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Abstract: The aim of this study was to describe the appearance and distribution of tissue remodeling
markers (MMP-2, MMP-9, TIMP-2, TIMP-4), Sonic hedgehog gene protein (Shh), pro- and anti-
inflammatory cytokines (IL–1, IL–10), transcription factor (NF-κβ), proliferation marker (Ki–67),
angiogenetic factor (VEGF), tissue defensins (HβD–2, HβD–4) of the pediatric cholesteatoma. Sixteen
cholesteatoma samples were obtained from children, eleven skin controls from cadavers. Tissues were
stained for MMP-2, MMP-9, TIMP-2, TIMP-4, Shh, IL–1, IL–10, NF-κβ, Ki–67, VEGF, HβD–2, HβD–
4. Non-parametric statistic, Mann–Whitney, and Spearman’s coefficient was used. A statistically
significant difference was seen between Shh and HβD–2 in perimatrix and control connective tissue,
between NF-κβ in cholesteatoma and control skin, and between HβD–4 in matrix and skin epithelium.
Complex intercorrelations between MMPs, NF-κβ and VEGF cause the intensification of angiogenesis
in cholesteatoma. The persistent increase in Shh gene protein expression in cholesteatoma perimatrix
suggests the stimulation of the cholesteatoma growth in children. Similar expression of IL-1 and IL-10
and their intercorrelation, proves there is a balance between pro- and anti-inflammatory cytokines.
NF-κβ, and not Ki-67, seems to be the main inducer of cellular proliferation. The main antimicrobial
protection is provided by HβD-2.

Keywords: cholesteatoma; metalloproteases; sonic hedgehog; cytokines; transcription factors; Ki-67;
vascular endothelial growth factor; defensins; children

1. Introduction

Cholesteatoma is a locally destructive and hyperproliferative but benign lesion com-
posed of a stratified keratinizing squamous epithelium found mostly in the middle ear [1].
Cholesteatoma is considered to be a rare lesion. In the early 2000s, the incidence of pedi-
atric cholesteatoma was 3 per 100,000 [2]. This rarity is one reason why there are many
uncertainties about the development and pathological growth of cholesteatoma in the
middle ear.

Two of the enzymes proven to play an important role in the pathogenesis of cholesteatoma
are Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9). They are
responsible for the degradation of the ECM (extracellular matrix) [3]. MMP-2 and MMP-9 are
in the same group of MMPs (gelatinases) and can cleave collagen [4].

In cholesteatoma, MMP-2 plays a major role in bone resorption and angiogenesis,
which is one of the main factors under study when researchers analyze the aggressiveness
of cholesteatoma [5,6]. MMP-9 is strongly associated with angiogenesis and is specifically
seen in areas with inflammatory cell infiltration [7,8]. Normal tissue remodulation is
achieved by a balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs).
It is known and proven that an imbalance between MMPs and TIMPs triggers destructive
processes in cholesteatoma patients [9]. TIMP-2 is expressed by osteoclasts and osteoblasts,
and these cells secrete MMP-2 and MMP-9 [9]. TIMPs act as specific inhibitors of MMPs’
enzymatic activity, and if there is an imbalance, then bone remodulation is activated in
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middle ear structures. Yet, it is still unclear how exactly TIMP-2 affects MMP-2 or MMP-9
in cholesteatoma tissue [10]. As well as TIMP-2, TIMP-4 also acts as an inhibitor of MMP-2
and MMP-9 in different tissues and suppresses the growth of various tumors [11]. Still,
there are no data available on how TIMP-4 acts in cholesteatoma tissue.

The Sonic hedgehog (Shh) gene protein might be involved in the genetic morphopatho-
genesis of cholesteatoma. The Shh gene in the human body is responsible for the develop-
ment of the first pharyngeal arch, from which the external ear canal evolves [12–15]. This is
critical because the external ear canal originates from where the skin epithelium migrates in
the middle ear and forms an acquired cholesteatoma [16]. There is no information available
in scientific databases on whether Shh is important in the ontogenesis of cholesteatoma.

A persistent cytokine response has always been mentioned in cholesteatoma in relation
to the inflammatory process in the matrix and perimatrix. Pathological hyperprolifera-
tion of keratinocytes through a complex cascade induces the release of pro-inflammatory
cytokine Interleukin-1 (IL-1) in the cholesteatoma matrix [17,18]. IL-1—acting through
fibroblasts, osteoclasts, osteoblasts, macrophages and prostaglandins—causes degradation
of the bone matrix [19]. The main anti-inflammatory cytokine, Interleukin-10 (IL-10), on
the other hand, works against high pro-inflammatory cytokine levels in cholesteatoma
tissue [17,18]. An imbalance of IL-1 and IL-10 is believed to cause an uncontrolled inflam-
matory process, which is destructive for the surrounding bone in the middle ear [20].

