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Abstract: This comprehensive review examines the role of Neutrophil Extracellular Traps (NETs)
in pediatric surgery. Focusing on NET formation, functions, and implications, this study highlights
their dual impact in infection control and contribution to tissue damage after surgery. It covers the
role of NET formation in a range of pediatric conditions including immunothrombosis, formation of
peritoneal adhesions, appendicitis, burns, gallstones, tumors, and necrotizing enterocolitis (NEC).
The results underscore the significance of NETs in fighting infections and their association with
complications like sepsis and delayed wound healing. The breakdown products of NETs as a
diagnostic tool of the clinical course of acute appendicitis will also be discussed. Understanding NET
formation in the pathophysiology can potentially help to find new therapeutic approaches such as
the application of DNase and elastase inhibitors to change the clinical course of various diseases in
pediatric surgery such as improvement of wound healing, adhesion formation, NEC, and many more.

Keywords: extracellular traps; thromboinflammation; diabetes mellitus; tissue adhesions; wound
healing; appendicitis; necrotizing enterocolitis; burns; gallstones; tumor microenvironment

1. Introduction

Neutrophils, the most populous cellular components of the innate immune system,
perform critical surveillance functions in the bloodstream, in tissue, and on the external as
well as internal body surfaces. Their ability to patrol various compartments and to respond
to infectious agents underscores their importance in maintaining tissue homeostasis [1].
Initially, prevailing scientific understanding posited that the lifespan of non-activated neu-
trophils ranged between 1.5 to 8 h in both mice and humans [2]. However, contemporary
research has revealed a markedly extended and variable lifespan for these cells. They
display survival durations reaching up to 5.4 days, further amplified upon activation by
cytokines [2]. The latter significantly prolong the survival period of neutrophils at the site of
inflammation [2]. Neutrophils employ various mechanisms to combat invading pathogens,
including phagocytosis, the release of anti-microbial peptides, and the generation of reactive
oxygen species [3]. Takei et al. first described neutrophils to decondense their chromatin
content followed by rupture of the nuclear envelop and release of their chromatin into
the extracellular space after administration of phorbol myristate acetate (PMA) in vitro [4].
In 2004, this process has been assigned to as a neutrophil-mediated defense mechanism
against invading pathogens due to the anti-microbial nature of extracellular chromatin
and adherent enzymes and, therefore, named Neutrophil Extracellular Traps (NETs) by
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Brinkmann et al. [5]. Since then, many studies were performed to assess the mechanism
of NET formation and their role in health and disease. Besides their classical, beneficial
function, NETs have a dual nature and can be both beneficial and harmful in conditions of
disease [6]. This duality arises from dysregulation of homeostatic processes, involving un-
regulated release or delayed clearance of NETs [7]. Summarized by Knopf et al., NETs have
been identified to be crucial in many pathologic conditions such as (auto-)immunity, sepsis,
thrombosis, wound healing, pancreatitis, lithopathies and malignancy, all of which are also
relevant to pediatric surgical patients [6–12]. To understand the implications of NETs in
surgery, it is essential to recap the process of NET formation. Various stimuli have been
identified to induce NET formation. These include components from both Gram-positive
and Gram-negative bacteria, fungi, protozoa, and their respective products [5,13,14]. Ad-
ditionally, alterations in the microenvironment, such as bicarbonate concentration and
alkalosis, have been implicated in the promotion of NET release [15]. Conversely, hypoxia
inhibits NET formation by the hyperexpression of HIF-1α [16]. Interleukins, particularly IL-
6 and IL-8, are also recognized as NET inducers [17,18]. Receptors on the plasma membrane
such as toll-like receptor 2 and 4, Fc-receptors, and complement receptors initiate signaling
cascades that lead to the activation of protein-arginine deaminase type 4 (PAD4) [19]. PAD4
activity results in citrullination of a plethora of target proteins and is key for chromatin
decondensation, which is followed by ruptures of the granula, nuclear envelope, and
eventually, the plasma membrane [20]. Consequently, neutrophils release decondensed
DNA into the extracellular space as NETs [4,5]. The latter primarily consist of chromatin
and histones aligned in a web-like structure decorated with numerous granula-derived
enzymes, including neutrophil elastase, myeloperoxidase, and cathepsin G and many more.
These enzymes display anti-microbial and cytotoxic activities [5,21,22]. Accumulating
NETs form aggregates (aggNETs), which entrap and kill bacteria [23]. However, being
decorated with a high concentration of proteolytic enzymes, they also limit inflammation
and tissue damage, thereby restoring homeostasis [24,25]. Dysregulation of NET formation
can result in disease being relevant to pediatric surgery (Figure 1).
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Figure 1. Schematic overview of NETs in various diseases. Neutrophils invade the site of inflamma-
tion and are activated. Activated neutrophils can perform NET formation. Dysregulation of NET
homeostasis can lead to various diseases relevant to pediatric surgery.
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2. Perioperative Infections

