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Abstract: The ongoing worldwide pandemic of the novel human coronavirus SARS-CoV-2
and the ensuing disease, COVID-19, has presented enormous and unprecedented challenges for all
medical specialists. However, to date, children, especially neonates, have been relatively spared
from the devastating consequences of this infection. Neurologic involvement is being increasingly
recognized among adults with COVID-19, who can develop sensory deficits in smell and taste, delirium,
encephalopathy, headaches, strokes, and peripheral nervous system disorders. Among neonates
and children, COVID-19-associated neurological manifestations have been relatively rare, yet reports
involving neurologic dysfunction in this age range are increasing. As discussed in this review, pediatric
neurologists and other pediatric specialists should be alert to potential neurological involvement
by this virus, which might have neuroinvasive capability and carry long-term neuropsychiatric
and medical consequences.

Keywords: COVID-19; coronavirus; SARS-CoV-2; neonate; neurological; brain; neurotropism;
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1. Introduction

Severe and at times fatal symptoms caused by the novel human coronavirus, Severe Acute
Respiratory Syndrome (SARS)-CoV-2, and the associated coronavirus disease 2019 (COVID-19),
are ravaging the world. While symptoms of COVID-19 are primarily pulmonary (fever, dry cough,
fatigue, pneumonia), it is becoming increasingly recognized that multiple organ systems can be affected,
including the brain, with neurological involvement affecting up to ~36% of patients [1–5]. Information
gained from studies of related coronaviruses in recent epidemics of Severe Acute Respiratory Syndrome
(SARS, 2002) and Middle East Respiratory Syndrome (MERS, 2012) suggests that all three coronaviruses
might have neurologic consequences [6,7], though the relative severity and frequency of neurologic
involvement caused by coronaviruses varies and thus the extent to which SARS and MERS epidemics
inform our understanding of COVID-19 remains unclear [5]. Nevertheless, the possibility has been
raised that SARS-CoV-2 could invade the brain and cause neurological disease [2,8]. While appealing
conceptually, data supporting the idea that the SARS-CoV-2 virus can infect the peripheral and central
nervous systems (PNS, CNS) are limited, as discussed below. Table 1 lists definitions of relevant
terms that are often used in the literature. Neurotropic viruses vary in their invasiveness, virulence,
and propensity to cause inflammation [9].

Children 2020, 7, 133 ; doi:10.3390/children7090133 www.mdpi.com/journal/children

http://www.mdpi.com/journal/children
http://www.mdpi.com
http://www.mdpi.com/2227-9067/7/9/133 ?type=check_update&version=1
http://dx.doi.org/10.3390/children7090133 
http://www.mdpi.com/journal/children


Children 2020, 7, 133 2 of 16

Table 1. Definitions relevant to viral infections of the peripheral and central nervous systems.

Neuroinvasive Virus is capable of accessing and entering the nervous system

Neurotropic Virus is capable of infecting nerve cells once in the nervous system

Neurovirulent Neurotropic virus is capable of causing disease in the nervous system

Neuroinflammatory Virus causes secondary inflammatory response within the nervous
system

The purpose of this review is twofold: (1) to discuss the available data about COVID-19 infections
in neonates and children, and (2) to provide a perspective about potential neurologic involvement in
neonates and children with COVID-19 infections, in view of neurobiological development.

A few points need clarification up front. First, data about the virus and its effects are accumulating
rapidly and our understanding of its consequences will evolve over time. Second, much of the literature
about COVID-19 currently exists as case reports or small series; obviously, the impact of such
publications is limited, and greater understanding will emerge only as large, rigorous studies are
published. Third, we must be mindful that a positive test for SARS-CoV-2 in a patient with a
neurological symptom does not necessarily imply that the virus caused the symptom.

2. COVID-19 in Neonates and Children

The COVID-19 epidemic has escalated rapidly and spread widely across the globe, with cases
continuing to accrue at an alarming rate. The first case was reported from Wuhan, China in
mid-December 2019 and three months later, in March 2020, the World Health Organization declared
COVID-19 a pandemic. As of this writing (late August, 2020), more than 23 million cases of COVID-19
have been documented worldwide (with many more mildly symptomatic cases likely not reported),
with over 800,000 deaths, and more than 175,000 deaths in the United States alone (www.cdc.gov,
accessed 24 August 2020).