The most obvious abnormality in cholesteatoma is hyperproliferative epithelial cells
in its matrix. Nuclear factor-kappa beta (NF-κβ) is one of the most important factors in
cell proliferation, differentiation, inflammation, the immune response, carcinogenesis and
protection against apoptosis, and is one of the components responsible for the development
of cholesteatoma [21]. Li et al. showed that NF-κβ is upregulated in cholesteatoma tissue
compared to the unchanged skin epithelium [22]. Additionally, Ki-67 is located in the
cell nucleus in all proliferative cells. It is present in all phases of the cell cycle except for
G0 [23], and has proven to be useful for indicating cell proliferation in cholesteatoma [24].
Hamajima et al. showed that NF-κβ and Ki-67 act together in one pathway to increase cell
proliferation and aggressiveness in cholesteatoma [25].

Furthermore, neo-angiogenesis in the perimatrix is an important factor for the con-
tinuous growth of cholesteatoma [26] and, therefore, is responsible for the aggressiveness
toward the surrounding tissue in the temporal bone [27]. Vascular endothelial growth
factor (VEGF) is believed to be one of the most potent angiogenetic factors in chronic ear
infections with cholesteatoma [28]. Even though VEGF was first found in endothelial
cells, it was later proven that it is also detected, for example, in keratinocytes [29]. Further
to this, Fukodome et al. hypothesized that VEGF could also be secreted by keratocytes
from the cholesteatoma matrix and released in the perimatrix to induce angiogenesis in a
paracrine manner [27]. However, uncertainties remain about how VEGF functions in this
pathological process.

Human beta defensin-2 and -4 are known for their antibacterial properties in human
tissue. Clinically, chronic middle ear infection with cholesteatoma is often seen to become
inflamed. It is assumed that infection could accelerate its growth and reoccurrence [30,31].
These bacterial infections, in the majority of cases, are caused by P. aeruginosa [32], which
is proven to be a powerful inducer of Human beta defensin-2 (HβD-2) and Human beta
defensin-4 (HβD-4) [33,34]. Park et al. found that HβD-2 is overexpressed in cholesteatoma
tissue compared to unchanged skin epithelium [35]. Additionally, HβD-2 and HβD-4 are
known to be secreted by keratinocytes [36]. However, there are limited data on how HβD-
2 affects pediatric cholesteatoma, and there are no studies available about the relations
between HβD-4 and middle-ear cholesteatoma.

Thus, the aim of this study was to describe the appearance, distribution and possible
clinically significant correlations of tissue remodeling markers (MMP-2, MMP-9, TIMP-2,
TIMP-4), Sonic hedgehog gene protein (Shh), pro- and anti-inflammatory cytokines (IL–
1, IL–10), transcription factor (NF-κβ), proliferation marker (Ki–67), angiogenetic factor
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(VEGF) and local tissue defensins (HβD–2, HβD–4) of the pediatric cholesteatoma tissue
compared to control skin tissue.

2. Materials and Methods
2.1. Tissue Samples

Cholesteatoma specimens were retrieved during cholesteatoma surgery at the Chil-
dren’s Clinical University Hospital, Riga, Latvia, but the morphological analysis and
immunochemical staining of the tissue were conducted at the Department of Morphology
of Riga Stradin, š University, Riga, Latvia. Nineteen cholesteatoma tissue samples were
obtained from children during cholesteatoma surgery, from nine males and ten females
(aged 6–17 years, mean age 12.56 years). Fourteen deep external meatal skin controls were
obtained from fourteen different cadavers in a collection of the Institute of Anatomy and
Anthropology; ten were adults (aged 45–70 years), four were children (aged 12–14 years)
and no chronic ear diseases were documented.

Three patients were excluded from the study due to incomplete cholesteatoma ma-
terial, which was invalid for immunohistochemical analysis. Three control group skin
samples were further excluded because of insufficient skin material, which was also invalid
for immunohistochemical analysis.

This study was approved by the local Ethical Committee of Riga Stradin, š University
(05.09.2019; no. 6-2/7/4). All of the patients or their parents gave informed consent to
participate in the study. The nature of the study was fully explained to the patients and
their parents.

2.2. Immunohistochemical Analysis

The tissues were fixed in a mixture of 2% formaldehyde and 0.2% picric acid in 0.1 M
phosphate buffer (pH 7.2). Afterward, they were rinsed in Tyrode buffer (content: NaCl,
KCl, CaCl2_2H2O, MgCl2_6H2O, NaHCO3, NaH2PO4_H2O, glucose) containing 10%
saccharose for 12 h and then embedded in the paraffin.

