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Abstract: Prenatal alcohol exposure is responsible for increasing chronic disease risk in later life, in-
cluding obesity and metabolic syndrome. Alcohol drinking may compromise endogenous antioxidant
capacity, causing an increase in free radicals and reactive oxygen species in the newborn. Excessive
reactive oxygen species could attack the cellular proteins, lipids, and nucleic acids, leading to cellular
dysfunction. Moreover, oxidative stress could play a crucial role in the altered synthesis and release
of neurotrophins and progressive mitochondrial modifications with uncontrolled apoptosis. This
narrative review aims to underline the important role of alcohol abuse in oxidative stress events
and consequent metabolic and neurocognitive impairments in children exposed to alcohol during
gestational life.
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1. Introduction

Prenatal alcohol exposure (PAE) is the foremost avoidable reason for congenital abnor-
malities and developmental disabilities and affects 2.4–4.8/1000 children [1]. PAE may also
raise, in later life, chronic disease risks such as obesity, metabolic syndrome [2], and liver
disease [3,4].

Worldwide, almost 10% of pregnant women drink alcohol. The highest rate of alco-
holism during pregnancy is in Europe 25.2%), followed by the American Region (11.2%),
the Western Pacific Region (8.6%), the African Region (10.0%), and the South East Asia
Region (1.8%). The lowest prevalence is present in the Eastern Mediterranean Region (0.2%)
(Figure 1) [5]. Different Mediterranean studies measuring gestational alcohol drinking
in women through the analysis of different ethanol metabolites or in the hair, meconium,
or urine data showed high variability with values ranging from 3 to 4% up to more than
30% [6–12].

Numerous risk factors have been discovered for alcoholism in pregnancy: older age;
higher socioeconomic status, salary, and educational levels; smoking; and unintended
pregnancy [6,7,13,14].

Fetal alcohol spectrum disorders (FASD) is a “container” word that implies the type of
circumstances resulting from PAE. FASD includes disorders such as partial fetal alcohol
syndrome (pFAS), fetal alcohol syndrome (FAS), alcohol-related birth defects (ARBD),
and alcohol-related neurological developmental disorders (ARND) [15–24]. Several FASD
analytic guidelines have been proposed; among the most recent, Hoyme’s guidelines are
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quite useful [25]. These guidelines were made by a panel of expert authors who analyzed
more than 10,000 children with potential FASD. They elaborated a diagnostic process
that requires a multidisciplinary approach and a collaboration between pediatricians,
geneticists, maternal-fetal specialists, psychiatrists, speech pathologists, physical therapists,
audiologists, and ophthalmologists. The advantage of these guidelines is the possibility of
elaborating a diagnosis in the prenatal period.
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The global prevalence for FASD in the general population is approximately 7.7 cases
per 1000 individuals. FASD prevalence is lowest in the WHO Eastern Mediterranean
Region (0.1 per 1000) and highest in the WHO European Region (19.8 per 1000) (Figure 1)
based on the rates of alcohol use during pregnancy. According to global epidemiological
data, an estimated 1 in 13 women who drink alcohol during pregnancy will deliver a child
with FASD, resulting, globally every year, in the birth of almost 630,000 children with
FASD [10,11].

The PAE effects may vary depending on the frequency, quantity, pattern, duration,
and timing of exposure, and it has distinct developmental consequences at different stages
of organogenesis [26].

The brain is quite defenseless throughout the pregnancy [27]. The most common brain
alteration is microcephaly, often associated with microencephaly [28]. Jarmasz et al. conducted
a retrospective examination of 149 brains exposed to alcohol during fetal life. This study also
found other important alterations: hydrocephalus, corpus callosum defects, holoprosencephaly,
lissencephaly, minor subarachnoid heterotopias, and prenatal ischemic lesions [29]. Other
studies revealed an overall reduction in brain volume, especially in the cerebellum, cerebrum,
basal ganglia, hippocampus, caudate putamen, and thalamus [30–35]. Furthermore, studies
using diffusion tensor imaging showed reduced integrity of large white matter tracts, including
the hypoplastic corpus callosum, posteriorly displaced or absent. Corpus callosum alteration in
FASD children is associated with changes in interhemispheric transfer of information [17–20].

