Artificial Womb Technology for Extremely Premature Neonates: Preclinical Neurodevelopmental Outcomes
Abstract
1. Introduction
1.1. Extreme Prematurity
1.2. Survival
1.3. Pulmonary Morbidity
1.4. Gastro-Intestinal Morbidity
1.5. Retinopathy of Prematurity
1.6. Neurologic Sequelae
1.7. Neurodevelopmental Outcomes
2. Artificial Womb Technology
2.1. Rationale for Artificial Womb Technology
2.2. Model Development
3. Current Preclinical Models of AWT
3.1. The Children’s Hospital of Philadelphia (USA)
3.1.1. Model
3.1.2. Outcomes
3.1.3. Neurologic Outcomes
3.2. Tohoku University, Sendai (Japan) and the University of Western Australia, Perth (Australia)
3.2.1. Model
3.2.2. Outcomes
3.2.3. Neurologic Outcomes
3.3. Hospital Sant Joan de Déu, University of Barcelona (Spain)
3.3.1. Model
3.3.2. Outcomes
3.3.3. Neurologic Outcomes
3.4. Hospital for Sick Children, University of Toronto (Canada)
3.4.1. Model
3.4.2. Outcomes
3.4.3. Neurologic Outcomes
3.5. University of Michigan (USA): Veno-Venous Premature ECLS
3.5.1. Model
3.5.2. Outcomes
3.5.3. Neurologic Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WHO | World Health Organization |
| EPI | Extremely premature infant |
| EGA | Estimated gestational age |
| NICU | Neonatal intensive care |
| BPD | Bronchopulmonary dysplasia |
| VLBW | Very low birth weight |
| NEC | Necrotizing enterocolitis |
| ROP | Retinopathy of prematurity |
| IVH | Intraventricular hemorrhage |
| PVL | Periventricular leukomalacia |
| CP | Cerebral palsy |
| ADHD | Attention-deficit hyperactivity disorder |
| ASD | Autism spectrum disorder |
| AWT | Artificial womb technology |
| AP | Artificial placenta |
| GH | Growth hormone |
| IGF-1 | Insulin-like growth factor |
| UV | Umbilical vein |
| VV-ECLS | Veno-venous circuit |
| NOSA | Nitric oxide surface anticoagulation |
References
- WHO. Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 13 May 2025).
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sanchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Stanak, M.; Hawlik, K. Decision-making at the limit of viability: The Austrian neonatal choice context. BMC Pediatr. 2019, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.E.; Parikh, N.A.; Langer, J.; Green, C.; Higgins, R.D. Intensive Care for Extreme Prematurity—Moving beyond Gestational Age. N. Engl. J. Med. 2008, 358, 1672–1681. [Google Scholar] [CrossRef]
- Rysavy, M.A.; Li, L.; Bell, E.F.; Das, A.; Hintz, S.R.; Stoll, B.J.; Vohr, B.R.; Carlo, W.A.; Shankaran, S.; Walsh, M.C.; et al. Between-hospital variation in treatment and outcomes in extremely preterm infants. N. Engl. J. Med. 2015, 372, 1801–1811. [Google Scholar] [CrossRef]
- Al-Alaiyan, S. Call to establish a national lower limit of viability. Ann. Saudi Med. 2008, 28, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.M.; Ehret, D.E.Y.; Soll, R.F.; Horbar, J.D. Survival of Infants Born at 22 to 25 Weeks’ Gestation Receiving Care in the NICU: 2020–2022. Pediatrics 2024, 154, e2024065963. [Google Scholar] [CrossRef]
- Bell, E.F.; Hintz, S.R.; Hansen, N.I.; Bann, C.M.; Wyckoff, M.H.; DeMauro, S.B.; Walsh, M.C.; Vohr, B.R.; Stoll, B.J.; Carlo, W.A.; et al. Mortality, In-Hospital Morbidity, Care Practices, and 2-Year Outcomes for Extremely Preterm Infants in the US, 2013–2018. JAMA 2022, 327, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.; Hakansson, S.; Serenius, F.; Kallen, K.; Björklund, L.; Normann, E.; Domellöf, M.; Ådén, U.; Abrahamsson, T.; Elfvin, A.; et al. One-year survival and outcomes of infants born at 22 and 23 weeks of gestation in Sweden 2004–2007, 2014–2016 and 2017–2019. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 109, 10–17. [Google Scholar] [CrossRef]
- Humberg, A.; Härtel, C.; Rausch, T.K.; Stichtenoth, G.; Jung, P.; Wieg, C.; Kribs, A.; von der Wense, A.; Weller, U.; Höhn, T.; et al. Active perinatal care of preterm infants in the German Neonatal Network. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 190–195. [Google Scholar] [CrossRef]
- Isayama, T.; Miyakoshi, K.; Namba, F.; Hida, M.; Morioka, I.; Ishii, K.; Miyashita, S.; Uehara, S.; Kinoshita, Y.; Suga, S.; et al. Survival and unique clinical practices of extremely preterm infants born at 22–23 weeks’ gestation in Japan: A national survey. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 110, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.M. Short- and Long-Term Outcomes for Extremely Preterm Infants. Am. J. Perinatol. 2016, 33, 318–328. [Google Scholar] [CrossRef]