Thin sections (3 µm) were cut, which were then stained with hematoxylin and eosin
for routine morphological evaluation. The Biotin-Streptavidin biochemical method was
used for immunohistochemistry (IMH) to detect: Matrix metalloproteinase-2 (MMP-2; cat.
no. AF902, LOT DUBO 34081, obtained from goat, 1:100 dilution, R&D Systems, Germany);
Matrix metalloproteinase-9 (MMP-9; sc-10737, rabbit, working dilution 1:100, Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA); Tissue inhibitor of metalloproteinase-2 (TIMP-2;
cat. no. 3A4, sc-21735, obtained from mouse, 1:200 dilution, Santa Cruz Biotechnology,
Inc. Dallas, TX, USA); Tissue inhibitor of metalloproteinase-4 (TIMP-4; at 1:100 sc-30076,
rabbit, working dilution 1:100, Santa Cruz Biotechnology, Inc.); Sonic hedgehog (Shh;
mouse; AF 464, working dilution 1:60, R&D Systems, Germany); Interleukine-1 (IL-1;
orb308737, working dilution 1:100, Biorbyt Ltd., Cambridge, UK); Interleukine-10 (L-10;
250713, working dilution 1:100, BioSite, Täby, Sweden); Nuclear factor-kappa beta (NFkB-
105; obtained from rabbit, 1:100 dilution, Abcam, UK); Ki-67 (1508202A, working dilution
1:100, Sigma-Aldrich, St. Louis, MO, USA); Vascular endothelial growth factor (VEGF;
orb191500, rabbit, polyclonal, working dilution 1:100, Biorbyt Ltd.); Human beta defensin-2
(HβD-2; goat; 1:100; Bio-Techne, UK); Human beta defensin-4 (HβD-4; mouse; 1:100; Santa
Cruz Biotechnology, Inc. Dallas, TX, USA).

The slides were analyzed via light microscopy by two independent morphologists
using a semi-quantitative method [37]. The results were evaluated by grading the appear-
ance of positively stained cells in the visual field. Structures in the visual field were labeled
as follows: 0, no positive structures; 0/+, occasional positive structures; +, few positive
structures; +/++, few-to-moderate positive structures; ++, moderate positive structures;
++/+++, moderate-to-numerous positive structures; +++, numerous positive structures;
+++/++++, numerous-to-abundant structures; ++++, an abundance of positive structures
in the visual field.
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For visual illustration, a Leica DC 300F digital camera and the image processing and
analysis software Image-Pro Plus (Media Cybernetics, Inc., Rockville, MD, USA) were used.

2.3. Statistical Analysis

Data processing was performed with SPSS software, version 22.0 (IBM Company,
Chicago, IL, USA). Spearman’s rank correlation coefficient was used to determine correla-
tions between factors, where r = 0–0.2 was assumed as a very weak correlation, r = 0.2–0.4
a weak correlation, r = 0.4–0.6 a moderate correlation, r = 0.6–0.8 a strong correlation and
r = 0.8–1.0 a very strong correlation. To analyze the control group versus patient data, the
Mann–Whitney U test was used. The levels of significance for the tests were chosen as 5%
and 1% (p-values < 0.05 and <0.01).

3. Results
3.1. Findings of Routine Histological Analysis

Cholesteatoma tissue presented anucleate keratin squames, which are a primary com-
ponent of cholesteatoma and form the cystic layer. The middle part (matrix) consisted of
hyperproliferative stratified squamous epithelium, and the outermost part (perimatrix) was
inflamed subepithelial connective tissue or granulation tissue composed of inflammatory
cells—such as lymphocytes, plasma cells and neutrophil leucocytes—along with collagen
fibers, fibrocytes and many small blood vessels (Figure 1a). The control group tissue
from the deep external ear canal skin demonstrated an unchanged stratified squamous
epithelium and subepithelial connective tissue without inflammation (Figure 1b).
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Figure 1. Micrographs of cholesteatoma and control skin tissue. (a) The cystic layer of cholesteatoma mostly consists of 
desquamated, anucleate keratin mass, matrix (*) with hyperproliferative stratified squamous epithelium and perimatrix 
(*), subepithelial connective tissue, with some consisting of inflammatory cells and blood vessels. Haematoxylin and eosin, 
X 200; (b) Control material demonstrates unchanged skin epithelium (*) and connective tissue (*). Haematoxylin and eosin, 
X 200 [38]. 

  

Figure 1. Micrographs of cholesteatoma and control skin tissue. (a) The cystic layer of cholesteatoma mostly consists of
desquamated, anucleate keratin mass, matrix (*) with hyperproliferative stratified squamous epithelium and perimatrix (*),
subepithelial connective tissue, with some consisting of inflammatory cells and blood vessels. Haematoxylin and eosin,
X 200; (b) Control material demonstrates unchanged skin epithelium (*) and connective tissue (*). Haematoxylin and eosin,
X 200 [38].

3.2. Immunohistochemistry Findings for Tissue Remodeling Factors

The numbers of MMP-2-positive cells in the cholesteatoma matrix ranged from a lack
of positive cells (0) to moderate or numerous positive cells (++/+++). In the perimatrix,
MMP-2-positive cells ranged from none (0) to moderate (++), in the control group, MMP-
2-positive cells in the epithelium ranged from none (0) to numerous (+++) and in the
connective tissue, there were a few (+) MMP-2-positive cells (Figure 2a,b).
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Figure 3. Immunohistochemical micrographs of cholesteatoma tissue and control group. (a) Moderate MMP-9 positive cells 
in matrix (*) and a few to moderate in the perimatrix (*) of a cholesteatoma patient, MMP-9 IHC, X 200; (b) Moderate MMP-

Figure 2. Immunohistochemical micrographs of cholesteatoma tissue and control group. (a) Note a few to moderate MMP–2
positive cells in matrix (*) and moderate in the perimatrix (*). MMP–2 IHC, X 200; (b) Note a numerous MMP–2 positive
cells in the epithelium (*) and a few in the connective tissue (*) of a control skin sample, MMP–2 IHC, X 200 [38].