Documentation of the numerous clinical presentations, manifestations, and disease course have
proliferated in the medical literature. A PubMed search (23 July 2020) using the keyword COVID-19
revealed an astounding number of published reports already (34,310), over the course of only a few
months. Of those citations, only 501 reports (1.5%) also included the keyword neonate, attesting to
the low published incidence in newborns. When searching PubMed with the key terms COVID-19,
neonate and neurological or brain, fewer than 10 articles emerged. Therefore, at least so far, COVID-19
does not seem to be affecting neonates very often from a neurological point of view; PubMed counts
probably underestimate the occurrence of neurological involvement in children, being biased toward
areas of the world with greater medical resources. These observations do not preclude the potential
for neonatal brain involvement in COVID-19 nor exclude the possibility of long-term medical,
neurodevelopmental, and psychosocial consequences of the disease. Indeed, as time goes on, a wider
spectrum of neurologic manifestations will likely emerge with as yet undetermined long-term sequelae.

As the COVID-19 pandemic continues, certain trends are becoming evident. First, while the number
of cases and deaths continue to rise, the disease does not affect infants and children nearly as frequently
as adults [9,10]. To date, approximately 2–5% of cases of COVID-19 involve children, who appear
to be less severely affected than adults, mainly with pulmonary symptoms [11–13]. Second, disease
severity in children who develop COVID-19 is usually milder than in adults, and children with severe
disease often have an underlying co-morbidity such as immunosuppression [10,14]. Indeed, there is
accumulating evidence that adults with COVID-19 infection manifest with multiple organ system
involvement, including the CNS and PNS, and that older and sicker individuals carry a higher risk for
neurologic problems [1,4,15]. These age-dependent differences in disease expression and severity have
clear implications for healthcare professionals who deal with the pediatric population because children
remain at risk for incurring and spreading the virus, yet many remain asymptomatic. Several hypotheses
have been posited as to why children are less affected by COVID-19, including age-related differences
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in immune responses [16], a neutralizing antibody response due to prior exposure to coronaviruses [17],
lower prevalence of co-morbidities in children, and age-specific differences in SARS-CoV-2 receptor
function [18], neurovirulence, intrinsic biological protective mechanisms, and other host factors [19].
None of these hypotheses is supported compellingly by extant data at present.

While the number of affected neonates and children remains small, pediatric practitioners cannot
become complacent about the potential for neurologic involvement in COVID-19. Furthermore,
the recently described multisystem inflammatory syndrome-children (MIS-C), raises the specter that
COVID-19 or its after-effects also target children (see Section 4) [20,21]. As data from China, Europe
and other areas affected early by the COVID-19 pandemic are reported, some patterns are emerging
regarding pregnant women and neonates. First, it is clear that vertical transmission COVID-19 from
a pregnant mother to her fetus occurs quite rarely. More than a dozen publications attest to this
observation, together encompassing over 100 patients (Table 2 lists a few relevant publications, selected
from the largest available series and omitting small series and single case reports). None of these reports
documents unequivocal vertical transmission. In many of the babies, onset of symptoms occurred in
the neonatal period but not immediately at birth, so the exact timing of infection remains uncertain.
Overall, the data does not support robust transplacental transfer of SARS-CoV-2, but recent case reports
are providing proof-of-principle that the virus can be transmitted intrauterine from infected mother to
fetus [22,23]. An especially apropos case demonstrated maternal viremia, placental infection shown by
immunohistochemistry, and high placental viral load with subsequent neonatal viremia, implying
transplacental transfer of SARS-CoV-2 from pregnant mother to fetus [24]; this newborn presented
with neurological symptoms as discussed in Section 3.

Table 2. Selected reports evaluating potential vertical transmission of SARS-CoV-2.

Publication Newborns (n) SARS-CoV-2 Positive (n) Comments

Chen et al. 2020 [25] 9 0 All C-sections

Zhang et al. 2020 [26] 16 0 All C-sections; same institution
as Chen et al. 2020 [25]

Zeng et al. 2020 [27] 33 3

Tested 2-3 days postpartum;
two full terms and one 31-wga
premature infant; all developed
pneumonia but recovered by
~1-2 weeks of life

Liu et al. 2020 [28] 19 0 PCR negative on body fluids *
None developed symptoms

Schwartz et al. 2020 [29] 38 0

“No evidence that SARS-CoV-2
undergoes intrauterine or
transplacental transmission
from infected pregnant women
to their fetuses.”

Lu & Shi 2020 [30] - 3 3 cases mentioned; diagnosed
2-17 DOL. Details sparse

Salvatore et al. 2020 [31]
120 (DOL 1)
79 (DOL 5-7)
72 (DOL 14)

0
0
0

Cohort of infants born to
SARS-CoV-2 mothers, followed
through 2 weeks of life

Abbreviations: C-sections, Caesarean sections; PCR, polymerase chain reaction; wga, weeks gestational age; DOL,
day of life * nasopharyngeal fluid, urine, feces, breast milk, amniotic fluid.