- Schittny, J.C. Development of the lung. Cell Tissue Res. 2017, 367, 427–444. [Google Scholar] [CrossRef]
- Smith, L.J.; McKay, K.O.; van Asperen, P.P.; Selvadurai, H.; Fitzgerald, D.A. Normal development of the lung and premature birth. Paediatr. Respir. Rev. 2010, 11, 135–142. [Google Scholar] [CrossRef]
- Owen, L.S.; Manley, B.J.; Davis, P.G.; Doyle, L.W. The evolution of modern respiratory care for preterm infants. Lancet 2017, 389, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.; Jonsson, B.; Wallström, L.; Sindelar, R. Respiratory support of infants born at 22–24 weeks of gestational age. Semin. Fetal Neonatal Med. 2022, 27, 101328. [Google Scholar] [CrossRef]
- Doyle, L.W.; Carse, E.; Adams, A.M.; Ranganathan, S.; Opie, G.; Cheong, J.L.Y. Ventilation in Extremely Preterm Infants and Respiratory Function at 8 Years. N. Engl. J. Med. 2017, 377, 329–337. [Google Scholar] [CrossRef]
- Stocks, J.; Hislop, A.; Sonnappa, S. Early lung development: Lifelong effect on respiratory health and disease. Lancet Respir. Med. 2013, 1, 728–742. [Google Scholar] [CrossRef]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar] [CrossRef] [PubMed]
- Travers, C.P.; Carlo, W.A.; McDonald, S.A.; Das, A.; Bell, E.F.; Ambalavanan, N.; Jobe, A.H.; Goldberg, R.N.; D’Angio, C.T.; Stoll, B.J.; et al. Mortality and pulmonary outcomes of extremely preterm infants exposed to antenatal corticosteroids. Am. J. Obs. Gynecol. 2018, 218, 130.e1–130.e13. [Google Scholar] [CrossRef] [PubMed]
- Manley, B.J.; Kamlin, C.O.F.; Donath, S.M.; Francis, K.L.; Cheong, J.L.Y.; Dargaville, P.A.; Dawson, J.A.; Jacobs, S.E.; Birch, P.; Resnick, S.M.; et al. Intratracheal Budesonide Mixed With Surfactant for Extremely Preterm Infants: The PLUSS Randomized Clinical Trial. JAMA 2024, 332, 1889–1899. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Carlo, W.A.; Nowak, K.J.; Wiener, L.E.; Cosby, S.S.; Bhatt, A.J.; Watterberg, K.L.; Poindexter, B.B.; Keszler, M.; D’Angio, C.T.; et al. Early Intratracheal Budesonide to Reduce Bronchopulmonary Dysplasia in Extremely Preterm Infants: The Budesonide in Babies (BiB) Randomized Clinical Trial. JAMA 2025, 334, 1452–1462. [Google Scholar] [CrossRef]
- Moreira, A.; Noronha, M.; Joy, J.; Bierwirth, N.; Tarriela, A.; Naqvi, A.; Zoretic, S.; Jones, M.; Marotta, A.; Valadie, T.; et al. Rates of bronchopulmonary dysplasia in very low birth weight neonates: A systematic review and meta-analysis. Respir. Res. 2024, 25, 219. [Google Scholar] [CrossRef]
- Han, S.M.; Hong, C.R.; Knell, J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Modi, B.P.; Horbar, J.D.; Jaksic, T. Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: A multicenter cohort analysis. J. Pediatr. Surg. 2020, 55, 998–1001. [Google Scholar] [CrossRef]
- Mϋller, M.J.; Paul, T.; Seeliger, S. Necrotizing enterocolitis in premature infants and newborns. J. Neonatal Perinat. Med. 2016, 9, 233–242. [Google Scholar] [CrossRef]
- Sabri, K.; Ells, A.L.; Lee, E.Y.; Dutta, S.; Vinekar, A. Retinopathy of Prematurity: A Global Perspective and Recent Developments. Pediatrics 2022, 150, e2021053924. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Zhang, X.; Liu, Y.; Li, J.; Wang, H.; Luo, X.; Liu, S.; Liu, L.; Zhang, J. Global, regional and national burden of retinopathy of prematurity among childhood and adolescent: A spatiotemporal analysis based on the Global Burden of Disease Study 2019. BMJ Paediatr. Open 2024, 8, e002267. [Google Scholar] [CrossRef]
- Sanghi, G.; Gangwe, A.; Das, P. Evidence based management of retinopathy of prematurity: More than meets the eye. Clin. Epidemiol. Glob. Health 2024, 26, 101530. [Google Scholar] [CrossRef]
- Song, I.G. Neurodevelopmental outcomes of preterm infants. Clin. Exp. Pediatr. 2023, 66, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Russ, J.B.; Ostrem, B.E.L. Acquired Brain Injuries Across the Perinatal Spectrum: Pathophysiology and Emerging Therapies. Pediatr. Neurol. 2023, 148, 206–214. [Google Scholar] [CrossRef]
- Shimotsuma, T.; Tomotaki, S.; Akita, M.; Araki, R.; Tomotaki, H.; Iwanaga, K.; Kobayashi, A.; Saitoh, A.; Fushimi, Y.; Takita, J.; et al. Severe Bronchopulmonary Dysplasia Adversely Affects Brain Growth in Preterm Infants. Neonatology 2024, 121, 724–732. [Google Scholar] [CrossRef]
- Bear, J.J.; Wu, Y.W. Maternal Infections During Pregnancy and Cerebral Palsy in the Child. Pediatr. Neurol. 2016, 57, 74–79. [Google Scholar] [CrossRef] [PubMed]
