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Abstract: Children born preterm often face challenges with self-regulation during toddlerhood. This
study examined the relationship between prematurity, supportive parent behaviors, frontal lobe
gray matter volume (GMV), and emotion regulation (ER) among toddlers during a parent-assisted,
increasingly complex problem-solving task, validated for this age range. Data were collected from
preterm toddlers (n = 57) ages 15–30 months corrected for prematurity and their primary caregivers.
MRI data were collected during toddlers’ natural sleep. The sample contained three gestational
groups: 22–27 weeks (extremely preterm; EPT), 28–33 weeks (very preterm; VPT), and 34–36 weeks
(late preterm; LPT). Older toddlers became more compliant as the Tool Task increased in difficulty,
but this pattern varied by gestational group. Engagement was highest for LPT toddlers, for older
toddlers, and for the easiest task condition. Parents did not differentiate their support depending on
task difficulty or their child’s age or gestational group. Older children had greater frontal lobe GMV,
and for EPT toddlers only, more parent support was related to larger right frontal lobe GMV. We
found that parent support had the greatest impact on high birth risk (≤27 gestational weeks) toddler
brain development, thus early parent interventions may normalize preterm child neurodevelopment
and have lasting impacts.

Keywords: prematurity; neurodevelopment; neuroimaging; parenting; emotion regulation; cognition;
frontal lobe; gray matter volume

1. Introduction

Medical advances have improved the survival rate and physical needs of very preterm
infants (VPT; less than 33 gestational weeks), but children born preterm continue to have
elevated risk for neurodevelopmental difficulties (e.g., executive function, emotion regu-
lation, language, etc.) [1–4]. These observed neurodevelopmental difficulties may result
from brain injury at birth and/or disruption in utero brain development [5–9]. Early experi-
ences, including duration and medical care in the neonatal intensive care unit (NICU) and
parenting behaviors may also influence neurodevelopmental outcomes following preterm
birth [10–12].

Parents play an important role in neurodevelopmental outcomes for children born
preterm. Providing warm and contingent caregiving, which responds to the child’s atten-
tional cues and meets their needs, has been associated with improved social–emotional and
cognitive functioning in preterm-born children [13,14]. In addition, there is evidence that
parental responsiveness directly influences the development of prefrontal gray matter with
strong implications for improving self-regulation in children born VPT. For example, higher
levels of parental sensitivity in early childhood are associated with larger total brain volume,
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as well as gray matter volume at 8 years [15]. Similarly, parental responsiveness may lead
to better amygdala and prefrontal gray matter neurodevelopment, with the ultimate effect
of reducing the risk of emotion regulation (ER) disruption and psychopathology among
children. Yet, less is known regarding the effects of parental responsiveness on frontal
limbic development and regulatory skills in children born preterm [16]. Taken together,
the studies emphasize the importance of warm and responsive caregiving in optimizing
neurodevelopmental outcomes for children, particularly those born preterm.

Early childhood is a crucial period marked by significant cognitive development,
which serves as a foundational element for more nuanced cognitive functions later in
life [17]. Self-regulation, or the ability to regulate one’s behavior in relation to what is
environmentally appropriate, is contingent on executive functioning (EF) and emotion
regulation (ER) [18]. Skills that prove vital for self-regulation are shaped during the first
two years of life, and the emergence of these skills is intimately linked to development of
prefrontal circuits [19,20]. Specifically, the prefrontal–limbic system, including frontostriatal
connections, rapidly develops in the first three postnatal years. There is growing evidence
that early self-regulatory dysfunction puts preterm children at increased risk for school
failure and special education needs, as shown by teacher reports of behavioral and general
academic delays [21–23].