Brain changes are often coexisting with craniofacial anomalies. Many FASD people
display characteristic facial features such as a smooth ridge between the upper lip and nose,
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a thin vermillion border of the upper lip, extra crease in the outer ears, a flat nasal bridge,
short palpebral fissures, smaller head size, and an upturned nose [21,22].

Most studies involve the disrupted cognitive functioning caused by alterations in
brain neurodevelopment in PAE. Children with FASD show modest memory abilities,
learning disabilities, language and speech delays, hyperactive behavior, impairments in
the comprehension of the consequences of their actions, and inattentiveness [36]. Recent
investigations refer to the theory of fetal programming and FASD as a new notion. This
theory considers FASD from being a brain disease to an “entire body disorder” affecting
multiple systems and organs. Indeed, PEA elevates the developing chronic conditions with
potential risks, such as diabetes or cardiovascular diseases, later in life [24,25].

A robust association between congenital heart deficiencies and alcohol drinking during
gestation has been shown [37,38]. Significant correlations were described with ventricular
and septal/atrial defects. Children exposed to alcohol in utero may display a 1.64-fold
times increased risk of being affected by subtypes of conotruncal defects such as great
artery transposition [26,39,40]. Both prenatal heavy drinking and binge drinking are
strongly associated with a generally increased risk of having newborns with congenital
heart defects [41].

Oxidative stress seems to play a key role in the pathogenesis of both neuropsychiatric
and metabolic disorders in pediatrics [42,43]. Ethanol (EtOH) can alter the endogenous
antioxidant ability by depleting the levels of glutathione peroxidase and producing free
radicals. Free radicals and reactive oxygen species (ROS), such as hydroxide (HO−) and su-
peroxide (O2−) ions, are derived by O2 partial reduction. They can affect a cell’s structure by
damaging nucleic acids, carbohydrates, proteins, and lipids. These molecules are responsible
for inducing uninhibited apoptosis of fetal brain damage in children with FASD [30,44]. The
FASD neuropsychiatric effects may be justified by EtOH drinking, inducing the apoptosis of
serotoninergic neurons, as shown in rodent models [45].

Although many aspects participate in the pathophysiology of metabolic syndrome [46],
oxidative stress due to alcohol exposure in utero plays a crucial role in the development
of metabolic comorbidities such as hypertension, intolerance to glucose, and hyperlipi-
demia [47]. Insulin resistance could also outcome from oxidative stress, which has been
shown in prenatally alcohol-exposed offspring [48].

Excessive ROS might attack the nucleic acids, lipids, and cellular proteins, leading
to cellular alteration, including nonoptimal cell signaling and control of the cellular cycle,
loss of energy metabolism, alteration of cellular transport mechanisms, immune activation,
inflammation, and genetic mutations [49,50].

In this narrative review, our aim is to underline the major role of oxidative stress in the
pathogenesis of pediatric metabolic disorders when mothers abuse alcohol during pregnancy.

2. Materials and Methods

A search for relevant studies has been performed in the following databases: MED-
LINE, PubMed, Scopus, ScienceDirect, Google Scholar, and Web of Science. The search
string has been composed by using the following keywords in various combinations:
“prenatal alcohol exposure”, “oxidative stress”, “metabolic disorders”, and “fetal alcohol
spectrum disorders”.

Original articles of interest, prospective and retrospective clinical studies, and review
articles published in English until December 2023 have been included in this review.
Relevant references cited in the included articles were also assessed for eligibility.

The investigators independently went through abstracts and titles before analyzing
the full manuscripts of the retrieved papers. The clinical relevance of the papers selected
after this first round of screening was assessed after a full review made by the investigators.
Any discrepancies in study selection or data extraction were resolved through consensus
with a third group of reviewers. This review presents evidence from the literature in a
narrative format to provide a comprehensive overview of the various findings.
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3. Results
3.1. Mechanism of Oxidative Stress in Metabolic Disorders

EtOH consumption in pregnancy results in an alteration of oxidative status. A recent
case report [51] described increased oxidative stress in a mother abusing ethanol drinking
during gestation and in her infant a few days after delivery. The FORT (free oxygen radicals
test) was used, indeed, to measure the oxidative stress in the mother and her child [52].
The FORT is a colorimetric assay based on the ability of transition metals such as iron
to catalyze, in the presence of hydroperoxides (ROOH), the formation of free radicals
(reactions 1–2), which are then entrapped by an amine derivative, CrNH2. The amine
reacts with free radicals, creating a colored, fairly long-lived radical cation, measurable at
505 nm (reaction 3). The color intensity correlates directly to the radical compounds and
the hydroperoxide concentrations and, consequently, to the oxidative status of the sample
according to the Lambert–Beer law [52]. Values superior to 330 U indicate a situation of
progressing oxidative stress.