- McCrea, H.J.; Ment, L.R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 2008, 35, 777–792. [Google Scholar] [CrossRef]
- Chen, J.; Choi, J.J.; Lin, P.Y.; Huang, E.J. Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics. Annu. Rev. Pathol. 2025, 20, 221–243. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Roberts, J.C.; Javed, M.J.; Hocker, J.R.; Wang, H.; Tarantino, M.D. Risk factors associated with intraventricular hemorrhage in extremely premature neonates. Blood Coagul. Fibrinolysis 2018, 29, 25–29. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, S.; Zhang, T.; Duan, S.; Wang, H. Neurodevelopmental outcomes in preterm or low birth weight infants with germinal matrix-intraventricular hemorrhage: A meta-analysis. Pediatr. Res. 2024, 95, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.; Patel, W.; Durrani, N.U.R.; Pullattayil, A.K. Interventions to Reduce Severe Brain Injury Risk in Preterm Neonates: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e237473. [Google Scholar] [CrossRef] [PubMed]
- Molloy, E.J.; El-Dib, M.; Soul, J.; Juul, S.; Gunn, A.J.; Bender, M.; Gonzalez, F.; Bearer, C.; Wu, Y.; Robertson, N.J.; et al. Neuroprotective therapies in the NICU in preterm infants: Present and future (Neonatal Neurocritical Care Series). Pediatr. Res. 2024, 95, 1224–1236. [Google Scholar] [CrossRef]
- Ahya, K.P.; Suryawanshi, P. Neonatal periventricular leukomalacia: Current perspectives. Res. Rep. Neonatol. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Jarjour, I.T. Neurodevelopmental outcome after extreme prematurity: A review of the literature. Pediatr. Neurol. 2015, 52, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. The Encephalopathy of Prematurity—Brain Injury and Impaired Brain Development Inextricably Intertwined. Semin. Pediatr. Neurol. 2009, 16, 167–178. [Google Scholar] [CrossRef]
- Hafström, M.; Källén, K.; Serenius, F.; Maršál, K.; Rehn, E.; Drake, H.; Ådén, U.; Farooqi, A.; Thorngren-Jerneck, K.; Strömberg, B. Cerebral Palsy in Extremely Preterm Infants. Pediatrics 2018, 141, e20171433. [Google Scholar] [CrossRef] [PubMed]
- Rysavy, M.A.; Mehler, K.; Oberthür, A.; Ågren, J.; Kusuda, S.; McNamara, P.J.; Giesinger, R.E.; Kribs, A.; Normann, E.; Carlson, S.J.; et al. An Immature Science: Intensive Care for Infants Born at ≤23 Weeks of Gestation. J. Pediatr. 2021, 233, 16–25.e1. [Google Scholar] [CrossRef]
- Torchin, H.; Morgan, A.S.; Ancel, P.-Y. International comparisons of neurodevelopmental outcomes in infants born very preterm. Semin. Fetal Neonatal Med. 2020, 25, 101109. [Google Scholar] [CrossRef]
- Sayal, K.; Prasad, V.; Daley, D.; Ford, T.; Coghill, D. ADHD in children and young people: Prevalence, care pathways, and service provision. Lancet Psychiatry 2018, 5, 175–186. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or early term birth and risk of attention-deficit/hyperactivity disorder: A national cohort and co-sibling study. Ann. Epidemiol. 2023, 86, 119–125.e114. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or Early Term Birth and Risk of Autism. Pediatrics 2021, 148, e2020032300. [Google Scholar] [CrossRef]
- Yates, R.; Treyvaud, K.; Doyle, L.W.; Ure, A.; Cheong, J.L.Y.; Lee, K.J.; Inder, T.E.; Spencer-Smith, M.; Anderson, P.J. Rates and Stability of Mental Health Disorders in Children Born Very Preterm at 7 and 13 Years. Pediatrics 2020, 145, e20192699. [Google Scholar] [CrossRef]
- Johnson, S.; Hennessy, E.; Smith, R.; Trikic, R.; Wolke, D.; Marlow, N. Academic attainment and special educational needs in extremely preterm children at 11 years of age: The EPICure study. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F283–F289. [Google Scholar] [CrossRef] [PubMed]
- Lock, N.E.; DeBoer, M.D.; Scharf, R.J.; Miller, S.E. Academic performance in moderately and late preterm children in the United States: Are they catching up? J. Perinatol. 2024, 44, 819–826. [Google Scholar] [CrossRef]
- Kono, Y.; Yonemoto, N.; Nakanishi, H.; Kusuda, S.; Fujimura, M. Changes in survival and neurodevelopmental outcomes of infants born at <25 weeks’ gestation: A retrospective observational study in tertiary centres in Japan. BMJ Paediatr. Open 2018, 2, e000211. [Google Scholar] [CrossRef]
- Jobe, A.J. The new BPD: An arrest of lung development. Pediatr. Res. 1999, 46, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Bancalari, E.; Jain, D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology 2019, 115, 384–391. [Google Scholar] [CrossRef]