Of all the infants reported during the first month of life, most had documented exposure to affected
family members [13,32] which emphasizes the importance of controlling horizontal virus transmission
from affected family members to the neonate [33]. While this trend may need revision [27,34], so far,
it is encouraging that most COVID-19-positive pregnant women do not transmit the disease to their
unborn children. Similarly, there is no evidence that COVID-19-positive pregnant women incur
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COVID-19 or develop more severe disease than similar-aged women who are not pregnant. However,
the impact of chronic inflammation caused by maternal viral infection on fetal development, pregnancy
outcomes and long-term neurodevelopment is unknown. Similarly, the timing of maternal viral
infection with respect to major milestones of in utero neurodevelopment (i.e., second trimester vs.
late third trimester) is an unknown and critical consideration for further research and long-term
neurodevelopmental followup. There is legitimate concern about the impact of acute and chronic
stress during the pandemic (i.e., worry about the medical complications of SARS-CoV-2 infection,
family disruption, job loss, economic pressures, educational uncertainties, food availability, etc.) on
the pregnant patient and developing fetus [35–38].

Furthermore, it is reassuring that there is no definitive evidence that the virus is present or can
be transmitted in the breast milk of COVID-19-positive women [28,39,40]. The current American
Academy of Pediatrics recommendation is that COVID-19–positive mothers can breast feed directly
while wearing a mask or feed expressed breast milk, using appropriate breast and hand hygiene [41].
Extensive guidelines are available regarding principles of management of pregnant women with
COVID-19 and their newborns [40–42]. Again, all of these observations are preliminary and subject to
modification over time.

3. Neurological Involvement in COVID-19

Although COVID-19 primarily affects the pulmonary system, it is a multisystem infection
(e.g., gastrointestinal tract, kidneys, liver, heart) and involvement of the PNS and CNS are increasingly
recognized [43–46]. Data on neurological signs and symptoms are limited but increasing, with a wide
spectrum of acute and chronic manifestations becoming apparent [47]. In a series of 214 hospitalized
adults with COVID-19, 88 of whom had “severe” infections, 36.4% of the entire group was reported
to manifest some neurologic involvement, including alteration of consciousness, encephalopathy,
headache, cerebrovascular disease, and skeletal muscle injury (myalgia, weakness) [1].

3.1. Cerebrovascular Disease

Ischemic strokes, many affecting young adults with large vessel occlusions, have garnered
considerable concern that the etiology may be a prothrombotic state caused by virus-induced
inflammation of the vascular epithelium [48,49]. Many of the young adult stroke victims had
other vascular risk factors such as diabetes or hypertension, which emphasizes the importance of
comorbidities with systemic inflammatory conditions in disease manifestations and severity. Stroke has
not been reported in children with COVID-19 [50].

3.2. Encephalitis

The occurrence of encephalitis remains controversial, as virus has not been recovered from
cerebrospinal fluid (CSF) [51] and overall, a surprisingly small number of COVID-19 patients develop
classic encephalitic symptoms. Autopsy studies are beginning to be published. The wide spectrum of
postmortem findings include mostly secondary changes to the CNS such as hypoxemia and ischemia,
rarely localized perivascular and interstitial neuroglial activation with neuronal loss and axonal
degeneration [52,53], and no other major CNS abnormalities [54]. No pediatric autopsy cases have
reported neuropathological involvement. Clearly, more data are needed before this issue can be clarified.

3.3. Seizures and Other CNS Symptoms

In the Chinese series [1], only 2 out of 214 patients had seizures (1%), which is not greater than
the general population, so it is uncertain whether infected patients are at higher risk. The few patients
with seizures are reported mainly in case reports [55,56]. The lack of frequent seizures is rather curious,
especially if encephalopathy is indeed a frequent complication of COVID-19; this data may be related
to sampling bias rather than actual non-occurrence. A few reports of seizures have appeared in
adults using electroencephalography (EEG) [57,58], but a more concerted effort to evaluate the brain
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electrophysiology of children with COVID-19 would be informative. The examples of seizures in
children with COVID-19 described in Section 3.6 appear to be largely anecdotal. Many additional cases
are necessary to conclude whether there is increased seizure susceptibility in the pediatric population.

Other CNS symptoms include headache, dizziness and delirium, all of which can occur as a
nonspecific consequence of systemic infection or inflammation of the respiratory tract as well as via a
CNS mechanism. Although headaches are reported frequently, the pain often appears to be nonspecific
or associated with inflammation or migraine exacerbation rather than meningeal irritation [59].