Oxidase enzymes (Nox), the mitochondria, and nicotinamide adenine dinucleotide
phosphate (NADPH) are the two main apparatuses of ROS production inside the cell [53].
The Nox enzymes (Nox1, Nox2, Nox3, Nox4, Nox5, DUOX1, and DUOX2) are cell mem-
brane proteins and Nox2-Nox3 are involved in different pathological circumstances [53].
ROS are produced in the mitochondria during oxidative phosphorylation by converting
nicotinamide adenine dinucleotide (NADH) to NAD+ [54,55]. The superoxide anion and
Nox2 are quickly converted by the superoxide dismutase enzyme into hydrogen peroxide
(H2O2), an important signaling molecule [56,57]. Indeed, H2O2 is a potent oxidizing agent,
and based on these considerations, cells are forced to secrete antioxidant peptides that
convert H2O2 to water, including catalase, peroxiredoxin, thioredoxin, and glutathione
(GSH) [55,58]. It is important that H2O2 production is equal to its reduction [59].

Pathological diseases such as insulin resistance, obesity, chronic inflammation, hy-
perglycemia, and dyslipidemia can cause overproduction of ROS [60,61]. The excessive
ROS presence may elicit cellular damage, in particular, peroxidizing lipids and altering
DNA [62]. Lipid peroxides, lipid peroxidation end products, may be toxic to the cell and
should be removed by glutathione throughout a specific mechanism [63]. Indeed, previous
investigations revealed that patients metabolically affected by the syndrome displayed
greater biomarkers of oxidative damage and lower plasma antioxidant enzyme activity than
healthy people [64]. Peroxidation and nitrosylation can alter nuclear acids and proteins [55].
These end products do not typically directly harm the cell [55]. However, the increase in
inactive proteins may alter the cell’s capability to metabolize them, determining the activa-
tion of apoptosis and DNA damage [63]. In addition, such elevation in modified proteins
reduces their function, leading to severe impairment of regular cell action [56,63]. The ROS
overproduction leads to oxidative stress elevation, which also disrupts redox control and
signaling, determining gene expression alteration and increasing stress response elements
and growth factors by activating the apoptosis path [59,65]. Furthermore, oxidative stress
may elicit profibrotic and proinflammatory pathways, which alter endothelial dysfunction
and insulin metabolic signaling by promoting renal and cardiovascular fibrosis [59,66].

3.2. Oxidative Stress in Pediatrics after Fetal Alcohol Exposure

FASD is an umbrella expression defining all the circumstances resulting from PAE:
partial fetal alcohol syndrome (pFAS), fetal alcohol syndrome (FAS), alcohol-related neu-
rodevelopmental disorder (ARND), and alcohol-related birth defects (ARBD) [67].

The vulnerability to ethanol strongly depends on the genetic background of each
individual [68], and particularly for gestation, it is not possible to establish a consumption-
safe level. Indeed, the only practicable recommendation for pregnant women is to avoid
alcohol use completely. Damage due to PAE can be long-lasting with no cure [69], so
early management and correct identification may support prevention and alleviate the
metabolic and neurological consequences affecting the FASD person later in life. FASD
severity depends on the amount and drinking frequency, as well as the gestational age
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at which the ethanol was assumed by the pregnant woman [70,71]. Intervention services,
prevention and sensibilization for the mothers could moderate the FASD incidence [72].

The fetus has inadequate or null aptitudes in alcohol metabolization and removal [73].
Indeed, the several enzymes aimed at ethanol degradation gradually elevate their actions
during the various steps of gestation [52].