Neuroimaging studies consistently link premature birth, particularly occurring before
33 weeks of gestation, with significant atypical white and gray matter microstructure [24].
Even at their term-corrected age, preterm infants exhibit reduced regional brain volumes.
The prefrontal cortices that facilitate EF and ER skills encompass various frontal brain
regions such as the anterior cingulate, as well as the medial, dorsal, and ventral prefrontal
cortex [25]. Consistent with the idea that neural circuitry is most responsive to experience
during rapid development, the protracted developmental course of the prefrontal cortex
causes these networks to be heavily influenced by experience, and early in life, experiences
will primarily stem from caregiver interaction [26–33]. Therefore, EF and ER typically
develop in the context of relationships with caregivers and are facilitated by establishing a
sense of safety and security, forming secure attachments, and coregulating emotions [34–37].

Within the context of prematurity, NICU stay length and clinical practices are an
important environmental factor that shape developmental outcomes. Prolonged NICU
stays have been associated with lower scores on the Bayley mental and motor scales during
toddlerhood [11]. Interestingly, in this study, gestational age was not associated with the
Bayley scales, suggesting that the severity of postnatal illnesses and NICU hospitaliza-
tion may account for negative neurodevelopmental effects in already high-risk preterm
infants. Increasingly, modifiable clinical care factors that may be at play include nutrition
and sensory exposure, which are highlighted as targets for improved developmental out-
come [12,38]. Moreover, limited parent–infant bonding during extended NICU stays may
interfere with formation of secure attachment relationship.

In order to measure and operationalize toddler ER, a task must include challenging
elements that require the child to regulate their emotions often in the context of problem
solving. The Tool Task was designed to measure aspects of early childhood problem-
solving, decision-making, spatial awareness, and emotion regulation, as the child works on
increasingly difficult tasks to remove toys from apparatuses with parent support [39]. This
task was originally used to evaluate two-year-olds’ capacity to engage in ER, sustained
attention, and problem-solving behaviors. Importantly, the Tool Task captures the toddler
behavior within the context of increasingly complex challenges and measures the child’s
ability to draw upon personal and environmental resources, such as their caregiver. This
task also evaluates parenting behaviors as the extent to which caregivers provide supportive
presence and quality of assistance as they work to help the child solve the task on their own.

Consistent with this idea, children classified as having a secure attachment to their
primary caregivers showed more enthusiasm, positive affect, persistence, cooperation,
flexibility, resourcefulness, and engagement than insecurely attached children. Moreover,
higher supportive caregiver behaviors during the task predicted lower negative child
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behaviors, including frustration, negative affect, and noncompliance behaviors [39]. During
Tool Task levels, parental support and responsive behaviors are essential components of
parent–child interactions, assessed by the scales of Supportive Presence and Quality of
Assistance. These behaviors underscore a caregiver’s ability to provide support and
assistance to a child during problem-solving situations, contributing significantly to the
child’s positive and enjoyable learning experiences.

Supportive presence involves the parent’s attentiveness to the child and task, coupled
with emotional responsiveness to the child’s signals. This creates a secure base for explo-
ration, which is achieved by the parent staying calm, setting a positive mood, and being
physically present. For example, the parent approaches the tool with obvious interest and
enthusiasm. The parent makes certain that the child realizes there is a problem to be solved
and indicates to the child that working on the problem can be rewarding. The parent may
also indicate to the child that they are available to work cooperatively with him/her if it
becomes necessary but encourages initial autonomous work to help the child achieve a
sense of solving the problem her/himself. These supportive behaviors not only motivate
but also reassure the child, leading to a high score on the Supportive Presence scale.

The current study examined the consequences of prematurity on frontal lobe gray
matter volume (GMV) and emotion regulation (ER) among toddlers engaged in the Tool
Task. This study tested associations between parent and child behaviors, with a special
emphasis on toddler emotion regulation and parental support facilitated through coreg-
ulation, and toddler frontal lobe neurodevelopment for toddlers with varying levels of
birth risk (i.e., extremely preterm, EPT; very preterm, VPT; and late preterm, LPT). The
following hypotheses were tested: (1) We hypothesized that toddler ER during the Tool
Task would vary based on interactive influences of birth risk, task difficulty, and toddler
age. Specifically, we expected that there would be differences in ER between EPT, VPT, and
LPT toddlers. (2) In terms of frontal lobe GMV, we anticipated that LPT toddlers would
have the greatest frontal lobe GMV and EPT toddlers would have the least frontal lobe
GMV. (3) Finally, we hypothesized that parent support would be most beneficial for EPT
toddlers, both in terms of child behavior (e.g., more supportive parent behaviors associated
with more toddler compliance and engagement) and in terms of frontal lobe GMV (e.g.,
more supportive parent behaviors associated with greater frontal lobe GMV).