3.4. Hypogeusia, Hyposmia

The most commonly reported symptoms related to the PNS are decreased taste (hypogeusia or
ageusia) and smell (hyposmia or anosmia) [60,61]. A neural mechanism is suspected for hyposmia in
COVID-19, because decreased smell is often the first symptom experienced and occurs in mild disease
in the absence of significant local inflammation or mucosal congestion that are typical of the more
benign coronavirus or non-coronavirus nasal infections [62]. A few adolescents with COVID-19 have
been reported with decreased taste or smell [63]; these symptoms appear to be very uncommon in
children but deserve a more concerted ascertainment effort.

3.5. Demyelinating Disorders

Several cases of Guillain-Barré syndrome (GBS) have been reported in adults with COVID-19,
raising the possibility of post-infectious autoimmune responses against the PNS [64,65]. Two case
reports of children with GBS who developed COVID-19 symptoms about 3 weeks later confirms
that GBS can occur with COVID-19, though this association remains quite rare given the widespread
prevalence of COVID-19 [66,67]. Finally, the possibility of central demyelination has been raised,
e.g., in the form of multiple sclerosis (MS), among patients with COVID-19 [68]; this concern is
relevant in that various disease-modifying agents used to treat MS could theoretically exacerbate MS
symptoms [69]. Fortunately, there is no evidence that COVID-19 triggers central demyelinating disease
in children [50].

The lack of unequivocal reports of SARS-CoV-2 being recovered from the CSF of individuals
affected with presumed neurological involvement nor in brain tissue from the limited number of
autopsied cases strengthens the possibility that the virus does not often directly cause the symptoms
but rather, that the neurological sequelae are secondary to hypoxia, cytokine involvement, or some
other non-direct mechanism (see Section 6). It is appropriately concerning that chronic neurologic
diseases such as epilepsy, amyotrophic lateral sclerosis, multiple sclerosis, etc., might be exacerbated
during concurrent COVID-19 infection or that COVID-19 may unmask preexisting CNS pathology that
might have been unrecognized or asymptomatic.

3.6. Examples of Children with Neurological Involvement

As just discussed, neurologic involvement in children, and in particular neonates, with COVID-19
appears to be scarce but may be under reported [70]. A few selected examples of case reports of
neurologic involvement in neonates and children are presented in Table 3; such case reports have
limited generalizability, and many lack sufficient details to ascribe causality between SARS-CoV-2
and neurologic symptoms. Most children were assumed to have contracted COVID-19 from a family
member and some children had concurrent infection with other viruses, confounding any argument
for causality. Importantly, CSF was negative for SARS-CoV-2 in all children on whom spinal fluid
was obtained. All children recovered within a few days or weeks, contrasting with the severe
and prolonged courses in many adults. Available evidence does not allow distinction between a direct
effect of SARS-CoV-2 causing neurologic dysfunction, versus the symptoms instead being secondary
to an over activated immune response (see Section 5). In summary, case reports of neurological
involvement in babies and children are rare but accumulating, and the recovery of most infants with
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early neurologic symptoms implicates some virus- or host-related factors that minimize massive
neurological devastation.

Table 3. Selected case reports of COVID-19 neurologic involvement in neonates and children.

Neonates (n) Age Presenting Symptoms SARS-CoV-2 Testing SARS-CoV-2 CSF Reference

5 <3 y Hypotonia, drowsiness NP + 4/4 - [71]

1 26 d Upward eye deviation, stiffening NP +
Blood, cEEG, HUS - NR [72]

1 1 d Lethargy, encephalopathy NP +, rectal + - [73]

1 6 w Upward eye deviation, leg stiffening NP + - [74]

1 11 y Seizure NP + NR [75]

1 3 d Irritability, hypertonia

Brain MRI + (transient
gliosis of periventricular

white matter
and subcortical structures)

- [24]

Abbreviation: y, years; d, days; w, weeks; NP, nasopharyngeal; cEEG, continuous electroencephalography; HUS,
head ultrasound; MRI, magnetic resonance imaging; NR, not reported; +, positive; -, negative.

