledge, this is the first
study to use an unsupervised algorithm to identify clusters of symptom improvements in
children with ADHD.

Our analysis suggested the existence of two clusters of subjects in several psychopathol-
ogy areas, as described by the parents using the CPRS-R. This finding confirmed the high
variability in the clinical response of children with ADHD [15,17]. On the other hand,
the present results suggested that the CPRS-R could be a good instrument to differentiate
ADHD responses to MPH.

With specific respect to the CPRS ADHD index subscale, the results highlighted
that the majority of children showed a significant improvement after the MPH treatment,
with a score under the clinical cut-off, whereas a small portion of children had lesser
improvements. This result could represent corroboration of previous research results
addressing specificities of MPH efficacy [11,12] through a bottom-up rather than a top-
down approach.

Concerning the CPRS cognitive problems subscale, the largest cluster of patients
showed mean before MPH values within the clinical band and, after MPH, within the
nonclinical range; the smallest cluster was represented by subjects showing both before-
and after-MPH mean values within the clinical range. In this case, we observed a large
improvement in both groups of subjects despite the smallest cluster showing more severe
before-treatment mean scores. This result is in line with what was reported in the literature
addressing improvements in the attentional domain after MPH treatment [11,12].

Regarding the perfectionism subscales, we found the biggest group showing both
before- and after-MPH mean values below the clinical range and a small improvement; the
smallest group showed mean values within the clinical band before the MPH treatment
and a large improvement after the MPH treatment.

Lastly, FGMM clustering analyses were implemented for neuropsychological variables.
Two clusters of subjects were detected regarding the ANT–FA4L RT. Specifically, the
largest group showed a high reaction time before the MPH treatment and a remarkable
improvement after the MPH treatment, as suggested by previous studies on visual attention
capacity [65]; on the other hand, the smallest group showed a faster reaction time before
the MPH therapy but a smaller improvement after the MPH treatment.

The between-clusters differences identified by our analysis did not appear to be due
to the psychiatric comorbidities of children with ADHD, with the exception of differences
in CPRS cognitive problems subscale. In that case, children with ADHD and comorbid
SLD were more frequent (80% vs. 20%) in the cluster of children with scores in the clinical
range before and after the MPH treatment. While this is not surprising because the CPRS
cognitive problems subscale specifically identifies children having difficulties at school,
this preliminary result suggested that SLD could negatively interfere with the treatment
for the inattention domain, as previously described in recent literature [66].

The novelty of our study is represented by the use of an unsupervised ML algorithm
to identify hidden clusters of patients that are characterized by specific clinical and neu-
ropsychological modifications following pharmacotherapy. Notably, children with ADHD
do not seem to constitute a single homogeneous group; on the contrary, it is likely that a
single clinical diagnosis could “mask” the existence of various phenotypes of response to
MPH, as evidenced by our results in terms of clinical improvement and neuropsychological
performances. This is in line with the current literature that reports MPH’s efficacy to be
around 70%, highlighting that approximately 30% of children do not positively respond
to MPH treatment [11,67]. Hence, it is possible to hypothesize that pharmacological treat-
ment with MPH acts on various symptom areas, and psychopathological comorbidity and
neurophysiological characteristics may play a role in influencing the response to MPH.
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Future studies in this field considering bigger samples presenting neuropsychiatric comor-
bidities could disentangle these phenomena. Our research additionally suggested that the
specificities that were detected regarding the symptomatology improvement following
MPH treatment also characterized non-core ADHD manifestations, such as the CPRS
perfectionism subscale. This result suggests deepening the exploration of other positive
effects of MPH on clinical symptomatology or psychological functioning.

The main research and clinical implication that was derived from the present work is
the use of a bottom-up approach in the study of responses to treatment. Indeed, the adop-
tion of an unsupervised ML analysis rather than an a priori choice of outcome measures
could offer new insights into detecting specificities in response to MPH. Indeed, clustering
analysis does not require any theoretical assumption, thus offering clinical and research
evidence that is useful for a personalized medicine approach.