Neutrophils exposed to pathogenic bacteria, such as Staphylococcus aureus and
Shigella spp, release NETs [5]. These directly interact with the bacteria and reduce their
virulence factors in laboratory settings [5]. The mechanism is as follows: Tissue-invading
activated neutrophils are triggered by bacterial virulence factors to release NETs [5]. NETs
ensnare invading pathogens and kill them using their active antimicrobial components,
which increases inflammation [5]. The importance of NETs was shown in experimental
settings, as targeting NETs with monoclonal antibodies abrogated the killing of Staphylo-
coccus aureus [26,27]. In high concentrations, NETs can accumulate and form aggregated
NETs (aggNETs). These web-like structures have the ability to physically entrap invading
pathogens. Due to the high concentration of anti-microbial compounds and the assis-
tance of other immune cells and complement, invading pathogens are controlled and
eventually killed. In vitro models where neutrophils were deprived of PAD4, an essential
enzyme for chromatin decondensation, or where NETs were broken down by DNases, have
demonstrated that in certain settings NET formation is required for bacterial killing by
neutrophils [28]. While NETs play a beneficial role in the initial bacterial defense, emerging
studies have shed light on a dual aspect of NET function in severe polymicrobial sepsis [21].
In a murine abdominal sepsis model, the administration of DNase has resulted in increased
systemic dissemination of microbes [29]. Furthermore, in a further murine sepsis model,
infant mice had more severe sepsis and higher levels of NETs compared to adult con-
trols [30]. Interestingly, some bacteria may be able to evade clearance when being trapped
within NET and it appears that the application of DNAse-1 improves the effectiveness
of antibiotics in a murine sepsis with improved survival of mice compared to DNAse
treatment alone [31,32]. Moreover, excessive NET formation has been linked to collateral
damage in vital organs such as the liver, lungs, and kidneys during severe sepsis due to
cytotoxic activity of histones, hypercoagulability, and by immunothrombosis [21,33,34].
While NETs contribute the prevention of the spread of bacterial infections, dysregulated
NET formation in severe postoperative polymicrobial sepsis can precipitate life-threatening
coagulopathies and proteolytic damage of the extracellular matrix.