4. Neurological Signs and Symptoms in Multi-System Inflammatory Syndrome (MIS-C)

This newly recognized Kawasaki syndrome-like hyperinflammatory disorder presents with acute
hypotension and cardiogenic shock and is proliferating across the globe. It is likely a post-infectious
syndrome or inflammatory reaction following asymptomatic or mildly symptomatic COVID-19 [76].
Children can develop toxic shock-like symptoms, hypoxia-ischemia, and significant end organ damage
to the heart, kidneys, and other organs. While definitive data is not available, there is concern that
the inflammation that hallmarks MIS-C may have adverse consequences on the developing brain.
While no consistent neurologic picture has emerged, several MIS-C patients have had CNS involvement
as part of their course. In a small series of 6 children with MIS-C, 4 patients had neurologic symptoms,
including headache, altered mental status, and aseptic meningitis [77]. Headache was the most
common symptom in a series of 58 children with MIS-C associated with SARS-CoV-2, affecting 26% of
patients [78]. A series 21 children from France notes that 57% of patients were “irritable” and another
29% had “other neurological features”, though these were not specified [79]. In a larger survey of
186 children, 5–11% had neurologic involvement, depending on age, including encephalitis, seizures
or mental status alteration, but details are not provided [80]. Finally, 4 of 27 children with COVID-19
associated MIS-C developed new neurologic symptoms including encephalopathy, headache, weakness,
ataxia, and dysarthria [81]; two patients had lumbar punctures and CSF was negative for SARS-CoV-2
in both. Three of the four patients had an EEG; each showed diffuse slowing. Brain MRI scans of all
four children showed abnormal signal intensities of the splenium of the corpus callosum (a finding
seen in previous cases of encephalopathy and thought to indicate inflammation-induced focal myelin
edema [81,82]. A recent systematic review of eight studies notes neurological symptoms in ~25–50%
of children with MIS-C, depending upon inclusion criteria [83]. A putative impact on the immature
CNS and developing immune system, including neural-immune maturation, cannot be overlooked,
and the long-term neurologic impact of both COVID-19 and MIS-C on the developing brain need
urgent elucidation.

5. Coronavirus Infectivity

SARS-CoV-2 is a highly contagious and pathogenic RNA virus that is transmitted via droplet,
contact, or aerosol routes. The virus gains entry into epithelia of the pulmonary system (upper or lower
respiratory tracts), digestive tract, or nasopharynx. The virus is composed of single-stranded RNA
enveloped by surface proteins (S, E, M, N). The spike (S) glycoprotein serves as the attachment site
onto angiotensin converting enzyme type 2 (ACE-2) receptors on epithelial membranes. The normal
function of ACE-2 receptors is to provide protection against pulmonary and endothelial injury [84].
SARS and SARS-CoV-2 share ~79% genome sequence identity and both viruses infect epithelium by
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the binding of spike proteins to ACE-2 receptors. While most prevalent on airway and pulmonary
epithelium [85], ACE-2 receptors are also reportedly present to a lesser degree on neurons and perhaps
glia [2].

Binding of the S protein to ACE-2 receptors leads to proteolytic cleavage of S by the transmembrane
protease TMPRSS2 [5]. Viral RNA then enters the epithelial cell and replicates rapidly, translating viral
proteins and inducing a host immune response. This immune response can be adaptive, attacking
and inactivating the virus. By contrast, the immune response can be maladaptive and induce a
massive immune reaction, accompanied by a hyper-inflammatory response hallmarked by excessive
cytokine secretion and signal transduction (cytokine storm), and robust cellular immune activation
and recruitment [86]. The large-scale cytokine storm consists of a massive release of pro-inflammatory
humoral agents such as interleukin-6 (IL-6), interferon gamma (IFN-Y), MCP-1/CCL2 (monocyte
chemoattractant protein 1/chemokine ligand 2), IL-1, IL-12, IL-8, TNFα (tumor necrosis factor alpha),
and CXCL 10 (C-X-C motif chemokine ligand 10) that exacerbate the underlying pathophysiology [87,88].
This cytokine release subsequently feeds forward an overactive and dysregulated cellular immune
response defined by macrophage, monocyte, neutrophil, and T-cell hyperactivation and recruitment [89].
The impact of this systemic cytokine storm on neurodevelopment is under investigation in preclinical
models [90] and should be the focus of future prospective studies. Subsequently, the replicated viruses
exit the cell, leading to further infection.

It is unknown why children, and neonates in particular, seem to be relatively resistant to COVID-19
and its severe symptoms, including neurological manifestations. The cytokine response to coronavirus
infection appears to be less robust in young children although the recognition of MIS-C may suggest
host-dependent genetic susceptibility to enhanced cytokine and/or inflammatory responses [91],
but other mechanisms are also plausible [19]. It remains controversial whether ACE-2 inhibitors would
provide symptomatic relief or prevent the COVID-19 disease, and evidence for the effectiveness of
these agents in children and neonates is not yet available [92].