2. Materials and Methods

This study included toddlers born preterm between 15–30 corrected gestational
months and their primary caregivers. Sample demographics (n = 57) are presented in
Table 1. The research team recruited the participants from two large pediatric clinics af-
filiated with the University of Texas Health Science Center located at the Texas Medical
Center in Houston, TX, USA. Participants included in this sample had completed the
initial testing: MRI and Tool Task. MRI data were successfully collected from 35 partic-
ipants. This study is part of a larger longitudinal study that utilizes scalable parenting
interventions to test if parental responsiveness is a modifiable psychological factor that
improves neurodevelopmental outcomes and brain connectivity in toddlers born preterm.
Tool Task data were collected in a laboratory setting at the Children’s Learning Institute
in Houston, TX, as part of baseline assessment, and was administered along with other
parent reports and behavioral measures for the larger study. Behavioral assessments were
video recorded and coded (see Supplementary Materials for coding framework). MRI data
were acquired, concurrently with behavioral data, at Baylor College of Medicine Core for
Advanced Magnetic Resonance Imaging in Houston, TX. The study participants received
a gift card for completing this behavioral testing session. Prior to any testing, informed
consent was obtained from all parents involved in this study; children enrolled in this study
were too young to provide assent for participation.
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Table 1. Descriptive characteristics of participants (n = 57).

Sample Characteristics n (%)

Child Sex

Male 30 (52.63)

Female 27 (47.37)

Child Race

Black or African American 20 (35.09)

White 21 (36.84)

Asian 2 (3.51)

American Indian or Alaska Native 1 (1.75)

Native Hawaiian or Other Pacific Islander 1 (1.75)

Declined to respond 12

Child Ethnicity

Yes, Hispanic or Latino 30 (52.63)

No, not Hispanic or Latino 24 (42.10)

Declined to respond 3

Gestation Classification

Extreme Preterm (22–27) 28 (44.92)

Very Preterm (28–33) 15 (26.32)

Late Preterm (34–36) 14 (24.56)

Caregiver Relationship to Child

Mother 52 (91.2)

Father 4 (7)

Other 1 (1.8)

Caregiver Education: Highest Grade Completed

Primary school, Finished 5th grade 2 (3.5)

Middle School 4 (7)

Some High School 8 (14)

High School diploma or GED 7 (12.3)

Vocational or technical training 2 (3.5)

Some College 11 (19.3)

Bachelor’s degree (BA/BS) 15 (26.3)

Master’s degree MA, MS, JD 4 (7)

Other 3 (5.3)

Declined to respond 1 (1.8)

Means (SD)

Adjusted Gestational Age in months 19.24 (4.904)

Gestational Age at Birth (weeks) 28.60 (4.39)

Primary Caregiver Age 32.74 (7.22)