3. Immunothrombosis

The term “immunothrombosis” has been coined to emphasize the link between innate
immunity, coagulation, and thrombus formation [35]. This phenomenon has evolved as a
defense mechanism, aiming to physically confine infectious agents within occluded blood
vessels. This limits pathogen dissemination via circulation and constrains inflammatory
responses [33]. However, in several pathological conditions, including sepsis-associated co-
agulopathy [9], necroinflammation [36], severe COVID-19 [37,38], and ischemia-reperfusion
injury, an exaggerated form of immunothrombosis exacerbates the disease [39]. Beyond
the role of NETs in physically trapping microbes, immunothrombosis serves hemostatic
functions during mucosal damage, such as in acute exacerbations of ulcerative colitis [40].
Neutrophils and components of NETs interact with platelets, serine proteases in the co-
agulation cascade, components involved in fibrinolysis, and the fibrin mesh itself. These
interactions occur through membrane-bound receptors, released effector proteins, chro-
matin present within NETs and extracellular vesicles [41]. Also, activated platelets can
stimulate neutrophils to release NETs, while platelets can also bind to and aggregate on
extracellular chromatin [9]. Thus, aggNETs serve as a framework for thrombogenesis,
leading to obstructions of vessels and ducts [10,42]. PAD4 has been identified as key player
linking inflammation and thrombosis. In vivo experiments showed that the injection of
human PAD4 stimulated the production of von Willebrand factor (vWF) complexed with
platelets in mesenteric venules. These complexes, typically degraded by ADAMTS13,
become resistant when ADAMTS13 undergoes citrullination. This post-transcriptional
modification significantly reduced its enzymatic activity [43]. Citrullination, e.g., by PAD4,
also inhibits the anti-coagulative anti-thrombin, C1INH, 1-anti-plasmin, and PAI1/PAI2.
This canceled the inhibition of the serine proteases thrombin, plasmin, and tissue plasmino-
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gen activator within the thrombo-inflammatory microenvironment [44,45]. PAD4-mediated
thrombin activation has the ability to further modify thrombi and their growth via FXIII-
mediated cross-linking [40]. Thombosis of the microvascular coupled with endothelial
dysfunction induced by NETs, reduced capillary blood flow, contributed to multi-organ
failure, and increased mortality [46,47]. Consequently, aggNETs drive the pathogenesis of
various pathologies, such as the occlusions of pulmonary blood vessels observed in patients
with COVID-19, coronary vessels during acute myocardial infarction, the development of
atherosclerosis, and cerebral vessels in ischemic stroke [37,48–50]. Due to tissue trauma,
increased levels of NETs are peri- and postoperatively released into the blood stream. The
latter was associated with higher rates of postoperative thrombosis [33,35,41,51]

4. Wound Healing

Wound healing is a crucial process in the postoperative period, but it can be fraught
with complications leading to significant morbidity and mortality, as well as a tremendous
health care expenses with estimated costs of more than USD 3 billion per year in the US [52].
As a first reaction to trauma, the innate immune system orchestrates wound healing by the
exhibition of pro- and anti-inflammatory properties [53]. Neutrophils are the first immune
cells to migrate to the wound site, constituting the predominant cellular component during
the skin’s reparative process [54,55]. Their primary function is to phagocytose and eliminate
invading pathogens and cell debris [3]. In murine experiments, mice depleted of neutrophils
under sterile conditions displayed an unexpected outcome: the absence of neutrophils
led to expedited epidermal wound closure [56]. This phenomenon extends to diabetic
mice with neutropenia, as they exhibited remarkable rates of wound closure in comparison
to their non-neutropenic counterparts [18]. However, NETs have a dual role in wound
healing. On the one hand, NETs beneficially combat invading pathogens, prevent their
dissemination, and resolve inflammation, thereby limiting infection as an important risk
factor [57]. On the other hand, Wong et al. demonstrated a predisposition of neutrophils in
diabetic mice to form NETs, with wounds exhibiting significantly higher levels of NETs in
comparison to those in non-diabetic mice [17,57]. This increase in NETs was found to be
dependent on PAD4 and leads to elevated extracellular levels of NET-bound histones at
the wound site [57]. Intriguingly, the digestion of NETs utilizing DNase1 resulted in better
wound healing in both diabetic and non-diabetic mice. This indicates a significant role of
NETs in impeding the wound healing process [57]. PAD4-knockout mice not only displayed
accelerated wound healing, but also demonstrated faster re-epithelialization compared to
controls [57]. Moreover, PAD4-knockout mice with diabetes had no impairment in wound
healing. These compelling findings were further corroborated by a study on diabetic ulcers
in humans, which revealed overexpression of NET components, specifically extracellular
DNA (ecDNA), histones, and neutrophil elastase levels in non-healing diabetic wounds.
Heuer et al. assessed primary and secondary wound healing after surgical laparotomy and
burn wounds in a murine model with wildtype, PAD4-knockout, and DNAse-knockout
mice. They observed that DNase1 improved collagen I and III deposition in the process of
scar formation in mice after laparotomy. After thermal injury, the times of wound closure
were shorter after DNase1 treatment as well as in PAD4-knockout mice [57]. The results of
former experimental work suggest that these molecules and the process of NET formation
represent pivotal therapeutic targets for enhancing wound healing across a spectrum of
clinical scenarios.