- Schoberer, M.; Arens, J.; Lohr, A.; Seehase, M.; Jellema, R.K.; Collins, J.J.; Kramer, B.W.; Schmitz-Rode, T.; Steinseifer, U.; Orlikowsky, T. Fifty Years of Work on the Artificial Placenta: Milestones in the History of Extracorporeal Support of the Premature Newborn. Artif. Organs 2012, 36, 512–516. [Google Scholar] [CrossRef]
- Westin, B.; Nyberg, R.; Enhörning, G. A Technique for Perfusion of the Previable Human Fetus. Acta Paediatr. 1958, 47, 339–349. [Google Scholar] [CrossRef] [PubMed]
- De Bie, F.R.; Davey, M.G.; Larson, A.C.; Deprest, J.; Flake, A.W. Artificial placenta and womb technology: Past, current and future challenges towards clinical translation. Prenat. Diagn. 2020, 41, 145–158. [Google Scholar] [CrossRef]
- Liggins, G.C.; Howie, R.N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972, 50, 515–525. [Google Scholar] [CrossRef]
- Ten Centre Study Group. Ten centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. BMJ 1987, 294, 991–996. [Google Scholar] [CrossRef]
- Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: An international randomized clinical trial. Pediatrics 1988, 82, 683–691. [Google Scholar] [CrossRef]
- Long, W.; Corbet, A.; Cotton, R.; Courtney, S.; McGuiness, G.; Walter, D.; Watts, J.; Smyth, J.; Bard, H.; Chernick, V. A Controlled Trial of Synthetic Surfactant in Infants Weighing 1250 G or More with Respiratory Distress Syndrome. N. Engl. J. Med. 1991, 325, 1696–1703. [Google Scholar] [CrossRef]
- Speidel, B. Use of nasal continous positive airway pressure to treat severe recurrent apnea in very preterm infants. Lancet 1976, 308, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Kirby, R.R. Intermittent mandatory ventilation in the neonate. Crit. Care Med. 1977, 5, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, J.; Del Bigio, M.R. Topical Review: Animal Models of Germinal Matrix Hemorrhage. J. Child. Neurol. 2006, 21, 365–371. [Google Scholar] [CrossRef]
- Gray, B.W.; El-Sabbagh, A.; Zakem, S.J.; Koch, K.L.; Rojas-Pena, A.; Owens, G.E.; Bocks, M.L.; Rabah, R.; Bartlett, R.H.; Mychaliska, G.B. Development of an artificial placenta V: 70 h veno-venous extracorporeal life support after ventilatory failure in premature lambs. J. Pediatr. Surg. 2013, 48, 145–153. [Google Scholar] [CrossRef]
- Gray, B.W.; El-Sabbagh, A.; Rojas-Pena, A.; Kim, A.C.; Gadepali, S.; Koch, K.L.; Capizzani, T.R.; Bartlet, R.H.; Mychaliska, G.B. Development of an artificial placenta IV: 24 hour venovenous extracorporeal life support in premature lambs. ASAIO J. 2012, 58, 148–154. [Google Scholar] [CrossRef]
- Bryner, B.; Gray, B.; Perkins, E.; Davis, R.; Hoffman, H.; Barks, J.; Owens, G.; Bocks, M.; Rojas-Peña, A.; Hirschl, R.; et al. An extracorporeal artificial placenta supports extremely premature lambs for 1 week. J. Pediatr. Surg. 2015, 50, 44–49. [Google Scholar] [CrossRef]
- Church, J.T.; McLeod, J.S.; Perkins, E.M.; Bartlett, R.H.; Mychaliska, G.B. The Artificial Placenta Rescues Premature Lambs from Ventilatory Failure. J. Am. Coll. Surg. 2017, 225, S157–S158. [Google Scholar] [CrossRef]
- El-Sabbagh, A.M.; Gray, B.W.; Shaffer, A.W.; Bryner, B.S.; Church, J.T.; McLeod, J.S.; Zakem, S.; Perkins, E.M.; Shellhaas, R.A.; Barks, J.D.E.; et al. Cerebral oxygenation of premature lambs supported by an artificial placenta. ASAIO J. 2018, 64, 552–556. [Google Scholar] [CrossRef]
- Church, J.T.; Werner, N.L.; Coughlin, M.A.; Menzel-Smith, J.; Najjar, M.; Carr, B.D.; Parmar, H.; Neil, J.; Alexopoulos, D.; Perez-Torres, C.; et al. Effects of an artificial placenta on brain development and injury in premature lambs. J. Pediatr. Surg. 2018, 53, 1234–1239. [Google Scholar] [CrossRef]
- McLeod, J.S.; Church, J.T.; Yerramilli, P.; Coughlin, M.A.; Perkins, E.M.; Rabah, R.; Bartlett, R.H.; Rojas-Pena, A.; Greenson, J.K.; Perrone, E.E.; et al. Gastrointestinal mucosal development and injury in premature lambs supported by the artificial placenta. J. Pediatr. Surg. 2018, 53, 1240–1245. [Google Scholar] [CrossRef]
- Coughlin, M.A.; Werner, N.L.; Church, J.T.; Perkins, E.M.; Bryner, B.S.; Barks, J.D.; Bentley, J.K.; Hershenson, M.B.; Rabah, R.; Bartlett, R.H.; et al. An Artificial Placenta Protects against Lung Injury and Promotes Continued Lung Development in Extremely Premature Lambs. ASAIO J. 2019, 65, 690–697. [Google Scholar] [CrossRef]