The study procedure was approved by the Committee for the Protection of Human
Subjects at the University of Texas Health Science Center at Houston. The Tool Task was
administered according to standard guidelines [39], optimized for our study design. Each
child was seated in a booster seat next to their parent at a table. The three levels of the
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Tool Task increased in difficulty, increasing the need for emotion regulation and parent
assistance while problem-solving (Figure 1a–d). During a 1 to 1.5-h baseline testing session,
the Tool Task was the first task administered. The Tool Task had three levels that took
between one to four minutes to complete and that increased in difficulty. The first level,
“vault toy,” asked the child to turn a wheel until the vault unlocked to release the prize (a
book) that was inside (Figure 1a). The second level was the “short tube” task, in which the
child inserted a stick inside a clear tube to retrieve the toy stuck in the middle (Figure 1b).
The third level, the “long tube” task, was similar to the second level (Figure 1c). However,
for the third level, the parent and toddler needed to realize that they were not able to release
the toy stuck in the middle of the clear tube by using one stick, instead they had to put
together both halves of the sticks so that it was long enough to push the toy through the
tube. The parent was present for all problem-solving tasks and instructed to let the child
try to solve the problem independently, but they were able to provide as much help as they
thought their child needed (Figure 1d). These tasks, especially the third level, tended to be
stressful, thus requiring child emotion regulation and increased coregulation from parent
to child.
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Figure 1. Tool Task apparatus levels with parent–child interaction. (a) Vault toy apparatus corre-
sponding to difficulty Level 1. (b) Short tube apparatus corresponding to difficulty level 2. (c) Long
tube apparatus corresponding to difficulty level 3. (d) Mother supporting child well in level 2 of the
Tool Task. Notice the parent’s hand-over-hand assistance and child’s active engagement in the task.

Behavioral coding measures and framework. For each level, three coders analyzed six
variables for child behaviors and two variables for caregiver behaviors (interrater reliability,
α = 0.95). Each of the videos had 24 total ratings across the child and caregiver variables
(8 variables per 3 levels). Coders began analyzing behaviors when the examiner put the toy
and apparatus on the table and said, “Can you get the toy out of the box or tube?” Coders
stopped coding approximately ten seconds after the child retrieved the prize. The only
coding exclusion was when the parent was talking to the examiner or other adults in the
room. Behavioral coding materials are included in Supplementary Materials.

Child behavioral measures. Child noncompliance was measured on a 1 to 6 scale
evaluating the extent to which the child attended to the caregiver and complied with
caregiver requests. A high score would mean more noncompliance as shown by the child
refusing all caregiver offers of support and never following caregiver directions. A low
score, in contrast, means that the child attended to most of the parent’s requests and
followed the instructions. Child engagement was measured on a scale of 1–7 and was
defined as the degree to which the child is interested, engaged in, and enthusiastic about
the task. A score of 1 reflects the child’s active effort to avoid the task, whereas a score of
7 reflects very high levels of engagement and thorough involvement in the task, and the
middle of the scale reflects moderate levels of engagement. Other child behaviors did not
have enough variability to examine (see Table 2).
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Table 2. Gestational group differences in behavioral measures of the Tool Task using ANCOVA, with
age as a covariate.

Measure Extremely Preterm Very Preterm Late Preterm F(df) p

Means (SE) Means (SE) Means (SE)

Child Behavioral Measures

Child Noncompliance
Level 1 2.824 (0.277) 2.946 (0.360) 2.523 (0.373) 0.350 (2,46) 0.707
Level 2 3.210 (0.294) 3.795 (0.382) 3.080 (0.395) 1.005 (2,46) 0.374
Level 3 4.127 (0.281) 3.682 (0.365) 3.734 (0.377) 0.608 (2,46) 0.549

Child Anger +

Level 1 1.044 (0.193) 1.421 (0.251) 1.392 (0.260) 0.954 (2,46) 0.393
Level 2 1.083 (0.198) 1.470 (0.257) 1.886 (0.266) 3.012 (2,46) 0.059
Level 3 1.564 (0.292) 1.373 (0.380) 2.140 (0.393) 1.065 (2,46) 0.353

Child Coping +

Level 1 2.869 (0.157) 3.220 (0.204) 3.380 (0.211) 2.158 (2,46) 0.127
Level 2 2.781 (0.178) 3.015 (0.231) 3.140 (0.239) 0.809 (2,46) 0.452
Level 3 2.607 (0.172) 2.946 (0.223) 2.907 (0.231) 0.945 (2,46) 0.396

Child Engagement
Level 1 3.921 (0.259) 3.776 (0.337) 5.151 (0.349) 5.018 (2,46) 0.011 *
Level 2 4.010 (0.299) 3.394 (0.388) 4.865 (0.401) 3.418 (2,46) 0.041 *
Level 3 3.191 (0.299) 3.539 (0.388) 4.620 (0.401) 4.145 (2,46) 0.022 *