The appearance and distribution of MMP-9 immunoreactive cells in the matrix and
perimatrix were marked by a range from none (0) to moderate (++), while in the con-
trol group, the distribution ranged from occasional (0/+) to moderate (++) positive cells
(Figure 3a,b).
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Figure 3. Immunohistochemical micrographs of cholesteatoma tissue and control group. (a) Moderate MMP-9 positive
cells in matrix (*) and a few to moderate in the perimatrix (*) of a cholesteatoma patient, MMP-9 IHC, X 200; (b) Moderate
MMP-9 positive cells in the epithelium (*) and a few to moderate in the connective tissue (*) of a control skin sample, MMP-9
IHC, X 200 [38].

TIMP-2 presented variance in the cholesteatoma matrix and perimatrix, ranging from
a lack of positive cells (0) to numerous (+++) immunoreactive cells. In the control tissue, the
distribution varied from no TIMP-2-containing cells (0) to moderate-to-numerous (++/+++)
positive cells (Figure 4a,b).
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positive cells in the matrix (*) and occasional in the perimatrix (*), TIMP–2 IHC, X 200; (b) Moderate to numerous TIMP–2
positive cells in the epithelium (*) and a few in the connective tissue (*) of a control skin sample, TIMP–2 IHC, X 200 [38].

The numbers of TIMP-4-containing cells in cholesteatoma varied from occasional
(0/+) to numerous-to-abundant (+++/++++). In the control group, the range was from a
few (+) to numerous (+++) TIMP-4 immunoreactive cells (Figure 5a,b).
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sample, TIMP-4 IHC, X 200 [38].
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3.3. Immunohistochemistry Findings for Shh Gene Protein

Shh gene protein-positive cells in the matrix and perimatrix marked a range from none
(0) to numerous (+++). In the control skin epithelium and connective tissue, Shh-reactive
cells varied from none (0) to numerous-to-abundant (+++/++++) (Figure 6a,b).
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cells in matrix (*) and moderate in the perimatrix (*) of a cholesteatoma patient, Shh IHC, X 200; (b) Numerous to abundance
Shh positive cells in the epithelium (*) and a few in the connective tissue (*) of a control skin sample, Shh IHC, X 200 [38].

3.4. Immunohistochemistry Findings for Pro- and Anti-Inflammatory Cytokines

In the patient group, the cytokine IL-1 and anti-inflammatory cytokine IL-10 findings
demonstrated a range from occasional (0/+) to numerous (+++) positive cells. In the control
group, IL-1-containing cells ranged from none (0) to moderate-to-numerous (++/+++) and
the IL-10-positive cells from a few (+) to numerous (+++) (Figure 7a–d).

3.5. Immunohistochemistry Findings for Cellular Proliferation Markers

The appearance and distribution of NF-κβ-containing cells in the patient group
marked a range from none (0) to numerous (+++). In the control group, NF-κβ posi-
tive cells varied from none (0) to moderate (++) (Figure 8a,b).

The proliferation marker Ki-67 in cholesteatoma presented variance from no (0) posi-
tive cells to a few (+). In the controls, Ki-67-immunoreactive cells ranged from none (0) to
occasional (0/+) (Figure 9a,b).
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Figure 9. Immunohistochemical micrographs of cholesteatoma tissue and control group subjects. (a) A Few (+) Ki-67
positive cells in matrix (*) and occasional in the perimatrix (*) of a cholesteatoma patient, Ki-67 IHC, X 200; (b) An occasional
Ki-67 positive cells in the epithelium (*) and the connective tissue (*) of a control skin sample, Ki-67 IHC, X 200 [38].

3.6. Immunohistochemistry Findings for Angiogenetic Factor

VEGF-positive cells in the matrix and perimatrix were graded with values from
none (0) to numerous-to-abundant (+++/++++) positive cells. In the skin epithelium and
connective tissue, VEGF immunoreactive cells varied from none (0) to numerous (+++)
(Figure 10a,b).
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Figure 10. Immunohistochemical micrographs of cholesteatoma tissue and control group subjects. (a) Numerous to
abundant VEGF positive cells in the matrix (*) and moderate to numerous VEGF positive endothelial cells in the perimatrix
(*) of a cholesteatoma patient, VEGF IHC, X 200; (b) Moderate to numerous VEGF positive cells in the epithelium and a few
VEGF positive endothelium (*) cells of connective tissue (*) of the control skin, VEGF IHC, X 200 [38].