- McLeod, J.S.; Church, J.T.; Coughlin, M.A.; Carr, B.; Poling, C.; Sarosi, E.; Perkins, E.M.; Quinones, M.C.; Hala, P.; Rabah, R.; et al. Splenic development and injury in premature lambs supported by the artificial placenta. J. Pediatr. Surg. 2019, 54, 1147–1152. [Google Scholar] [CrossRef]
- Church, J.T.; Coughlin, M.A.; Perkins, E.M.; Hoffman, H.R.; Barks, J.D.; Rabah, R.; Bentley, J.K.; Hershenson, M.B.; Bartlett, R.H.; Mychaliska, G.B. The artificial placenta: Continued lung development during extracorporeal support in a preterm lamb model. J. Pediatr. Surg. 2018, 53, 1896–1903. [Google Scholar] [CrossRef]
- Reoma, J.L.; Rojas, A.; Kim, A.C.; Khouri, J.S.; Boothman, E.; Brown, K.; Grotberg, J.; Cook, K.E.; Bartlett, R.H.; Hirschl, R.B.; et al. Development of an artificial placenta I: Pumpless arterio-venous extracorporeal life support in a neonatal sheep model. J. Pediatr. Surg. 2009, 44, 53–59. [Google Scholar] [CrossRef]
- Usuda, H.; Watanabe, S.; Miura, Y.; Saito, M.; Musk, G.C.; Rittenschober-Bohm, J.; Ikeda, H.; Sato, S.; Hanita, T.; Matsuda, T.; et al. Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week. Am. J. Obs. Gynecol. 2017, 217, 457.e1–457.e13. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Matsuda, T.; Funakubo, A.; Watanabe, S.; Kitanishi, R.; Saito, M.; Hanita, T. Novel modification of an artificial placenta: Pumpless arteriovenous extracorporeal life support in a premature lamb model. Pediatr. Res. 2012, 72, 490–494. [Google Scholar] [CrossRef]
- Miura, Y.; Saito, M.; Usuda, H.; Woodward, E.; Rittenschober-Böhm, J.; Kannan, P.S.; Musk, G.C.; Matsuda, T.; Newnham, J.P.; Kemp, M.W. Ex-Vivo Uterine Environment (EVE) Therapy Induced Limited Fetal Inflammation in a Premature Lamb Model. PLoS ONE 2015, 10, e0140701. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Matsuda, T.; Usuda, H.; Watanabe, S.; Kitanishi, R.; Saito, M.; Hanita, T.; Kobayashi, Y. A Parallelized Pumpless Artificial Placenta System Significantly Prolonged Survival Time in a Preterm Lamb Model. Artif. Organs 2016, 40, E61–E68. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Usuda, H.; Watanabe, S.; Woodward, E.; Saito, M.; Musk, G.C.; Kallapur, S.G.; Sato, S.; Kitanishi, R.; Matsuda, T.; et al. Stable Control of Physiological Parameters, But Not Infection, in Preterm Lambs Maintained on Ex Vivo Uterine Environment Therapy. Artif. Organs 2017, 41, 959–968. [Google Scholar] [CrossRef]
- Usuda, H.; Watanabe, S.; Saito, M.; Sato, S.; Musk, G.C.; Fee, M.E.; Carter, S.; Kumagai, Y.; Takahashi, T.; Kawamura, M.S.; et al. Successful use of an artificial placenta to support extremely preterm ovine fetuses at the border of viability. Am. J. Obstet. Gynecol. 2019, 221, 69.e1–69.e17. [Google Scholar] [CrossRef]
- Usuda, H.; Watanabe, S.; Saito, M.; Ikeda, H.; Koshinami, S.; Sato, S.; Musk, G.C.; Fee, E.; Carter, S.; Kumagai, Y.; et al. Successful use of an artificial placenta-based life support system to treat extremely preterm ovine fetuses compromised by intrauterine inflammation. Am. J. Obs. Gynecol. 2020, 223, 755.e1–755.e20. [Google Scholar] [CrossRef] [PubMed]
- Usuda, H.; Ikeda, H.; Watanabe, S.; Sato, S.; Fee, E.L.; Carter, S.W.D.; Kumagai, Y.; Saito, Y.; Takahashi, T.; Takahashi, Y.; et al. Artificial placenta support of extremely preterm ovine fetuses at the border of viability for up to 336 hours with maintenance of systemic circulation but reduced somatic and organ growth. Front. Physiol. 2023, 14, 1219185. [Google Scholar] [CrossRef]
- Partridge, E.A.; Davey, M.G.; Hornick, M.A.; McGovern, P.E.; Mejaddam, A.Y.; Vrecenak, J.D.; Mesas-Burgos, C.; Olive, A.; Caskey, R.C.; Weiland, T.R.; et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat. Commun. 2017, 8, 15112. [Google Scholar] [CrossRef]
- Hornick, M.A.; Davey, M.G.; Partridge, E.A.; Mejaddam, A.Y.; McGovern, P.E.; Olive, A.M.; Hwang, G.; Kim, J.; Castillo, O.; Young, K.; et al. Umbilical cannulation optimizes circuit flows in premature lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND). J. Physiol. 2018, 596, 1575–1585. [Google Scholar] [CrossRef]
- Rossidis, A.C.; Baumgarten, H.D.; Lawrence, K.M.; McGovern, P.E.; Mejaddam, A.Y.; Li, H.; Hwang, G.; Young, K.; Peranteau, W.H.; Davey, M.G.; et al. Chronically Hypoxic Fetal Lambs Supported by an Extra-Uterine Device Exhibit Mitochondrial Dysfunction and Elevations of Hypoxia Inducible Factor 1-Alpha. Fetal Diagn. Ther. 2018, 45, 176–183. [Google Scholar] [CrossRef]