Figure 2 summarizes the mechanisms through which oxidative stress has a major role
in the pathogenesis of neurological and metabolic diseases of patients exposed to alcohol
in the prenatal period.
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EtOH can alter the endogenous antioxidant ability by reducing GSH and generating
free radicals, which are considered to be responsible for uncontrolled apoptosis [74,75].
Chronic and acute alcohol drinking during prenatal development also impacts mitochon-
drial function and morphology, another crucial cell oxidative stress source [76]. Depleted
mitochondrial activity is discovered in the early postnatal stage in liver and brain tissues,
including the cerebellar brain cells of prenatally exposed rats [76].

Oxidative stress has a key role in the altered synthesis and release of growth factors
such as the nerve growth factor—NGF and brain-derived neurotrophic factor—BDNF [77].
Animal model studies disclosed many findings on gestational alcohol exposure’s effects
on neurotrophins [78,79]. Indeed, maternal alcohol exposure during gestation affects the
neurotrophins’ brain signaling pathways, as well as in target tissues for ethanol intoxica-
tion. NGF and BDNF are peptides that not only play a pivotal role in the development,
survival, and function of the central and peripheral nervous systems but also regulate the
pathogenesis of other problems induced by alcohol exposure [78,80,81].
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The supplementation with natural compounds with antioxidant properties, such as the
polyphenols extracted from vegetables, might, of course, counteract the toxic prooxidant
effect of alcohol abuse during pregnancy [82–87]. Furthermore, a healthy diet during preg-
nancy containing proper amounts of fresh vegetables containing polyphenols, as evidenced
by the Mediterranean diet, might reduce the oxidative stress induced by gestational alcohol
drinking [88–95].

3.3. FASD and Metabolic Disorders

PAE and subsequent FASD can cause lifelong alterations in affected offspring, includ-
ing a permanent imbalance in metabolic homeostasis. These effects of alcohol consumption
during pregnancy could be linked to an increased risk of intrauterine growth restriction
(IUGR) [96] due to blood flow impairment [97] and abnormal placentation process [98],
with following catch-up growth [99]. This phenomenon is strongly correlated with the
development of some features of metabolic syndrome, such as central obesity, glucose
intolerance, and dyslipidemia [100].

Several studies conducted both in humans and in animal models try to underline the
effects of PAE on metabolism. In 2020, Weeks et al. [101] demonstrated, with a retrospective
cross-sectional study in adults with any form of FASD diagnosis, that alcohol exposure in
utero increases the incidence of hypertriglyceridemia, type 2 diabetes mellitus, and lower
HDL cholesterol, independently of BMI in the case of the male cohort. Female patients
had, instead, an increased risk of being overweight and obese. They confirmed these data
with zebrafish, a particularly suitable model considering its flexibility and anatomical
similarities to humans, the presence of many evolutionary conserved pathways, and the
simplicity of alcohol administration in an aqueous environment [102].

In Week’s zebrafish model, PAE had a positive correlation with elevated body mass
index, increased visceral adiposity, and fasting hyperglycemia due to mild reduction in
activity level, atypical organ development, and a response to diet challenge. He and col-
leagues [103] investigated, in a rat model, the role of PAE in the susceptibility of high-fat
diet (HFD)-induced metabolic syndrome and the correlation with sex. Their study suggests
that a high-fat diet seems to worsen PAE-associated neuroendocrine metabolic program-
ming, especially in females, with a reduction in serum adrenocorticotropic hormone and
corticosterone levels and enhancement in triglyceride and total cholesterol concentration,
serum glucose, insulin, and insulin resistant index.

The relationship between PAE and HFD was also analyzed by Shen and colleagues [104]
in 2014 when they evaluated the susceptibility of female adult offspring to HFD-induced
nonalcoholic fatty liver disease (NAFLD), which is considered a liver indicator of metabolic
syndrome [105]. In the group exposed to PAE and HFD, they found a decrease in serum
corticosterone and an increase in serum IGF-1, glucose, and triglyceride with notable
catch-up growth, higher metabolic status, and NAFLD formation. The authors suggest
a “two-programming” hypothesis for the augmented risk of NAFLD in the case of pre-
natal alcohol exposure, in which the “first programming” consists of the intrauterine
programming of liver glucose and lipid metabolic function and the “second programming”
is led by postnatal adaptive catch-up growth triggered by intrauterine programming of
glucocorticoid-IGF1 axis.