Child Persistence +

Level 1 3.176 (0.241) 3.193 (0.313) 4.019 (0.324) 2.455 (2,46) 0.097
Level 2 3.225 (0.266) 2.634 (0.346) 3.612 (0.357) 1.941 (2,46) 0.155
Level 3 2.660 (0.249) 2.846 (0.323) 3.383 (0.335) 1.520 (2,46) 0.229

Parent Assistance Sum
Level 1 10.500 (0.615) 9.911 (0.799) 11.672 (0.827) 1.195 (2,46) 0.312
Level 2 11.017 (0.527) 9.888 (0.685) 11.705 (0.708) 1.720 (2,46) 0.190
Level 3 10.271 (0.522) 10.109 (0.678) 12.173 (0.702) 2.884 (2,46) 0.066

Across Levels 3.84 (2,46) 0.029 *
+ not hypothesized or included in analyses; * p < 0.05.

Caregiver behavioral measures. Coders observed the supportive presence and quality
of assistance from the caregiver. Using a 1 to 7 scale, coders rated the emotional support
with which the parent helped the child have a positive learning experience. Higher ratings
meant that the parent met most criteria and subcriteria (providing secure base, attentiveness
to child, helping their child focus, reinforcing, staying calm, anticipating frustration, setting
a learning and enjoyable mood, etc.). The quality of assistance measure also used a 1 to
7 scale to evaluate the sensitivity with which the caregiver maximized the child’s learning
opportunities. If the caregiver received the highest score, then they were excellent at
giving assistance. To show the combination of warmth and contingent responsiveness, we
summed the two parent variables in the analysis for an overview of their level of assistance
provided (i.e., Parent Assistance + Parent Supportive Presence = Parent Assistance Sum).

Toddler MRI Scans. MRI data were collected within seven days on average after
the behavioral data (36% on the same day) during the toddlers’ natural sleep. T1 and T2
weighted images were collected using a 64-channel head coil on a Siemens 3T scanner. The
parents were instructed to perform their usual bedtime routine with the child and to alert
the research staff once the child had been asleep for fifteen minutes. Then, researchers
transferred the child from the bed into the scanner. Hearing protection included earplugs,
pediatric earmuffs, and a thick piece of foam curved around the interior of the bore to
act similar to an acoustic hood [40]. A member of the research team was inside the
scanner, monitoring the child for movement and distress. If the child awoke, the scan was
stopped immediately.
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The T1 and T2 scans were processed using Infant Brain Extraction and Analysis
Toolbox (iBEAT V2.0 Cloud) for initial processing and brain segmentation [41–45]. The
neuroimaging processing steps included the following: heterogeneity correction, skull
stripping, and tissue segmentation. FSL was then used for gray matter volume computation
to calculate total gray matter volume and gray matter volume within each parcellation of
the UNC-BCP 4D Infant Brain Volumetric Atlas (Figure 2) [46]. All frontal regions included
in analyses are presented in Table 3. There was no significant difference between the right
and left frontal gray matter volumes (t(34) = 1.94, p = 0.06).
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Table 3. Gestational group differences in frontal gray matter using ANCOVA, with age and total gray
matter volume as covariates.

Measure Extremely
Preterm Very Preterm Late Preterm F(df) p

Means (SE) Means (SE) Means (SE)

Left Frontal Gray Matter Regional Volumes
Sum of frontal
regions 58,678 (1056) 58,346 (1427) 60,719 (1354) 0.911 (2,30) 0.413

Middle frontal gyrus 10,261 (367) 10,743 (497) 10,803 (471) 0.533 (2,30) 0.592
Precentral gyrus 7228 (236) 7197 (319) 7691 (303) 0.867 (2,30) 0.430
Supplementary
motor area 4172 (169) 4137 (229) 4342 (217) 0.255 (2,30) 0.776