- Lawrence, K.M.; Hennessy-Strahs, S.; McGovern, P.E.; Mejaddam, A.Y.; Rossidis, A.C.; Baumgarten, H.D.; Bansal, E.; Villeda, M.; Han, J.; Gou, Z.; et al. Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model. JCI Insight 2018, 3, e124338. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, K.M.; McGovern, P.E.; Mejaddam, A.; Rossidis, A.C.; Baumgarten, H.; Kim, A.G.; Grinspan, J.B.; Licht, D.J.; Vossough, A.; Radaelli, E.; et al. Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep. Circulation 2018, 138, 1982–1991. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.E.; Lawrence, K.; Baumgarten, H.; Rossidis, A.; Mejaddam, A.; Licht, D.J.; Grinspan, J.; Schupper, A.; Rychik, J.; Didier, R.A.; et al. Ex-Utero Extracorporeal Support as a Model for Fetal Hypoxia and Brain Dysmaturity. Ann. Thorac. Surg. 2020, 109, 810–819. [Google Scholar] [CrossRef]
- Hornick, M.A.; Mejaddam, A.Y.; McGovern, P.E.; Hwang, G.; Han, J.; Peranteau, W.H.; Partridge, E.A.; Davey, M.G.; Flake, A.W. Technical feasibility of umbilical cannulation in midgestation lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND). Artif. Organs 2019, 43, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Mejaddam, A.Y.; Hornick, M.A.; McGovern, P.E.; Baumgarten, H.D.; Lawrence, K.M.; Rossidis, A.C.; Hwang, G.; Young, K.; Abdulmalik, O.; Partridge, E.A.; et al. Erythropoietin Prevents Anemia and Transfusions in Extremely Premature Lambs Supported by an EXTrauterine Environment for Neonatal Development (EXTEND). Fetal Diagn. Ther. 2019, 46, 231–237. [Google Scholar] [CrossRef]
- Rossidis, A.C.; Angelin, A.; Lawrence, K.M.; Baumgarten, H.D.; Kim, A.G.; Mejaddam, A.Y.; Coons, B.E.; Hartman, H.A.; Hwang, G.; Monos, S.; et al. Premature Lambs Exhibit Normal Mitochondrial Respiration after Long-Term Extrauterine Support. Fetal Diagn. Ther. 2019, 46, 306–312. [Google Scholar] [CrossRef]
- Ozawa, K.; Davey, M.G.; Tian, Z.; Hornick, M.A.; Mejaddam, A.Y.; McGovern, P.E.; Flake, A.W.; Rychik, J. Fetal echocardiographic assessment of the cardiovascular impact of prolonged support in the EXTrauterine Environment for Neonatal Development (EXTEND) system. Ultrasound Obs. Gynecol. 2019, 55, 516–522. [Google Scholar] [CrossRef]
- McGovern, P.E.; Hornick, M.A.; Mejaddam, A.Y.; Lawrence, K.; Schupper, A.J.; Rossidis, A.C.; Baumgarten, H.; Vossough, A.; Didier, R.A.; Kim, A.; et al. Neurologic outcomes of the premature lamb in an extrauterine environment for neonatal development. J. Pediatr. Surg. 2020, 55, 2115–2123. [Google Scholar] [CrossRef]
- De Bie, F.R.; Russo, F.M.; Van Brantegem, P.; Coons, B.E.; Moon, J.K.; Yang, Z.; Pang, C.; Senra, J.C.; Omann, C.; Annaert, P.; et al. Pharmacokinetics and pharmacodynamics of sildenafil in fetal lambs on extracorporeal support. Biomed. Pharmacother. 2021, 143, 112161. [Google Scholar] [CrossRef]
- Nieuwburgh, M.P.d.; Dave, A.; Khan, S.A.; Ngo, M.; Hayes, K.B.; Slipenchuk, M.; Lieberman, E.; Youssef, M.R.; Crompton, D.; Choudhry, A.M.; et al. Assessment of extremely premature lambs supported by the Extrauterine Environment for Neonatal Development (EXTEND). Pediatr. Res. 2024, 96, 1616–1625. [Google Scholar]
- Cohen, J.L.; De Bie, F.; Viaene, A.N.; O’Grady, N.; Rentas, S.; Coons, B.; Moon, J.K.; Monson, E.E.; Myers, R.A.; Kalish, J.M.; et al. Extrauterine support of pre-term lambs achieves similar transcriptomic profiling to late pre-term lamb brains. Sci. Rep. 2024, 14, 28840. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Davey, M.G.; Young, K.; Tian, Z.; Kosaka, S.; Varela, M.F.; Flake, A.W.; Rychik, J. Experimental Impact of Increasing Circuit Resistance in the Artificial Womb. Prenat. Diagn. 2025, 45, 795–804. [Google Scholar] [CrossRef]
- Eixarch, E.; Illa, M.; Fucho, R.; Rezaei, K.; Hawkins-Villarreal, A.; Bobillo-Pérez, S.; Randanne, P.C.; Moran, M.; Chorda, M.; Sanchez-Martinez, S.; et al. An Artificial Placenta Experimental System in Sheep: Critical Issues for Successful Transition and Survival up to One Week. Biomedicines 2023, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Charest-Pekeski, A.J.; Sheta, A.; Taniguchi, L.; McVey, M.J.; Floh, A.; Sun, L.; Aujla, T.; Cho, S.K.S.; Ren, J.; Crawford-Lean, L.; et al. Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus. Physiol. Rep. 2021, 9, e14742. [Google Scholar] [CrossRef]