5. Peritoneal Adhesions

Peritoneal adhesions occur in 54% of patients following abdominal surgeries [58].
Five years after open abdominal surgery (excluding appendectomies), 5.3% of child pa-
tients were readmitted because of adhesion-related symptoms, with the highest risk of
readmission after the formation or closure of ileostomy, at 25% [59]. They are the leading
cause for late complications such as intestinal obstruction [60,61]. Additionally, adhesions
might lead to unspecific chronic abdominal pain, fertility issues and are a risk factor for
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collateral damage to other organs in relaparotomy with adhesiolysis (6%). They display a
major effect on the quality of life and an enormous burden to health care systems [60,62,63].
Adhesion formation is a vital aspect of peritoneal healing and encompasses processes
such as hemostasis, angiogenesis, and tissue remodeling [64]. In this context, inflamma-
tion orchestrated by the innate immune system, particularly through the recruitment of
neutrophils, plays a pivotal role in adhesiogenesis [52]. A recent study has unveiled the
presence of fibrin–NET complexes within both murine and human adhesions, with an
example displayed in Figure 2 [64]. Intraperitoneal ecDNA was observed to peak 72 h after
induction of the adhesions. Intriguingly, the use of DNases to degrade ecDNA effectively
prevented the formation of adhesions induced by laparotomy in a murine model [64].
Additionally, PAD4-knockout mice exhibited reduced adhesion formation [64]. Conversely,
the DNase1-knockout mice developed substantially more collagen deposits I and III com-
pared to wildtype mice. These findings suggest that NETs serve as the initial scaffold, and
fibrin and later collagen attachment functions to stabilize the primary structure, ultimately
leading to the development of mechanically robust adhesions [64]. However, the trigger
for adhesion formation is still elusive and needs further investigation.
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Figure 2. Immune fluorescence image of a transection of small intestine after acute perforation with
neutrophil extracellular traps (NETs) forming peritoneal adhesions attached to the outer surface of
the gut. Left: An overlay image shows the co-localization of neutrophil elastase (NE, green) and DNA
(DAPI, red), indicating the presence of NETs on the peritoneal and mesenchymal layers of the small
intestine. Interestingly, vascular occlusions in submucosal and subserosal layers of the small intestine
could be identified by native endogenous fluorescence (NEF) due to NEF properties of hemoglobin.
Note the NEF signal being colocalized with NE, suggesting that vascular occlusions in the small
intestine re-associated with substantial NET release in small blood vessels. Right: The secondary
fluorescent-conjugated antibody binds specifically to the antibody against NE and shows almost
no unspecific binding to human antigens compared to staining without primary antibody (wo1st).
Figure created by M. Herrmann.

6. Acute Appendicitis

Acute appendicitis (AA), the acute inflammation of vermiform appendix, is the most
common atraumatic abdominal surgery emergency in children older than 2 years of age,
with a lifetime risk of 6.7–8.6% in women and men, respectively [65,66]. AA peak incidence
is in early adolescence between 10 and 19 years of age [67]. Although AA is the most
common cause for emergency surgery in children, its underlying pathophysiology remains
poorly understood [68]. The concept of three distinct forms of appendicitis, each with its
own pathophysiological basis, has been proposed, largely based on studies from adults.
The first type is thought to result from the obstruction of the appendicular lumen by fecol-
iths/appendicoliths [68,69]. The second type is caused by viral infections as summarized
by Soltani et al. [70]. Both entities share mucosal ulcerations and subsequent secondary
bacterial invasion with acute inflammatory responses. These include the infiltration of
neutrophils into mucosal and submucosal layers [71]. The depth of neutrophil infiltration
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correlates with advanced stages of the disease [69]. Indeed, meta-analysis of histopatholog-
ical studies showed a high neutrophil–lymphocyte ratio to be predictive for the presence
and clinical stage of AA [72]. Interestingly, the third and rarest type of “neurogenic ap-
pendicitis” does not show significant neutrophil infiltration [73]. Clinically, conservative
treatment of non-complicated appendicitis has been proposed in recent years. However,
the identification of patients with non-complicated AA is still challenging. As CT scans
involve radiation and are generally avoided for pediatric diagnostics [74], the prediction
of complicated AA typically relies on patient history, clinical findings, laboratory values
such as WBC count, granulocyte count, CRP concentration, and ultrasound [75,76]. Many
efforts have been made to find new biomarkers to help differentiate between complicated
and uncomplicated appendicitis [77]. In nearly all cases of acute appendicitis, infiltrating
neutrophils release NETs [5]. In a pilot study of a murine model of AA and children, the
author observed that the number of NETs in tissue correlated with the severity of the
disease [78]. The breakdown products of NETs such as DNA-NE-, DNA-MPO-complexes,
cell-free DNA and citrullinated Histone (citH3) were increased in AA and correlated with
tissue concentrations of NETs and the severity of the disease [78]. A large study involving
198 children with 133 with histological AA confirmed these results and identified citH3 and
cell-free DNA as reliable predictors for AA [79]. DNA-Myeloperoxidase (MPO) complexes
and citH3 excel as diagnostic markers for complicated AA. This provided valuable insights
into outcomes such as duration of hospitalization, wound infections, abscess formation,
and the overall rates of complication. It outperformed common markers such as leucocyte
count and CRP [79]. Even though NETs are observed in most, if not all cases of AA, their
exact role in the pathophysiology is still elusive.

7. Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is associated with high mortality and morbidity in
preterm infants. The exact mechanisms behind NEC are still elusive. Research suggests
key factors in its development: prematurity and formula feeding [80,81]. In premature
infants, the underdeveloped mucosal barrier combined with increased toll-like receptor
4 levels in the gut lining led to a hyper-reactive gastrointestinal response, a surge in
inflammatory cytokines and chemokines, augmented leukocyte migration, destruction of
intestinal epithelial cells, compromised gut barrier function, and the abnormal movement
of bacteria from the gut lumen into surrounding tissues [82–85]. The role of NETs in NEC
has recently been reviewed by Klinke et al. [86]. NETs were found in various tissues, as well
as in the patients’ sera, stool samples of infants, as well as mice afflicted by NEC [87–89].
McQueen et al. unveiled a link between calprotectin, an enzyme from neutrophil granula,
and NETs in the intestinal tissues of infants with NEC. This suggests calprotectin release
due to activated neutrophils and NET formation in the intestinal tissue [90]. Premature
infants with NEC and consecutive bacteremia with signs of organ dysfunction showed
elevated levels of cell-free DNA, an indicator denoting the presence of circulating NET
degradation products, when compared to control subjects [88]. Similarly, heightened levels
of nucleosomes, another marker of NET release, were detected in the blood of newborns
with NEC stage II and beyond, compared to controls matched by gestational age [88].
In a murine model that employs intermittent hypoxia, lipopolysaccharides, and formula
feeding, serum markers of neutrophil activation and NET release as well as NETs in
histomorphometry correlated with severity and mortality of NEC [88]. Pharmacological
inhibition of PAD4 with Cl-amidine downregulated the release of NETs and reduced
NEC-related tissue damage, inflammation, and mortality. These results align with recent
investigations indicating that the degradation of NETs by recombinant DNase1 considerably
reduced intestinal inflammation [91]. Also, the inhibition of NET formation by gasdermin
D polymerization using disulfiram improved organ function and survival in sepsis [92].
In summary, previous data suggest NETs are crucial for innate defense, particularly in the
early clearance of bacteria and bacterial products in NEC. It is still elusive whether there is
a causal relationship between NEC and NETs.
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8. Burns