3.7. Immunohistochemistry Findings for Human Beta Defensins

In the cholesteatoma group, we found anything from no (0) to moderate-to-numerous
(++/+++) HβD-2- and HβD-4-positive cells. In the control group, the appearance and
distribution of HβD-2- and HβD-4-containing cells ranged from none (0) to numerous
(+++) (Figure 11a–d).
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Figure 11. Immunohistochemical micrographs of cholesteatoma tissue. (a) Moderate HβD–2 positive cells in a matrix (*)
and perimatrix (*) of a cholesteatoma patient. HβD–2 IHC, X 200; (b) Few HβD–2 positive cells in the epithelium (*) and
occasional in the connective tissue (*) of a control skin sample, HβD–2 IHC, X 200. (c) Few to moderate HβD–4 positive
cells in matrix (*) and occasional in perimatrix (*), HβD–4 IHC, X 200. (d) Few HβD–4 positive cells in the epithelium (*)
and none in the connective tissue (*) of a control skin sample, HβD–4 IHC, X 200 [38].

3.8. Statistical Analysis

Statistically significant differences in cell-positive factors between the patient and
control groups are presented in Table 1.

Table 1. Mann–Whitney U test revealing statistically significant differences in positive cell factors between cholesteatoma
patients and control group.

Detected Factor Mann–Whitney U Test Z-Score p-Value

Shh perimatrix and Shh control connective tissue 25,500 −3180 0.001

NF-κβ matrix and NF-κβ control epithelium 21,500 −3332 0.001

NF-κβ perimatrix and NF-κβ control connective tissue 40,000 −2451 0.017

HβD-2 perimatrix and HβD-2 control connective tissue 22,500 −3326 0.001

HβD-4 matrix and HβD-4 control epithelium 167,500 4001 0.000

Abbreviations: Shh—Sonic hedgehog; NF-κβ—nuclear factor kappa beta; HβD-2—human beta defensin 2; HβD-4—human beta defensin 4.

The results of Spearman’s rank correlation between different factors of the cholesteatoma
patient group are displayed in Table 2, demonstrating that there were statistically signifi-
cant results.
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Table 2. Spearman’s rank correlation coefficient revealed correlations between the relative numbers of different tissue factors in the cholesteatoma matrix and perimatrix.