Yao et al. showed that EtOH drinking for one week only during pregnancy induces
long-lasting harmful effects as cellular stress in adult rat offspring in association with ele-
vated class II histone deacetylase (HDAC) proteins and SIRT2 and altered glucose regulation
(increased gluconeogenesis and glucose intolerance) [106]. Dembele et al. showed that
EtOH stimulates oxidative injury in the hypothalamus and decreases proopiomelanocortin
(POMC) levels, which could reduce melanocortin signaling, leading to previously docu-
mented changes in body weight, food intake, and insulin sensitivity in rodents in utero
exposed to EtOH [107].

In 2018, Gårdebjer and colleagues [108] investigated, in a mouse model, if pericon-
ceptional alcohol consumption, alone or in combination with a postnatal high-fat diet,
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determines liver dysfunction and obesity. They found out that in male offspring, PAE and
a high-fat diet increase the risk of obesity and that PAE alone is correlated with microvesic-
ular steatosis and an increase in plasma triglycerides, HDL, and cholesterol. In females, the
fat mass augmented only in correlations with HFD and PAE determines an increase in LDL,
cholesterol, and leptin. Using a rodent model, Al-Yasari et al. [109] showed that preconcep-
tional alcohol exposure significantly affected the pancreatic function of the offspring, in
particular insulin production and secretion and inflammation cytokine production. This
results in the development of significant hyperglycemia and hypoinsulinemia, which the
authors suggest could be linked to proopiomelanocortin (POMC) neuronal reductions in
the hypothalamus. This abnormality alters the physiological process of POMC-regulated
suppression of sympathetic neuronal systems responsible for the inhibition of pancre-
atic beta-cell insulin production and release and activation of parasympathetic neuronal
systems implicated in the insulin release. In their study, offspring behaviors were also
affected by PAE, leading to the development of increased stress and anxiety linked with
epigenetic changes in several stress-regulatory genes, including POMC. Fuglestad and
colleagues, in 2014, investigated the relationship between PAE and obesity. They showed
that patients affected by partial FAS had the highest prevalence of being overweight (40%),
while patients with FAS had the lowest prevalence of being overweight, with only 14%
overweight or obese and at least one in six being underweight. It is interesting to note that
even if the prevalence of overweight and or obesity was higher for both adolescent males
and females with FASD compared to controls, this rate was particularly high for adolescent
females (50% of the obese female patients vs. 14% of male patients) [110].

Werts and colleagues [111], in 2013, linked PAE with female overweight and lack of
satiety. They suggest that alterations in brain maturation could influence the neuroen-
docrine signals that control reward and appetite in regions such as the hypothalamus and
ventral tegmental area. This work also underlines that PAE causes inadequate micronutri-
ent intake (low vitamin D status) and constipation, a symptom not always experienced,
that could be linked to functional or structural alteration of enteric nerve, which derives
from the neural crest, a target of EtOH’s neurotoxicity [112]. Another work from Amos-
Kroohs et al. [113] underlines that, compared with healthy controls, children with FASD
had significantly delayed acquisition of self-feeding behavior and solid food introduction.
Impaired satiety and constant snacking were common and independent of medication use.
The mean body mass index was significantly reduced for males but not females with FASD.

3.4. FASD and Cardiovascular Disease

Congenital heart defects (CHDs) are the most common congenital anomaly, with a
worldwide prevalence of 9.1 in 1000 live births [114,115]. The etiology of CHDs is still
unknown; most of them are due to genetic anomalies and aneuploidies. The Maternal
Heart Association established that prenatal exposure to therapeutic drugs and substances
of abuse, like alcohol and cigarettes, are important risk factors [116]. PAE has also been
shown to be related to the occurrence of CHDs. Alcohol has severe effects on the cardio-
vascular system, leading to various disease states such as arrhythmias [117] and dilated
cardiomyopathy [118].

The cardiotoxicity of alcohol does not interest only adult consumers. According to
the Centers for Disease Control and Prevention (CDCP), about 10% of pregnant women
mentioned drinking fluently, and approximately 50% of them mentioned binge drinking,
which increases the risk of FASD [119]. The proportion of children with CHDs among
children with FASD is almost 67% [120]. The molecular mechanisms can explain the illness,
but the American teratogenic effects of PAE are still poorly understood because of the
complexity of alcohol effects and the correlation with timing, amount, and duration of
exposure, as well as genetic susceptibility [121].