The immediate physiological responses following burn injuries are intricate and involve
a series of overlapping phases of wound healing. These include hemostasis, inflammation,
proliferation, and remodeling [93]. NETs prolonged the inflammatory phase, and activated
neutrophils persist for months in burn patients following thermal injuries [57,94]. In an
experimental model, Elrod et al. exposed mice to hot water. This elicited a systemic response
targeting the structural integrity of dermal collagen fibers and initiated the process of burn
healing [95]. In this experiment, neutrophils infiltrated the interstitial space between dermal
white adipose tissue and the panniculus carnosus with consecutive apoptosis of the surround-
ing tissue. The systemic responses with the release of cytokines and chemokines resulted in a
substantial upregulation of markers indicative of neutrophil activation and the formation of
NETs. It was evident in plasma, wounds, and various organs, including lung and liver. In this
study, activated neutrophils and NETs have been identified as causative factor for the distant
damage to liver and lung tissue 24 h after burn injury. This is putatively due to oxidative
stress and/or immunothrombosis. After thermal injury, DNase1L3, was detected in wound,
liver, and lung samples. This enzyme acts as a regulator of NET metabolism [95]. In summary,
dysregulation of NETs due to massive tissue damage may cause the systemic reaction and
end organ damage after burn injury. NETs are, therefore, potential therapeutic targets for the
treatment of severe burns.

9. Biliary Atresia

Biliary atresia (BA) represents a severe fibro-inflammatory disease marked by the
obstruction of extrahepatic and intrahepatic bile ducts in neonates, posing a potentially
lethal outcome if not addressed promptly [96]. As the leading cause of pediatric liver
transplantation globally, the quest for novel therapeutic strategies to obviate the necessity
for surgical intervention remains challenged by the disease’s intricacy and the current gaps
in comprehending its pathogenesis [96]. Neutrophil accumulation has been documented in
the vicinity of bile ducts in patients with BA [97]. For further studies, the sole established
model of BA to study innate immunity, employing an infection with Rhesus Rotavirus
Type A in newborn BALB/c mice, has facilitated the elucidation of crucial cellular and
molecular mechanisms underpinning epithelial damage and ductal obstruction [98,99].
Using this model, Zhang et al. demonstrated that depleting neonatal Gr-1+ cells averts
the onset of BA in a murine disease model [100]. In a consecutive study, they identified
functionally activated neutrophils, called CD177 + cells, being the main population of
Gr-1+ cells in murine liver with biliary atresia. Additionally, those cells were found to
express interferon-stimulated and neutrophil degranulation genes [101]. Interestingly,
CD177-knockout mice experienced a delayed onset of BA with reduced morbidity and
mortality, respectively. Following experiments on CD177+ cells in cell cultures, increased
apoptosis of biliary epithelial cells was recognized due to high levels ROS and NETs.
Furthermore, N-acetylcysteine reduced CD177+ cells and ROS levels in a clinical pilot
study, thus highlighting the potential therapeutic benefits of NET-directed therapies [101].

10. Traumatic Injuries

Traumatic events lead to the release of damage-associated molecular patterns (DAMPs)
which leads to a systemic inflammatory response characterized by the activation of the
innate immune system. In many traumatic conditions, NETs have been recognized within
the sterile inflammatory milieu following injury. Decorated with proinflammatory enzymes
such as MPO, NE, and MMP-9 and with cytotoxic histones, NETs contribute to tissue
damage and inflammation [12]. After orthopedic traumatic injury, NET biomarkers are
increased in peripheral blood compared to in patients who received elective hip replace-
ment [102]. Patients who received DNase treatment after major trauma had reduced NET
biomarkers in peripheral blood [103,104].

A special condition is traumatic injury of the spinal cord, which is a serious condition
with high impact to the individual and leads to high costs for the health care system. The
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pathophysiology of traumatic spinal cord injuries is sequenced into two phases: (1) primary
tissue injuries occur due to mechanical stress, which disintegrates neurons from axons,
glia cells, and the blood–brain barrier. Attracted by chemotaxis, activated neutrophils
infiltrate the site of injury, release NETs, and thereby increase inflammation and initial
tissue damage due to their cytotoxic compounds [105]. (2) Secondary injuries develop
after additional vascular damage and edema formation [106]. In a murine model of spinal
cord injury, pharmacological inhibition of phosphodiesterase 4 (PDE4) led to decreased
neutrophil infiltration and reduced MPO concentration at the site of injury, resulting in
less apoptosis due to ROS release and better locomotor outcome in mice [107,108]. In
another study on mice, NET formation was associated with cerebral hypoperfusion and
tissue hypoxia [109]. Additionally, intravenous DNase1 treatment of rats reduced pro-
inflammatory cytokine concentrations in peripheral blood and reduced neuroinflammation,
edema, and fibrosis [105]. In mice with traumatic brain injury, DNaseI stabilized the blood–
brain barrier, reduced brain edema, and secondary brain injury [110]. Despite the insights
gained from murine models, the role of NETs in the pathophysiology of traumatic injuries
remains unclear, warranting increased attention in future research endeavors.