6. SARS-CoV-2 Neurologic Mechanisms

The cellular and molecular basis of SARS-CoV-2 neurotropism, neuroinvasiveness, and neurovirulence
are poorly understood [9]: does the virus get into the brain and if so how, and what does it do in the CNS
once there (e.g., infects neural cells? causes disease?). Neurological involvement in COVID-19 might be
associated with at least four potential mechanisms: 1. A direct neurotropic or neuroinvasive effect of
SARS-CoV-2 (e.g., anosmia, encephalopathy), 2. A secondary effect of the systemic inflammatory responses
triggered by the viral infection (e.g., encephalopathy), 3. A secondary effect associated with the vascular
and prothrombotic effect of the viral infection on the CNS or PNS vasculature (e.g., strokes, necrotizing
leukoencephalopathy), 4. An immune-mediated para-infectious or post-infectious autoimmune effect in
response to the viral infection (e.g., GBS, acute disseminated encephalomyelitis). Figure 1 summarizes,
in schematic fashion, some hypothetical possibilities about how the virus may infect the brain directly,
whether the neurological symptoms and signs may be related to systemic or hyperactivation of immune
responses, or both [87]. It is important to consider the mechanisms associated with neurological
manifestations of COVID-19, with an aim toward developing therapeutic options. The possibilities of
direct neurotropism and hyper-responsiveness to immune activation (cytokine storm) are considered
separately below, though these mechanisms might work synergistically.
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Figure 1. Schematic showing possible CNS entry points and effects of SARS-CoV-2. The SARS-CoV-
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and induces a massive immune response leading to excessive cytokine release, comprising a 
maladaptive immune response. Theoretically, virus particles may reach the CNS retrogradely via 
cranial nerve pathways: V from corneal epithelium or oropharyngeal cutaneous sensory receptors; I 
via the cribiform plate, infecting olfactory sensory neurons; VII and IX from tongue chemoreceptors; 
X via pulmonary mechanoreceptors. Once reaching CNS nuclei including brainstem and cortex, a 
variety of neurologic signs and symptoms are possible. However, it must be noted that the virus has 
not been recovered from CSF or brain tissue, making all of these pathways hypothetical at this point. 
Abbreviations: NP, nasopharynx; GI, gastrointestinal; ACE-2, angiotensin converting enzyme type 2 
receptor; PNS, peripheral nervous system; CNS, central nervous system; ICH, intracranial 
hemorrhage; GBS, Guillain-Barre syndrome; BBB, blood-brain barrier. 

Definitive demonstration of direct viral invasion would require a positive CSF reverse 
transcriptase-polymerase chain reaction (RT-PCR) for SARS-CoV-2, recovery of infective virus from 
the CSF as demonstrated by viral cultures or “plaque assay” [93], intrathecal synthesis of antibodies 
to SARS-CoV-2, or autopsy-demonstrated SARS-CoV-2 antigen or RNA in brain tissue [5]. Current 
published evidence meeting these strict criteria is minimal. While it is plausible that the virus infects 
the brain through one of the anatomical pathways discussed below, the lack of viral recovery from 
the CNS gives pause to that notion. Neuroinvasion has been demonstrated for the related SARS and 
MERS viruses [94], but SARS-CoV-2 has not been recovered from the CSF or brain tissue. Animal 
models of SARS and MERS have shown that the virus can enter through epithelium of the 
nasopharynx and travel retrogradely to the CNS [95,96]. Interestingly, wild type mice are not 
vulnerable to infection and disease by human coronaviruses, but transgenic mice with human ACE-
2 receptors do develop respiratory and neurological symptoms when infected [95,97]. In such 
transgenic mice, intranasal exposure to SARS or MERS leads to brain infection. One of the proposed 
portals of entry is via olfactory sensory neurons, crossing the cribiform plate into the olfactory bulb, 
with subsequent retrograde travel along the olfactory nerve (cranial nerve I) to the brainstem, 
thalamus, and basal ganglia, all areas that are connected to the olfactory cortex. Please note that it has 
yet to be proven that SARS-CoV-2 infects olfactory sensory neurons. Emerging animal models may 
clarify whether SARS-CoV-2 is similarly neuroinvasive as SARS and whether this isage dependent 

Figure 1. Schematic showing possible CNS entry points and effects of SARS-CoV-2. The SARS-CoV-2
virus attaches to olfactory epithelium using the ACE-2 receptor. After cell entry, the virus replicates
and induces a massive immune response leading to excessive cytokine release, comprising a
maladaptive immune response. Theoretically, virus particles may reach the CNS retrogradely via
cranial nerve pathways: V from corneal epithelium or oropharyngeal cutaneous sensory receptors; I via
the cribiform plate, infecting olfactory sensory neurons; VII and IX from tongue chemoreceptors; X via
pulmonary mechanoreceptors. Once reaching CNS nuclei including brainstem and cortex, a variety
of neurologic signs and symptoms are possible. However, it must be noted that the virus has not
been recovered from CSF or brain tissue, making all of these pathways hypothetical at this point.
Abbreviations: NP, nasopharynx; GI, gastrointestinal; ACE-2, angiotensin converting enzyme type 2
receptor; PNS, peripheral nervous system; CNS, central nervous system; ICH, intracranial hemorrhage;
GBS, Guillain-Barre syndrome; BBB, blood-brain barrier.