- Charest-Pekeski, A.J.; Cho, S.K.S.; Aujla, T.; Sun, L.; Floh, A.A.; McVey, M.J.; Sheta, A.; Estrada, M.; Crawford-Lean, L.; Foreman, C.; et al. Impact of the Addition of a Centrifugal Pump in a Preterm Miniature Pig Model of the Artificial Placenta. Front. Physiol. 2022, 13, 925772. [Google Scholar] [CrossRef] [PubMed]
- Kühle, H.; Cho, S.K.S.; Charest-Pekeski, A.J.; Chow, J.S.M.; Lee, F.T.; Aujla, T.; Saini, B.S.; Lim, J.M.; Darby, J.R.T.; Mroczek, D.; et al. Echocardiographic assessment of cardiovascular physiology of preterm miniature piglets supported with a pumped artificial placenta system. Prenat. Diagn. 2024, 44, 888–898. [Google Scholar] [CrossRef]
- Kosaka, S.; Wangmo, U.; Heffelfinger, M.; Weisman, H.R.; Varela, M.F.; Mosquera, M.S.; Patel, V.; Ngo, M.; White, R.S.; McGlone, B.; et al. Evaluation of an Oxygenator in the EXTra-Uterine Environment for Neonatal Development (EXTEND) System Without Systemic Anticoagulation. ASAIO J. 2025; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Tijsseling, D.; Wijnberger, L.D.; Derks, J.B.; van Velthoven, C.T.; de Vries, W.B.; van Bel, F.; Nikkels, P.G.; Visser, G.H. Effects of antenatal glucocorticoid therapy on hippocampal histology of preterm infants. PLoS ONE 2012, 7, e33369. [Google Scholar] [CrossRef]
- Carter, S.W.D.; Fee, E.L.; Usuda, H.; Oguz, G.; Ramasamy, A.; Amin, Z.; Agnihotri, B.; Wei, Q.; Xiawen, L.; Takahashi, T.; et al. Antenatal steroids elicited neurodegenerative-associated transcriptional changes in the hippocampus of preterm fetal sheep independent of lung maturation. BMC Med. 2024, 22, 338. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Ehrenkranz, R.A.; Halliday, H.L. Dexamethasone treatment in the first week of life for preventing bronchopulmonary dysplasia in preterm infants: A systematic review. Neonatology 2010, 98, 217–224. [Google Scholar] [CrossRef]
- Baud, O.; Maury, L.; Lebail, F.; Ramful, D.; El Moussawi, F.; Nicaise, C.; Zupan-Simunek, V.; Coursol, A.; Beuchée, A.; Bolot, P.; et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016, 387, 1827–1836. [Google Scholar] [CrossRef]
- Kuwabara, Y.; Okai, T.; Imanishi, Y.; Muronosono, E.; Kozuma, S.; Takeda, S.; Baba, K.; Mizuno, M. Development of Extrauterine Fetal Incubation System Using Extracorporeal Membrane Oxygenator. Artif. Organs 1987, 11, 224–227. [Google Scholar] [CrossRef]
- Fallon, B.P.; Lautner-Csorba, O.; Major, T.C.; Lautner, G.; Harvey, S.L.; Langley, M.W.; Johnson, M.D.; Saveski, C.; Matusko, N.; Rabah, R.; et al. Extracorporeal life support without systemic anticoagulation: A nitric oxide-based non-thrombogenic circuit for the artificial placenta in an ovine model. Pediatr. Res. 2024, 95, 93–101. [Google Scholar] [CrossRef]
- Jelin, E.B.; Etemadi, M.; Encinas, J.; Schecter, S.C.; Chapin, C.; Wu, J.; Guevara-Gallardo, S.; Nijagal, A.; Gonzales, K.D.; Ferrier, W.T.; et al. Dynamic tracheal occlusion improves lung morphometrics and function in the fetal lamb model of congenital diaphragmatic hernia. J. Pediatr. Surg. 2011, 46, 1150–1157. [Google Scholar] [CrossRef]
- Khan, P.A.; Cloutier, M.; Piedboeuf, B. Tracheal occlusion: A review of obstructing fetal lungs to make them grow and mature. Am. J. Med. Genet. Part. C Semin. Med. Genet. 2007, 145C, 125–138. [Google Scholar] [CrossRef]
- Benachi, A.; Chailley-Heu, B.; Delezoide, A.L.; Dommergues, M.; Brunelle, F.; Dumez, Y.; Bourbon, J.R. Lung growth and maturation after tracheal occlusion in diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 1998, 157, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Lesko, S.M.; Mitchell, A.A.; Epstein, M.F.; Louik, C.; Giacoia, G.P.; Shapiro, S. Heparin use as a risk factor for intraventricular hemorrhage in low-birth-weight infants. N. Engl. J. Med. 1986, 314, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- De Bie, F.R.; Kim, S.D.; Bose, S.K.; Nathanson, P.; Partridge, E.A.; Flake, A.W.; Feudtner, C. Ethics Considerations Regarding Artificial Womb Technology for the Fetonate. Am. J. Bioeth. 2022, 23, 67–78. [Google Scholar] [CrossRef]
- Paul, J.; De Bie, F.R.; Johnston, H.; Antiel, R.M. Artificial womb technologies—Innovation at the edge of viability: Ethical considerations. J. Pediatr. Surg. 2025, 61, 162827. [Google Scholar] [CrossRef]
- De Bie, F.R.; Flake, A.W.; Feudtner, C. Life Support System for the Fetonate and the Ethics of Speculation. JAMA Pediatr. 2023, 177, 557–558. [Google Scholar] [CrossRef] [PubMed]
| Artificial Placenta Model | Artificial Womb Model | ||||