Despite the mentioned preliminary results, some limitations must be addressed. First,
our ML analysis could be highly specific to our clinical group, in consideration of the
small sample size. Future investigations could employ a bigger sample size and verify the
validity and direction of the present preliminary findings. Furthermore, our small sample
did not allow us to fully investigate the role of psychopathological comorbidities in the
different responses to medical treatment. In addition, the present study was not designed
to include a second evaluation for the control group, which would have provided a possible
comparison with children with ADHD after the MPH administration. Future clustering
analyses could explore the differences between children with ADHD and children with
other psychiatric conditions and TD groups. Lastly, our repeated-measures work had a
brief duration (one month of MPH administration), which did not allow us to evaluate the
maintenance of these effects over a long period.

5. Conclusions

In conclusion, our findings confirmed that MPH treatment was followed by clinical
and neuropsychological improvements in children with ADHD, as highlighted by previous
research. The novelty of our study consisted in the implementation of a rarely used analysis
method, which demonstrated that clinical and neuropsychological ameliorations could
be inhomogeneous among all patients and clearly indicated the existence of clusters of
subjects that improved in different ways. The present ML method, if replicated in future
studies with larger samples, could provide the first step toward identifying specific clusters
of MPH responses. An ML approach, together with traditional statistical tools, may be
promising in detecting characteristics of treatment response, and it could represent the key
to exploring personalized medical necessities.
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Appendix A

Table A1. Top three FGMMs based on the BIC criterion (clinical variables). The models that were
selected as best are underlined.

CPRS-R Subscale Model Solutions and
Number of Clusters BIC Value

Oppositional
Unequal variances, 3 −353.021
Unequal variances, 2 −241.235

Equal variances, 3 −241.235

Cognitive
Problems–Inattention

Equal variances, 2 −325.651
Unequal variances, 2 −328.59

Equal variances, 3 −330.895

Hyperactivity–Impulsivity
Equal variances, 3 −339.407
Equal variances, 2 −340.9

Unequal variances, 2 −340.903

Perfectionism
Unequal variances, 2 −307.189

Equal variances, 2 −309.316
Equal variances, 1 −310.097

Social Problems
Unequal variances, 3 −349.105

Equal variances, 6 −351.544
Equal variances, 8 −352.87

Psychosomatic Problems
Unequal variances, 3 −253.932

Equal variances, 2 −275.908
Equal variances, 8 −277.611

ADHD Index
Equal variances, 2 −323.539
Equal variances, 3 −324.537
Equal variances, 5 −324.546

Notes: BIC—Bayesian information criterion; CPRS-R—Conners’ Parent Rating Scale-Revised;
FGMMs—finite Gaussian mixture models.

Table A2. Top three FGMMs based on the BIC criterion (neuropsychological variables). The model
that was selected as best is underlined.

Neuropsychological Scale Model Solutions and
Number of Clusters BIC Value

NEPSY–Visual Attention
Equal variances, 6 −184.236
Equal variances, 5 −188.422
Equal variances, 7 −188.487

ANT–FA4L RT
Unequal variances, 2 −461.331

Equal variances, 3 −463.189
Equal variances, 2 −465.589

ANT–FA4L RT-SD
Equal variances, 5 −376.117
Equal variances, 6 −377.499
Equal variances, 4 −378.505
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Table A2. Cont.

Neuropsychological Scale Model Solutions and
Number of Clusters BIC Value

ANT–SAD RT
Equal variances, 7 −172.838

Unequal variances, 9 −177.858
Unequal variances, 3 −179.52

ANT–SAD RT-SD
Unequal variances, 1 −121.226

Equal variances, 1 −121.226
Unequal variances, 9 −121.613

Notes: ANT—Amsterdam Neuropsychological Task; BIC—Bayesian information criterion; FA4L—focused atten-
tion four letters; MPH—methylphenidate; FGMMs—finite Gaussian mixture models; NEPSY—Developmental
Neuropsychological Assessment; RT—reaction time; SAD—sustained attention dots; SD—standard deviation.
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