Definitive demonstration of direct viral invasion would require a positive CSF reverse
transcriptase-polymerase chain reaction (RT-PCR) for SARS-CoV-2, recovery of infective virus from
the CSF as demonstrated by viral cultures or “plaque assay” [93], intrathecal synthesis of antibodies
to SARS-CoV-2, or autopsy-demonstrated SARS-CoV-2 antigen or RNA in brain tissue [5]. Current
published evidence meeting these strict criteria is minimal. While it is plausible that the virus infects
the brain through one of the anatomical pathways discussed below, the lack of viral recovery from
the CNS gives pause to that notion. Neuroinvasion has been demonstrated for the related SARS
and MERS viruses [94], but SARS-CoV-2 has not been recovered from the CSF or brain tissue. Animal
models of SARS and MERS have shown that the virus can enter through epithelium of the nasopharynx
and travel retrogradely to the CNS [95,96]. Interestingly, wild type mice are not vulnerable to infection
and disease by human coronaviruses, but transgenic mice with human ACE-2 receptors do develop
respiratory and neurological symptoms when infected [95,97]. In such transgenic mice, intranasal
exposure to SARS or MERS leads to brain infection. One of the proposed portals of entry is via olfactory
sensory neurons, crossing the cribiform plate into the olfactory bulb, with subsequent retrograde travel
along the olfactory nerve (cranial nerve I) to the brainstem, thalamus, and basal ganglia, all areas
that are connected to the olfactory cortex. Please note that it has yet to be proven that SARS-CoV-2
infects olfactory sensory neurons. Emerging animal models may clarify whether SARS-CoV-2 is
similarly neuroinvasive as SARS and whether this isage dependent [97,98]. However, since mice are
not naturally susceptible to the clinical and immunopathological manifestations of coronaviruses
affecting humans, translational studies of pathogenic mechanisms and vaccine development become
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complicated. Extensive efforts to modify mice with transgenic approaches have begun to provide
informative models.

As mentioned, the olfactory epithelium has been touted as a potential site of viral entry into
the brain, and hence explain hyposmia [99].Detailed genetic and immunohistochemical examinations
of cell types of the olfactory system reveal that ACE-2 and TMPRSS2 are present on olfactory
epithelial cells (especially supporting or “sustenacular” cells) but not on olfactory sensory neurons
themselves [54,85,100]. Moreover, there is some evidence of virus-induced cell death in other
coronavirus infections but not yet for SARS-CoV-2 [84,101].

Likewise, the virus might enter via the sensory system of the tongue that mediates taste,
with transmission via cranial nerves VII, IX, and X to the nucleus tractus solitarius, thalamus
and eventually, brain. Finally, trigeminal nociceptors via cranial nerve V from either the corneal
epithelium or buccal epithelium could theoretically reach the CNS. These potential pathways could
explain the symptoms of hypogeusia and altered vision. However, SARS-CoV-2 has not been recovered
from the brain. Transynaptic transport from lower respiratory tract mechano- and chemoreceptors to
the brainstem medullary cardiorespiratory centers has been proposed as a hypothetical mechanism that
could exacerbate brainstem dysfunction and perhaps even worsen respiratory effort [102]; however,
this hypothesis lacks objective validation and remains controversial.

Other potential routes for virus to enter the CNS are through the bloodstream (hematogenous) or
via disruption of the blood brain barrier (BBB). From the systemic circulation, the virus might travel to
the cerebral circulation where it can damage capillary epithelium and access the brain. Interestingly,
there is scant evidence that SARS-CoV-2 produces a significant or sustained viremia [103]. The BBB is
essential for transport of molecules into the brain and exclusion of pathogens and overall maintenance of
cerebral homeostasis [104]. The BBB is a dynamic structure, consisting of several cell types and proteins,
each with its own maturational profile–astrocyte foot processes, pericytes, tight junction proteins,
and extracellular matrix, providing structural and functional support. Virus attachment to ACE-2
receptors at the BBB might facilitate trafficking of the virus into the CNS, facilitating endothelial damage
and edema [89]. Notably, while the BBB is structurally complete at birth and is sufficiently functional in
the neonate to provide protection against many pathogens, its full physiological maturation may take
several months [105]. In the context of COVID-19 infection, the BBB may be dysfunctional, disrupted
either by inflammatory response or the virus itself, allowing transmission of the virus or activated
immune cells from the circulation into the CNS [8,84]. The release of inflammatory cytokines by
activated glia and neural mast cells exacerbate the inflammation [89]. Similarly, flow of the virus through
lymphatic channels of the interstitial space of the brain could breach the blood-CSF barrier and permit
virus entry [106]. To date, there is no evidence for the presence of the virus in pathological specimens of
the PNS or CNS, in part due to the dearth of comprehensive autopsies [52–54]. Obviously, patient care
has focused on critical pulmonary and life-support measures so neuropathologically-focused autopsy
studies have been uncommon.