Markers
MMP-

2
M

MMP-
2
P

MMP-
9
M

MMP-
9
P

TIMP-
2
M

TIMP-2
P

TIMP-
4
M

TIMP-
4
P

Shh
M

Shh
P

IL-1
M

IL-1
P

IL-10
M

IL-10
P

NF-
κβ
M

NF-
κβ
P

Ki-67
M

Ki-67
P

VEGF
M

VEGF
P

HβD2
M

HβD2
P

HβD4
M

HβD4
P

MMP-2
M

Rs
p

MMP-2
P

Rs
p

0.824 **
0.000

MMP-9
M

Rs
p

0.265
0.320

0.487
0.056

MMP-9
P

Rs
p

0.212
0.430

0.471
0.066

0.701 **
0.002

TIMP-2
M

Rs
p

0.710 **
0.002

0.615 *
0.011

0.465
0.070

0.363
0.167

TIMP-2
P

Rs
p

0.612 *
0.012

0.793 **
0.000

0.587 *
0.017

0.678 **
0.004

0.718 **
0.002

TIMP-4
M

Rs
p

0.366
0.163

0.513 *
0.042

0.547 *
0.028

0.371
0.157

0.145
0.592

0.370
0.158

TIMP-4
P

Rs
p

0.197
0.466

0.354
0.179

0.286
0.282

0.198
0.463

−0.099
0.715

0.134
0.620

0.747 **
0.001

Shh M Rs
p

0.337
0.202

0.435
0.093

0.493
0.053

0.447
0.083

0.248
0.354

0.440
0.088

0.745 **
0.001

0.463
0.071

Shh P Rs
p

0.462
0.072

0.535 *
0.033

0.494
0.052

0.383
0.143

0.488
0.055

0.610 *
0.012

0.538 *
0.032

0.366
0.164

0.845 **
0.000

IL-1 M Rs
p

0.327
0.216

0.288
0.280

0.195
0.468

0.170
0.530

0.187
0.488

0.199
0.460

0.702 **
0.002

0.594 *
0.015

0.576 *
0.020

0.286
0.284

IL-1 P Rs
p

−0.040
0.883

0.237
0.376

0.597 *
0.015

0.646 **
0.007

0.176
0.514

0.454
0.077

0.493
0.052

0.487
0.056

0.323
0.222

0.230
0.391

0.318
0.229

IL-10 M Rs
p

0.308
0.246

0.302
0.255

0.006
0.982

0.047
0.864

0.320
0.226

0.290
0.276

0.269
0.313

0.368
0.161

0.599 *
0.014

0.580 *
0.019

0.543 *
0.030

0.177
0.513

IL-10 P Rs
p

0.118
0.663

0.252
0.346

0.255
0.341

0.248
0.354

0.074
0.784

0.258
0.336

0.782 **
0.000

0.811 **
0.000

0.588 *
0.016

0.446
0.083

0.707 **
0.002

0.594 *
0.015

0.466
0.069

NF-κβ
M

Rs
p

0.312
0.239

0.387
0.139

0.334
0.206

0.382
0.144

0.133
0.624

0.189
0.483

0.700 **
0.003

0.663 **
0.005

0.734 **
0.001

0.486
0.056

0.768 **
0.001

0.246
0.358

0.526 *
0.036

0.640 **
0.008

NF-κβ
P

Rs
p

−0.167
0.535

0.112
0.680

0.328
0.215

0.442
0.087

0.143
0.598

0.350
0.183

0.258
0.334

0.254
0.343

0.509 *
0.044

0.502 *
0.048

0.291
0.274

0.370
0.159

0.403
0.122

0.432
0.095

0.552 *
0.027

Ki-67 M Rs
p

0.112
0.679

0.118
0.664

0.243
0.364

0.043
0.873

0.141
0.603

0.184
0.495

0.434
0.093

0.455
0.077

0.706 **
0.002

0.712 **
0.002

0.507 *
0.045

0.246
0.359

0.641 **
0.007

0.533 *
0.033

0.566 *
0.022

0.631 **
0.009

Ki-67 P Rs
p

−0.095
0.727

0.028
0.919

0.095
0.727

0.230
0.390

−0.144
0.595

0.150
0.580

0.404
0.121

0.253
0.345

0.671 **
0.004

0.487
0.056

0.333
0.208

0.250
0.350

0.376
0.152

0.439
0.089

0.546 *
0.029

0.720 **
0.002

0.687 **
0.003

VEGF M Rs
p

0.019
0.944

0.344
0.193

0.562 *
0.023

0.657 **
0.006

0.235
0.380

0.435
0.092

0.445
0.084

0.380
0.146

0.528 *
0.036

0.487
0.056

0.225
0.402

0.398
0.127

0.230
0.392

0.497
0.050

0.623 **
0.010

0.760 **
0.001

0.273
0.305

0.424
0.101

VEGF P Rs
p

0.296
0.266

0.618 *
0.011

0.684 **
0.004

0.713 **
0.002

0.305
0.250

0.632 **
0.009

0.764 **
0.001

0.470
0.066

0.573 *
0.020

0.494
0.052

0.407
0.118

0.563 *
0.023

0.053
0.845

0.508 *
0.045

0.571 *
0.021

0.526 *
0.036

0.234
0.384

0.403
0.122

0.675 **
0.004

HβD-2
M

Rs
p

−0.048
0.860

0.045
0.868

0.202
0.453

0.262
0.327

0.037
0.890

0.085
0.754

0.536 *
0.032

0.437
0.091

0.675 **
0.004

0.375
0.152

0.671 **
0.004

0.364
0.166

0.653 **
0.006

0.604 *
0.013

0.738 **
0.001

0.578 *
0.019

0.501 *
0.048

0.616 *
0.011

0.516 *
0.041

0.386
0.140

HβD-2
P

Rs
p

0.351
0.182

0.390
0.135

0.171
0.525

0.216
0.421

0.384
0.142

0.511 *
0.043

0.448
0.081

0.261
0.329

0.680 **
0.004

0.560 *
0.024

0.664 **
0.005

0.350
0.184

0.847 **
0.000

0.499 *
0.049

0.436
0.091

0.347
0.188

0.552 *
0.027

0.419
0.106

0.165
0.540

0.265
0.321

0.649 **
0.007

HβD-4
M

Rs
p

0.426
0.100

0.373
0.155

0.142
0.601

0.301
0.258

0.441
0.088

0.591 *
0.016

0.052
0.847

0.200
0.457

0.356
0.176

0.650 **
0.006

0.006
0.983

0.233
0.386

0.473
0.064

0.219
0.415

0.148
0.585

0.401
0.124

0.489
0.055

0.387
0.138

0.228
0.396

0.155
0.565

0.118
0.662

0.366
0.163

HβD-4
P

Rs
p

0.426
0.100

0.373
0.155

0.142
0.601

0.301
0.258

0.441
0.088

0.591 *
0.016

0.052
0.847

0.200
0.457

0.356
0.176

0.650 **
0.006

0.006
0.983

0.233
0.386

0.473
0.064

0.219
0.415

0.148
0.585

0.401
0.124

0.489
0.055

0.387
0.138

0.228
0.396

0.155
0.565

0.118
0.662

0.366
0.163

0.426
0.100

Abbreviations: Rs—Spearman’s correlation coefficient; p—p-value; M—Matrix; P—Perimatrix; MMP-2– matrix metalloproteinase 2; MMP-9—matrix metalloproteinase 9; TIMP-2—tissue inhibitor of
metalloproteinase-2; TIMP-4—tissue inhibitor of metalloproteinase-4; Shh—Sonic hedgehog gene protein; IL-1—Interleukin 1; IL-10—Interleukin 10; NF-κβ—nuclear factor kappa beta; Ki-67—proliferation
marker; VEGF—vascular endothelial growth factor; HβD-2—Human beta defensin 2; HβD-4—Human beta defensin 4; * Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01
level (2-tailed).
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4. Discussion

The main issue for patients with cholesteatoma is that it is a locally destructive lesion
and causes degradation of the surrounding temporal bone, which can lead to several intra-
or extra-temporal complications [18].