11. Gallstones

Even though gallstones are more prevalent in adults with hyperalimentation, they
are also associated with conditions such as hemolytic anemia, congenital biliary diseases,
leukemias, short bowel syndrome, and exposure to total parenteral nutrition or antibiotics
in children [111,112]. Gallstones exhibit geographical variations in type, with cholesterol
stones being predominant in Western countries [113]. A common factor in the formation
of all types of gallstones is the crystallization and precipitation within the gallbladder as
calcium and cholesterol salts [114]. NETs have been shown to facilitate the aggregation
of calcium and cholesterol crystals, thus contributing to the assembly of gallstones [115].
Neutrophils continually survey the body in homeostasis, allowing them to access the bile
ducts [99]. During inflammatory responses, fully activated neutrophils tend to accumulate
in the liver, allowing them access to the bile ducts [98]. The process of NET aggregation
reportedly orchestrates the compact packing of uric acid crystals during the formation of
gouty tophi [23,116,117]. A similar mechanism may work during gallstone formation. Here,
ecDNA released by neutrophils facilitates the clustering of calcium and cholesterol crystals.
Inhibition of NET formation in Ncf1** mice or reduced chromatin decondensation in PAD4-
knockout mice reduced the prevalence and size of gallstones induced by a lithogenic
diet [11]. PADI4 inhibitor or metoprolol, a selective β1-adrenergic receptor antagonist
known to dampen neutrophil activity, also reduced the growth of gallstones [11]. Gallstones
display high neutrophil elastase activity on their surfaces and are covered by abundant
extracellular chromatin. This suggests that early stones induce recruitment of further
neutrophils and NET formation on their surfaces. In addition, chemo-attractive factors,
like complement cleavage products, can be activated by cholesterol crystals and enhance
neutrophil influx. This perpetuates the growth of the gallstone, accompanied by the
continued packaging and stabilization of layers of calcium and cholesterol crystals. Other
triggers that mobilize neutrophils to enter the biliary ducts, such as ascending bacterial
infections, may further aggravate the growth of gallstones. Thus, NETs seem to be the
driving factor of gallstone growth. However, not all stone entities have been tested yet.

12. Tumors

While cancers like Wilms tumor and leukemias occur in children, the prevalence of
tumors is generally higher in adults. As such, our understanding of immune responses to
tumors in pediatric populations may be enhanced by first examining insights gained from
adult tumor studies. This approach involves translating knowledge of tumor immunology
from adults to better understand and address pediatric cancers. Increased prevalence
of NETs in tumors is associated with a poorer prognosis among cancer patients. This is
reflected by higher histopathological tumor grades, higher rate of disease progression and
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metastasis, and reduced disease-free and cancer-related survival across various cancer
types [118–121]. The detection of NETs in cancer patients often involves measuring ele-
vated serum levels of MPO-DNA complexes [120,122,123], and histomorphometry within
tumor tissues [118,124]. Recently, a correlation between NETs in tissues of human colorectal
carcinoma and UICC stages 3–4 has been reported [118]. In-depth investigations in murine
models have shed light on the roles of NETs in tumorigenesis. Intriguingly, surgical stress
and increased levels of lipopolysaccharides following postoperative infections have been
found to induce the release of NETs concurrently with an increased development of metas-
tases [120,123]. NETs may directly facilitate the development of metastasis by capturing
tumor cells at distant sites by interactions between NETs and the coiled-coil domain-
containing protein 25 (CCDC25). The latter is expressed on cancer cells of colorectal, breast,
prostate, and liver cancers [121]. Moreover, NETs co-regulate several crucial processes
involved in cancer development and metastasis including the immune-evasive microen-
vironment, the activation of dormant tumor cells, tumor cell migration into surrounding
tissues, angiogenesis, and increased vascular permeability [125,126]. Furthermore, NETs
induce a mesenchymal, pro-metastatic phenotype in various cancer cell lines, including
breast, colorectal, gastric, and pancreatic cancers. They trigger epithelial–mesenchymal
transition, resulting in enhanced tumor cell migration and invasion [118]. In summary,
current knowledge strongly suggests that NETs play active roles in cancer progression and
may represent potential targets for therapeutic interventions and preventive strategies.