Medial orbitofrontal
cortex 1506 (107) 1421 (144) 1424 (137) 0.165 (2,30) 0.849

Inf. orbitofrontal
cortex 4181 (223) 4306 (301) 5003 (286) 2.684 (2,30) 0.085

Middle orbitofrontal
cortex 1915 (123) 1580 (166) 2161 (158) 3.147 (2,30) 0.057

Medial sup. frontal
gyrus 5093 (279) 4920 (377) 4914 (358) 0.107 (2,30) 0.898

Dorsal sup. frontal
gyrus 5455 (230) 5581 (311) 5439 (296) 0.067 (2,30) 0.935

Rolandic operculum 3649 (71) 3513 (96) 3738 (91) 1.436 (2,30) 0.254
Triangular inf.
frontal gyrus 6521 (171) 6226 (231) 6788 (219) 1.522 (2,30) 0.235

Opercular inf.
frontal gyrus 2450 (69) 2452 (93) 2594 (88) 0.930 (2,30) 0.405

Rectus gyrus 1792 (198) 2029 (268) 1365 (254) 1.662 (2,30) 0.207
Anterior cingulate
cortex 4455 (147) 4243 (199) 4457 (189) 0.422 (2,30) 0.660
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Table 3. Cont.

Measure Extremely
Preterm Very Preterm Late Preterm F(df) p

Means (SE) Means (SE) Means (SE)

Right Frontal Gray Matter Regional Volumes
Sum of frontal
regions 59,944 (1460) 59,620 (1973) 63,532 (1973) 1.386 (2,30) 0.266

Middle frontal gyrus 10,241 (486) 10,323 (657) 10,950 (623) 0.427 (2,30) 0.656
Precentral gyrus 7219 (307) 7291 (416) 7849 (394) 0.844 (2,30) 0.440
Supplementary
motor area 4356 (175) 4748 (236) 4762 (224) 1.411 (2,30) 0.260

Medial orbitofrontal
cortex 2159 (113) 2075 (152) 2259 (144) 0.379 (2,30) 0.688

Inf. orbitofrontal
cortex 4638 (198) 4341 (267) 5202 (254) 2.824 (2,30) 0.075

Middle orbitofrontal
cortex 2348 (163) 1958 (221) 2743 (209) 3.254 (2,30) 0.053

Medial sup. frontal
gyrus 3252 (242) 3423 (327) 3253 (310) 0.100 (2,30) 0.905

Dorsal sup. frontal
gyrus 6383 (301) 6266 (407) 6458 (386) 0.058 (2,30) 0.944

Rolandic operculum 4618 (75) 4386 (101) 4624 (96) 1.967 (2,30) 0.157
Triangular inf.
frontal gyrus 4798 (116) 4538 (157) 5238 (149) 5.316 (2,30) 0.011 *

Opercular inf.
frontal gyrus 3678 (123) 3768 (166) 3885 (158) 0.541 (2,30) 0.588

Rectus gyrus 1708 (191) 1864 (258) 1488 (245) 0.557 (2,30) 0.579
Anterior cingulate
cortex 4546 (144) 4642 (195) 4822 (185) 0.686 (2,30) 0.511

* p < 0.05.

Statistical Analysis. We conducted linear mixed effects models with task difficulty
(levels 1, 2, and 3) as a within-subjects variable and gestational group (EPT, VPT, and
LPT) and age (adjusted for prematurity) as between-subjects variables. We used these
models to predict toddler and parent behavior during the Tool Task. To examine brain
structure differences across gestational groups, we conducted linear mixed effects models
with hemisphere (right/left) as a within-subjects variable and gestational group (EPT, VPT,
and LPT) and age (adjusted for prematurity) as between-subjects variables, controlling
for total GMV. We also explored the relationships between parent behaviors during the
Tool Task, child behaviors during the Tool Task, and bilateral frontal lobe GMV. A power
sensitivity analysis was performed using G*Power version 3.1 [47]. With a sample size (N)
of 57 and three gestational groups, the study demonstrates a relative effect size ranging
from 0.423 to 0.546, ensuring a statistical power (1-β err prob) of 0.80 and 0.95 [48].