|---|---|---|---|---|---|
| Specifications | |||||
| Group | Ann Arbor, USA | Perth, Australia and Sendai, Japan | Philadelphia, USA | Barcelona, Spain | Toronto, Canada |
| Model name | VV preemie ECLS | Ex-Vivo uterine Environment (EVE) | EXTra-uterine Environment for Neonatal Development (EXTEND) | - | - |
| Year of first publication of the current model (references using the current model) | 2009 [67,68,69,70,71,72,73,74,75,76,77] | 2017 [78,79,80,81,82,83,84,85] § | 2017 [86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] | 2023 [101] | 2021 [102,103,104] |
| Species, GA at cannulation (range) | Lambs, 130–135 | Lambs, 95–115 | Lambs, 95–117 | Lambs, 110–115 | Piglets, 91–106 |
| Circuit configuration, pump | VV, roller pump | VA, pumpless | VA, pumpless | VA, pumpless | VA, centrifugal pump |
| Cannulation, cannula size | JV/UV (10–12 Fr) | UV/2 * UA (10/2 * 8 Fr) | UV/2 * UA (12/2 * 12 Fr) | UV/2 * UA (10–14 Fr) | UV/UA (2.1–3.3 mm) |
| Fluid incubation (volume) | No submersion; fluid-filled endotracheal tube | Sterile complete submersion (6 L) | Sterile complete submersion (2–4 L) | Semi-closed, complete submersion (10 L) | Sterile complete submersion (NS) |
| Prophylactic use of antimicrobials | Piperacillin-tazobactam, metronidazole, and fluconazole | Meropenem and fluconazole | No | Ceftazidime and meropenem; ultraviolet light sterilization | Piperacillin-tazobactam |
| Anticoagulation drug (ACT goal) | Heparin (200–250 s) | Heparin (180–220 s) | Heparin (150–180 s), no heparin [105] | Heparin (200–250 s) | Heparin (>300 s) |
| Corticosteroids (Yes/No, type) | Yes, methylprednisolone | Yes, hydrocortisone | No | Yes, hydrocortisone | Yes, hydrocortisone |
| Other medications | PGE1, erythropoietin, epinephrine (prn), norepinephrine (prn) and dopamine (prn), Diazepam (prn) and buprenorphine (prn). | Lipo-PGE1, Erythropoietin and Milrinone (first 24 h). | PGE1, Erythropoietin, insulin, buprenorphine (prn) and propofol (prn) | PGE1, pRBC | PGE1, papaverine, epinephrine (prn) |
| Max. reported survival (reference), successful transition off AWT | 17 days [75], no | 14 days [85], no | 28 days [86], yes [86] | 7 days [101], no | 2 days [103], no |
| Neurologic injury (IVH, WMI, hemorrhage, thrombosis) | Absent [72] | WMI present in 1/7 animals (basal ganglia) [83] | Absent [86,96] | Fetal hydrops [101] | Fetal hydrops [102,103,104] |
| Cerebral maturation | MRI—comparable gyrification index and myelination to control [72]; stable cerebral blood flow and intact CO2 reactivity [71] | Comparable brain weight to control, though hydrops and edema present [85] | Myelin density and brain weight comparable to in utero controls [86,96] | Not reported | Not reported |
| Histopathology | No findings of WMI or hemorrhage [72] | No upregulation of Iba-1 or oligo2-positive cells [83] | Normal Iba-1 and cerebral arteriolar diameter [96] | Not reported | Not reported |
| Transcriptomic analysis | Not reported | Not reported | Comparable to age-matched late-preterm controls | Not reported | Not reported |
| Neurodevelopmental outcomes | Not reported | Performed fetal swallowing, breathing, and gross body movements | Consolidation of sleep–wake cycles on circuit [86]; no gross neurologic deficits; playful, food searching, and responsive to stimuli [96] | Not reported | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
De Bie, F.R.; Zhang, C.J.; Rent, S.M.; Russ, J.B.; Ig-Izevbekhai, K.; Antiel, R.M. Artificial Womb Technology for Extremely Premature Neonates: Preclinical Neurodevelopmental Outcomes. Children 2026, 13, 47. https://doi.org/10.3390/children13010047
De Bie FR, Zhang CJ, Rent SM, Russ JB, Ig-Izevbekhai K, Antiel RM. Artificial Womb Technology for Extremely Premature Neonates: Preclinical Neurodevelopmental Outcomes. Children. 2026; 13(1):47. https://doi.org/10.3390/children13010047
Chicago/Turabian StyleDe Bie, Felix R., Chelsea J. Zhang, Sharla M. Rent, Jeffrey B. Russ, Kevin Ig-Izevbekhai, and Ryan M. Antiel. 2026. "Artificial Womb Technology for Extremely Premature Neonates: Preclinical Neurodevelopmental Outcomes" Children 13, no. 1: 47. https://doi.org/10.3390/children13010047
APA StyleDe Bie, F. R., Zhang, C. J., Rent, S. M., Russ, J. B., Ig-Izevbekhai, K., & Antiel, R. M. (2026). Artificial Womb Technology for Extremely Premature Neonates: Preclinical Neurodevelopmental Outcomes. Children, 13(1), 47. https://doi.org/10.3390/children13010047