Therefore, the main issue associated with bone degradation is remodeling factors. Even
though several authors have found overexpression of MMP-2 and MMP-9 in cholesteatoma
tissue and linked these findings to the aggressiveness of the cholesteatoma [5,6,8], we, on
the other hand, did not find any statistically significant difference between the expression
of MMP-2 and MMP-9 in cholesteatoma compared to the control tissue. These findings are
supported by Banerjee et al. and Rezende et al. [39,40], who also failed to find upregulation
of these factors in cholesteatoma tissue. We suggest that more active functioning of TIMPs,
in this case, might lead to remodulation of the tissue.

Although there were no statistically significant differences between TIMP-2 and TIMP-
4 in the patient group compared to the control group, we found a slightly smaller number of
TIMP-2-positive cells in the matrix than in the control skin epithelium, which was close to
a statistically significant difference (p = 0.056). This might be a tendency, and the imbalance
between MMPs and TIMPs could be the underlying mechanism of the aggressiveness of
cholesteatoma. Similar findings are described by Schönermark et al., who mentioned an
imbalance between MMPs and TIMPs cause proteolysis [9]. Furthermore, bone remodeling
by MMP-2 and MPP-9 is strongly associated with angiogenesis [5–8]. Even though we did
not find a statistically significant difference between VEGF in cholesteatoma and control
skin, without any doubt, every researcher admits that angiogenesis in s cholesteatoma
perimatrix is much more prominent than in skin connective tissue, as was proven by
Olszewska et al. [41]. Additionally, angiogenesis supports the continuous growth of the
cholesteatoma, which is also similarly found in different tumors [26,27]. We proved a
strong positive correlation between MMP-2, MMP-9 and VEGF in the perimatrix, but such
a correlation was absent in the control group. This finding might suggest that MMP-2 and
MMP-9 intercorrelate with VEGF and cause pathological neo-angiogenesis in cholesteatoma
tissue in children (still growing and developing tissue) [42]. Moreover, we found moderate
and strong correlations between NF-κβ and VEGF in the patient group; as it is known
that NF-κβ acts in a pathway to regulate the activity of VEGF in cholesteatoma [25,27],
this might indicate complex intercorrelations between MMP-2, MMP-9, NF-κβ and VEGF,
affecting angiogenesis in the cholesteatoma perimatrix.

Our study showed a statistically significant upregulation of the Shh gene protein
in the cholesteatoma perimatrix. The Shh gene is a major factor contributing to correct
craniofacial development in humans [43]. It also regulates the development of the external
ear, from where epithelial cells migrate to the middle ear and form cholesteatoma [12–16].
The ongoing study’s authors suggest that the Shh gene might play a major role in the
development of cholesteatoma. Thus, we suggest that the Shh gene might stimulate
cholesteatoma growth in children.

To research inflammation processes in cholesteatoma, we detected pro- and anti-
inflammatory cytokines IL-1 and IL-10. We did not find a statistically significant dif-
ference in the numbers of IL-1- and IL-10-positive cells between the patient and con-
trol groups, which is similar to the data of Yetiser et al. [44], who researched IL-1, and
Kuczkowski et al. [45], who showed slight upregulation of IL-10 in cholesteatoma. Still,
IL-10 in the cholesteatoma tissue did not statistically differ from the levels of IL-10 in the
external ear canal skin. However, we found a strong positive correlation between IL-1 and
IL-10 in cholesteatoma tissue and an opposite, very strong negative correlation between
IL-1 and IL-10 in the control group. These findings might suggest dysregulation between
IL-1 and IL-10 in cholesteatoma, and therefore, more favorable conditions for inflammatory
processes in the cholesteatoma perimatrix, which may likely cause bone destruction. So,
we believe that it is very important to measure both pro- and anti-inflammatory cytokines
to examine the morphopathogenesis of cholesteatoma.
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The most characteristic feature of cholesteatoma is its hyperproliferation of ker-
atinocytes, which we can observe in the matrix and cystic layers of cholesteatoma [18].
To evaluate cell proliferation in our study, Ki-67 and NF-κβ were used. Even though
many authors show that Ki-67 is upregulated in cholesteatoma [46,47], our results did not
show statistically significant results between groups. Similar results with no statistically
significant difference of Ki-67 in cholesteatoma compared to skin were presented by Kim
et al. [48] and Kuczkowski et al. [49]. It is known that Ki-67 is found in all cell phases
except G0 [23], and we believe that most of the keratinocytes in cholesteatoma are probably
in the G0 phase and have either stopped the proliferation process or are ready to enter the
G0/G1 transition to proliferate further. In addition, Chae et al. [50], in their study, proved
that cell proliferation in cholesteatoma is controlled, and that the cell cycle can be stopped,
compared to malignant tumors. Therefore, we suggest that Ki-67 in cholesteatoma is not
the most reliable marker to show proliferation. This is also supported by Kim et al. [48],
who found that other markers (not Ki-67) are more reliable to show cell proliferation in
cholesteatoma. For instance, gankyrin, which is a p28 oncoprotein and is responsible for
sustaining cell cycle progression [48]. However, Ki-67 is a good proliferation and prognostic
marker in cancers, where the cells do not stop the proliferation process [51,52].