Zhong and colleagues showed that different levels of alcohol exposure in utero have
different effects on histone protein acetylation and subsequent expression of some genes re-
lated to heart development (i.e., GATA4, Mef2c, and Tbx5). Low levels of alcohol increased
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histone protein H3 acetylation but did not significantly impact heart development. In
contrast, high levels of alcohol-induced both H3 acetylation and important gene expression
changes. These findings suggest that alterations to histone modifications are a potential
mechanism for alcohol-related CHDs [122]. Genetic and epigenetic factors affect in utero
development of the fetus and can lead to abnormal phenotypic manifestations. It has
been scientifically proven that increased oxidative stress caused by substance and alcohol
abuse, smoking, nutritional imbalances, and other diseases like obesity and diabetes during
pregnancy may induce placental dysfunction, metabolic alterations, and consequent onset
of traditional cardiovascular risk factors [123].

In animal models, EtOH exposure during the development of fetal anatomical struc-
tures leads to oxidative stress, apoptosis, mitochondrial dysfunction, and activation of
the proinflammatory pathway and results in structural heart defects, cardiac hypertrophy,
fibrosis, apoptosis, oxidative stress, cardiac channelopathies, and contractile dysfunc-
tion [124,125]. Ercan et al. showed a close correlation between higher total oxidant status
(TOS), total antioxidant status (TAS), and oxidative stress index (OSI) and cyanotic CHD,
whereas no significant correlation was found between the oxidative status and non-cyanotic
CHDs and control group [126]. In fact, it is interesting to note that many studies suggest
that CHDs more closely related to the PAE are conotruncal defect subtypes such as d-
transposition of the great arteries and tetralogy of Fallot [41,127–129]. PAE is related not
only to CHD but also to cardiac rhythm alterations in the absence of structural anomalies
or cardiac channelopathies. Onesimo and colleagues reported two interesting cases of
children affected by FASD according to Hoyme’s criteria [25]; the first case showed uniform
and isolated premature ventricular contractions (PVCs), and the second case showed fre-
quent premature atrial contractions (PACs) and short runs of ectopic atrial tachycardia [39].
Therefore, screening for arrhythmias in children affected by FASD without structural CHDs
must be executed. Understanding the molecular mechanisms underlying PAE-induced car-
diotoxicity in human cells can help guide the development of management and therapeutic
strategies for children affected by FASD and cardiac disease. Hwang et al. investigated the
effects of alcohol on mitochondrial features and transcriptomic and metabolomic profiles
in cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) [130].

By modeling chronic alcohol exposure-induced cardiotoxicity in hiPSC-CMs, they
showed that EtOH causes decreased mitochondrial membrane potential and mitochondrial
content, decreased mitochondrial function, and altered expression of related genes [130].
EtOH also modified the glycolytic process and carbohydrate metabolic process as well as a
reply to hypoxia, increased glycolysis, decreased mitochondrial function, and increased
oxidative stress [130]. Therefore, an upregulation of T-cell chemotaxis has been shown as
a potential causal link to proinflammatory response [130]. Further studies are needed to
better understand the mechanisms of alcohol cardiotoxicity and teratogenicity in order to
prevent the dramatic effect of PAE on the offspring of mothers consuming alcohol.

4. Conclusions

Exposure to ethanol in utero elevates oxidative stress biomarkers, determining damage
to DNA, proteins, lipids, and alterations of endogenous antioxidants.

Although many aspects participate in the pathophysiology of metabolic syndrome,
oxidative stress due to alcohol exposure in utero plays a crucial role in the development of
metabolic comorbidities such as high blood pressure, increased glucose intolerance, insulin
resistance, and hyperlipidemia.

This review underlines the important impact of alcohol on oxidative stress processes
and consequent metabolic and neurocognitive impairments in kids and adolescents affected
by FASD. Further, it is necessary to initiate investigations on a larger scale to elucidate
other physiopathological mechanisms inducing neuropsychiatric and metabolic disorders
in pediatrics when exposed to alcohol in utero.
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