3. Results

Descriptive statistics for all Tool Task outcome variables by gestational group are
presented in Table 2, with age included as a covariate. Birth risk was unrelated to parent
assistance and toddler noncompliance, anger, coping, and persistence during the Tool Task.
There was a significant difference in toddler engagement across the gestational groups: in
all three levels of the Tool Task, LPT toddlers were more engaged than VPT or EPT toddlers.

3.1. Toddler Noncompliance

There was a significant three-way interaction between gestational group, task diffi-
culty, and adjusted age (F(4,88) = 3.23, p = 0.02). The pattern generally reflects increased
compliance for older toddlers as the task increased in difficulty, but this relationship dif-
fered by gestational group (see Figure 3). For LPT toddlers, who had the lowest birth risk,
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older toddlers were more compliant than younger toddlers at level 3 of the Tool Task only;
there was no relationship between compliance and age for levels 1 and 2. For VPT toddlers,
who had moderate birth risk, older toddlers were more compliant than younger toddlers
at levels 2 and 3 of the Tool Task; there was no relationship between compliance and age
for level 1. For EPT toddlers, who had the highest birth risk, older toddlers were more
compliant than younger toddlers at level 1 of the Tool Task only; there was no relationship
between compliance and age for levels 2 and 3.
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3.2. Toddler Engagement

The three-way interaction between gestational group, task difficulty, and adjusted
age was not significant for toddler engagement during the Tool Task (F(4,88) = 2.035,
p = 0.10). There was a significant main effect of task difficulty (F(2,88) = 3.84, p = 0.03) and
a significant main effect of adjusted age (F(1,44) = 5.04, p = 0.03). Engagement decreased
with task difficulty and increased with age.

3.3. Parent Support

Parents did not differentiate their support during the Tool Task depending on their
child’s age (F(1,46) = 2.43, p = 0.13), their child’s gestational group (F(2,46) = 1.93, p = 0.16),
or task difficulty (F(2,45) = 1.52, p = 0.22).

3.4. Parent Support and Toddler Noncompliance

Because parent support did not differ by task difficulty, we created a sum score to
represent overall parent support across all three levels of the task (see Table 2). In a model
predicting toddler noncompliance from parent support, gestational group, and age, toddler
noncompliance was not related to overall parent support (F(1,45) = 2.33, p = 0.13).
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3.5. Parent Support and Toddler Engagement

In a model predicting toddler engagement from parent support, gestational group,
and age, there was significant interaction between parent support and gestational group
(F(2,43) = 5.23, p = 0.01). To better understand this interaction, exploratory univariate
analyses were conducted for each gestational group, testing main effects of parent support
on child engagement within each level, such that effect of parenting support at each task
level was tested relative to child behavior at the same task level. Univariate results indicated
that EPT toddlers who received more parent support were more engaged (F(1,22) = 6.75,
p = 0.02) at level 2; whereas, for LPT toddlers parental support predicted child engagement
at level 3 (F(1,10) = 8.39, p = 0.02). Parent support did not predict child engagement for VPT
toddlers. Of note, a summed score of parent support was evaluated in the primary analysis,
which was appropriate for testing differences in child behavior across levels. However, to
evaluate child behavior within each task level, a level-specific score for parent support was
deemed more suitable.

3.6. Frontal Lobe GMV

Frontal lobe GMV was unrelated to the gestational group (F(2,28) = 0.60, p = 0.62).
Across gestational groups, older children had greater frontal lobe GMV than younger
children (F(1,28) = 12.24, p = 0.002).