Our study showed that NF-κβ immunoreactive cells in the cholesteatoma matrix and
perimatrix are noticeably found in greater numbers than in the control group, as proven
by a statistically significant difference. These findings are supported by Byun et al. [53],
who demonstrated upregulation on NF-κβ in cholesteatoma. NF-κβ and Ki-67 act through
an inhibitor of the DNA binding protein 1 (Id1)→NF-κB→cyclin D1→Ki-67 signaling
pathway to promote cell proliferation [25]. Our study also showed a strong positive
correlation between NF-κβ and Ki-67, which proves that NF-κβ and Ki-67 are connected in
the pathway to induce cell proliferation in cholesteatoma. Furthermore, NF-κβ helps to
transit cholesteatoma cells from the G0 to the S phase [25]. The findings in our study allow
us to conclude that NF-κβ might be a better cell marker to prove hyperproliferation in
cholesteatoma than Ki-67. This suggestion is supported by Liu et al. [54] and Byun et al. [53].

Our study presented the upregulation of HβD-2 but found fewer HβD-4 immunore-
active cells in cholesteatoma compared to the control group, and these findings reached
statistical significance. Similar results with upregulation of HβD-2 in their studies were
shown by Park et al. [35] and Song et al. [55]. Acquired cholesteatoma is often accompa-
nied by a chronic middle-ear infection. Most commonly, the inflammation is caused by
Pseudomonas aeruginosa [32]. HβD-2 and HβD-4 have proven to form strong antibacterial
defense mechanisms in the organism against these bacteria [33,34]. However, there are no
studies on HβD-4 and cholesteatoma. Our study indicates that HβD-2 is the antibacterial
peptide more expressed in cholesteatoma in comparison to HβD-4. It might be the first
line of defense in cholesteatoma against bacterial superinfection [56]. Furthermore, it has
been proven that IL-1 is a very effective inducer of HβD-2, and HβD-2 is increased in
inflamed tissue [57,58]. Nonetheless, NF-κβ is essential for the induction of HβD-2 upon
IL-1 stimulation [57]. In agreement with these findings, our study presents strong and very
strong positive correlations between IL-1, NF-κβ and HβD-2, but not HβD-4.

Our study confirmed the significance of the complex research into different cell factors
in cholesteatoma and revealed the most important of them: remodeling factors MMP-2,
MMP9, TIMP-2 and TIMP-4; Shh gene protein; pro- and anti-inflammatory cytokines
IL-1 and IL-10; cellular proliferation markers NF-κβ and Ki-67; angiogenetic factor VEGF
and Human beta defensins 2 and 4. According to the revealed data, we can understand
the level of complication of the pathogenesis of cholesteatoma. Similar studies using
immunohistochemical evaluation of different tissue factors in retraction pockets of the
tympanic membrane have been conducted, and it would be useful to compare and analyze
the results between cholesteatoma and retraction pocket groups [59].

We realize that the present study has certain limitations. Additional quantification
of tissue markers by standardized laboratory measurements (e.g., ELISA) would benefit
the purely visual evaluation of immunohistochemically stained samples. Furthermore,
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we acknowledge that the relatively small control group and material taken from cadavers
might pose limitations to the study. Additionally, partly our control group consist of adult
cadaver skin material, which we compared to children cholesteatoma, might pose some
limitations to the study. Ethical considerations, however, mandate the use of this relative
control group. Moving forward, we encourage more studies to be undertaken to investigate
different genes that might be responsible for the development of cholesteatoma in children.

5. Conclusions

The prominent TIMP, but not MMP, expression suggests probable suppression of
tissue degradation in the cholesteatoma.

Complex intercorrelations between MMPs, NF-κβ and VEGF cause the intensification
of angiogenesis in cholesteatoma perimatrix during childhood.

The persistent increase in Shh gene protein expression in the cholesteatoma perimatrix
suggests the stimulation of tumor-affected tissue growth and development in children.

Similar expression of IL-1 and IL-10, and their strong positive intercorrelation, proves
there is a balance between pro- and anti-inflammatory cytokines, despite the abundance of
inflammatory cells.

NF-κβ, and not Ki-67, seems to be the main inducer of cellular proliferation in
cholesteatoma.

The main antimicrobial protection is provided by HβD-2, upregulated by NF-κβ and
IL-1, in cholesteatoma-affected tissue during childhood.
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