13. Therapeutic Implications

Even though NETs are integrally involved in various aspects of surgical practice,
the incorporation of anti-NET strategies in surgical methodologies has been minimally
explored. This might be because of their sensitive homeostatic processes and their dual
role with their benefits or harm depending on the situation and the time course of disease.
Rash inhibition of NET formation may reduce the ability of the immune system to fight
infectious agents and limit inflammation. Also, depending on the stage and type of cancer,
the disruption of NETs might lead to tumor progress. On the other hand, the promotion of
NETs formation may lead to a higher amount of autoantigens, thereby increasing the risk
of autoimmunity or the impairment of wound healing [12].

Nevertheless, there are efforts with preclinical studies that indicate that these anti-NET
interventions are biologically safe and exert minimal impact on the immune response
to pathogenic invasions. Notably, several pharmacological agents with anti-NET prop-
erties have already received regulatory approval for clinical use. Among these are re-
combinant DNases that cleave the DNA backbone of the NETs and, thus, promote NET
metabolism [5,127]. This enzymatic treatment has demonstrated efficacy in cystic fibrosis
management, primarily by reducing the viscosity of pulmonary secretions and consequently
lowering infection risk [128]. Also, DNase1L3 has a great potential to cleave extracellu-
lar chromatin [129]. Another therapeutic approach targeting NETs involves the use of
neutrophil elastase inhibitors. These function as serine protease antagonists, specifically
targeting neutrophil elastase, a pivotal enzyme in NET formation [130]. CXCR2 inhibitors
represent a novel and promising class of NET-targeted therapies. These inhibitors act on
CXCR2, a recently identified regulator of NETs in COPD [131]. Clinical trials involving
CXCR2 inhibitors have primarily focused on COPD, asthma, and tumors. Cl-amidine is
known for the inhibition of PAD4, one of the key enzymes in NET formation, thereby reduc-
ing the release of NETs. A preclinical trial focused on the inhibitory function of Cl-amidine
on NET formation and showed a reduction in thrombosis and atherosclerotic lesion areas in
a murine model of atherosclerosis [49]. The production of ROS is a key step in suicidal NET
formation [132]. Therefore, several studies focused on the inhibition of ROS production
to reduce NET formation [132]. N-acetylcysteine is a mucine lysine and is widely used
for the treatment of chronic obstructive pulmonary disease and bronchiectasis to reduce
mucous viscosity [133,134]. Additionally, is has antioxidant effects and counteracts the toxic
effects of reactive oxygen species (ROS) [132]. It was shown that N-acetylcysteine reduces
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thrombus formation in vivo, counteracting immunothrombosis by NET formation [135,136].
Other ROS scavengers such as methotrexate or Diphenyleneiodonium chloride have also
shown potential to reduce NET formation in preclinical trials [137–139]. In summary, while
preclinical trials have identified numerous methods to affect the release of NETs, no treat-
ments targeting NET formation have been approved to date, resulting in limited data on
human applications.

14. Conclusions

In the context of pediatric surgery, NETs are relevant due to their dual functionality.
They are critical in combating infections by ensnaring and neutralizing pathogens, yet can
induce tissue damage and exacerbate conditions like sepsis if uncontrolled. NETs play a
role in wound healing and balance anti-microbial action against the potential for delayed
recovery. NETs are implicated in the pathogenesis of peritoneal adhesions, appendicitis,
immunothrombosis, occlusive diseases, stone diseases, and cancer. This illustrates their
complex impact in various conditions of pediatric surgery. However, due to their dual role
in the physiology of health and the pathophysiology of diseases, interventions in clinical
courses are difficult to predict. This opens up a broad field for clinical research in the
future. Therapeutic strategies targeting NETs, including DNase and elastase inhibitors,
offer promising avenues to modulate the effects of NETs.
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