Animal studies of COVID-19 will be crucial to complement information gained from prior studies
of the other coronaviruses. Such animal models will provide more information about mechanisms
of virus entry into the nervous system and how the virus affects neural function, neural-immune
maturation and neurodevelopment, as well as the critical and yet unanswered question of long-term
neurological sequelae of COVID-19 [107]. That is, if there is predilection of the virus for certain
neural structures or chronic neuroinflammation, long-term consequences may arise in various neural
functions such as learning, memory, cognition, seizure predisposition, and other functions. All of
this is speculative at present. Another essential question, alluded to above, is whether CNS disease
contributes to the respiratory failure seen in COVID-19 patients. Ongoing or severe hypoxia can
exacerbate ongoing symptoms in other organs. In particular, CNS respiratory control centers in the brain
stem, nearby the vagus nerve, has been speculated to play a role in respiratory failure [102,108].
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7. Conclusions—A Cautionary Tale

At present, there is some reason for guarded optimism for young patients within the devastating
COVID-19 pandemic. Children, particularly neonates, are less likely to become infected and develop
severe symptoms, and their propensity to spread the virus is controversial [109]. There is at best slight
evidence for vertical transmission of SARS-CoV-2 or COVID-19 disease from pregnant mother to
fetus; rather, neonates are more likely incur the disease by exposure to affected individuals postnatally,
and breast milk transmission has not been shown (Table 4). A variety of practical guidelines have been
developed for the care of pregnant women who have or are suspected to have COVID-19 positivity.
Analogous guidelines for the care of adult COVID-19 patients with neurologic problems are also
available and need to be developed for children [110].

Table 4. Summary of COVID-19 infections in children.

Severe infection caused by the novel coronavirus, SARS-Cov-2, has predominant pulmonary involvement but
can also affect multiple other organ systems, including the CNS and PNS.

Symptoms are less frequent and usually less severe in children and particularly in neonates.

Vertical transmission of SARS-CoV-2 from pregnant mother to fetus is rare but anecdotal case reports support
this possibility.

Most cases of COVID-19 in early life are due to exposures to infected patients (horizontal transmission).

There is no reported transmission of SARS-CoV-2 via breast milk.

Regarding neurologic involvement in COVID-19, there are plausible mechanisms by which
the virus can gain entry into the CNS and subsequently incur acute neurologic symptoms, either directly
or through immune dysfunction (Table 5). The occurrence of long-term medical and neuropsychiatric
sequelae is unknown. Children can be resilient and yet remain vulnerable to coping with the challenges
of COVID-19 in the context of other acute and chronic diseases. Youngsters may not understand the need
for social distancing, prolonged quarantine, and other preventative measures, and it is anticipated
that stress-related post-traumatic symptoms will develop in some young people, whether or not
they actually acquire symptoms. In children with comorbid chronic conditions and developmental
disabilities, the challenges are even more profound. Therefore, neuropsychological surveillance
and studies of the long-lasting effects of this pandemic on neurodevelopment are critical [111].
Finally, the emergence of the hyper-inflammatory multisystem syndrome (MIS-C) supplants any
conclusion that COVID-19 is benign or negligible in the pediatric age range. Therefore, it behooves
neurologists and other pediatric specialists who deal with neonates and young children to be aware of
the potential neurologic involvement of this novel, potentially devastating virus. Future animal models
should evaluate the impact of SARS-CoV-2 on maternal infection, inflammatory signal transduction
through the maternal–placental–fetal axis, and brain development. The importance of large-scale
immunization should a vaccine become available, cannot be over emphasized as should the role of
systemic inflammation, neuroinflammation, and neural-immune interactions in novel pathophysiology
and symptomology. Additionally, mechanism-specific targeted therapies could emerge from basic
science studies of SARS-CoV-2 infection.

Table 5. Neurological involvement in COVID-19.

Acute neurological involvement in adults with COVID-19 can include decrease taste/smell, headache,
confusion, peripheral nerve dysfunction, strokes, and encephalopathy.

Neurological involvement of COVID-19 in neonates and children is still quite rare but recent case reports
warrant vigilant surveillance.

Neurological involvement of COVID-19 in neonates and children is still quite rare but recent case reports
warrant vigilant surveillance.

SARS-CoV-2 has not been recovered from CSF or brain samples.
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