3.7. Frontal Lobe GMV and Parent Support

At levels 2 and 3, there was a significant interaction between gestational group and
parent support in predicting right frontal lobe GMV (level 2: F(3,22) = 4.27, p = 0.01; level
3: F(3,21) = 6.17, p = 0.004). The interaction indicated that parent support was related to
right frontal lobe GMV only for EPT toddlers; EPT toddlers with parents who were more
supportive during the Tool Task had greater right frontal lobe GMV than EPT toddlers
with parents who were less supportive during the Tool Task (see Figure 4). Parent support
was unrelated to frontal lobe GMV for VPT and LPT toddlers. There were no significant
interactions between gestational group and parent support for the left frontal lobe GMV.
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3.8. NICU Stay Length

The current study analyzed the duration of NICU stay in days and its potential impact
on GMV and ER. Results showed a non-significant effect of NICU stay duration on total
GMV or frontal GMV (Fs(1,34) ≤ 0.35, ps ≥ 0.56). The effect of NICU stay duration on tod-
dler ER throughout the three levels of the Tool Task was also nonsignificant (Fs(1,53) ≤ 3.45,
ps ≥ 0.07).
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4. Discussion

Previous research indicates that utilizing brain plasticity during the critical period
of toddlerhood can serve as a mechanism to promote healthy developmental outcomes
for preterm (PT) children [34]. Responsive interactions with caregivers have the poten-
tial to enhance neurodevelopmental outcomes, including cognition, language, and brain
microstructure, for children at risk of cognitive, psychiatric, and behavioral disorders,
particularly those born extremely premature [33]. Both healthy toddlers and those born
preterm are at a pivotal stage in neurodevelopment, wherein environmental stimuli, es-
pecially parenting, must be adaptively responsive to address each child’s evolving needs.
This adaptability is crucial for fostering positive neurodevelopmental outcomes. The re-
ciprocal interaction between parents and toddlers during play, as well as routine activities
such as grocery shopping and dressing, provides the necessary stimulation for the healthy
development of brain regions associated with emerging language, cognitive skills, and
emotion regulation capacities. Taking a step further, actively supporting brain develop-
ment, particularly in the frontal lobes, through responsive parenting could be a key factor
in improving neurodevelopmental outcomes among extremely preterm individuals, who
frequently encounter challenges related to frontal lobe processes such as executive function
(EF) and emotion regulation (ER).

This study makes a significant contribution to the existing literature by illustrating
the positive impact of responsive parenting on brain development, leading to increased
gray matter volume (GMV) in the frontal lobe of extremely preterm toddlers. Supporting
our hypothesis, older toddlers were more compliant as the Tool Task became harder. One
possibility is that, across gestational groups, older toddlers are better able work as a team
with their caregivers to solve difficult problems—that is to say, older toddlers are better able
inhibit their own agenda to make use of caregiver supports and suggestions. Regarding
gestational effects, LPT toddlers are more compliant only in the third level, but at moderate
level difficulty older VPT toddlers were more compliant at levels 2 and 3. EPT toddlers
showed a similar pattern, but only at level 1, the easiest level of the task. Regardless of
age, EPT toddlers were moderately noncompliant throughout levels 2 and 3. This pattern
reflects the perception of difficulty for each gestational group, as EPT toddlers find it
difficult at level 1, VPT toddlers find it difficult at level 2, and LPT toddlers find it difficult
at level 3. This effect may be due to the lower birth risk allowing for typical developmental
patterns to become evident at this age.

Supporting our hypothesis, child engagement decreased as the task became more
challenging, but increased with child age. It is likely that the frustration inherent to
increased task difficulty leading led to lower engagement, although older children were
better able to regulate negative emotions and allocate attention to achieving the goal,
leading to higher engagement across difficulty levels. Like the age-related effects, LPT
toddlers exhibited the highest levels of engagement across all task levels, possibly owing
to their ability to employ emotion regulation, enabling them to focus on the task goals.
Exploratory analysis suggests that parent support is an individual difference; thus, the
absence of differences in parent support may be attributed to consistent personality traits
rather than the state of assisting the child during problem-solving.

Whereas parent support was not related to toddler noncompliance, it did impact
toddler engagement. LPT and EPT toddlers with supportive parents demonstrated higher
engagement in the task. Importantly, the effects of parent support on child engagement
were noticeable at level 3 for LPT toddlers and level 2 for EPT toddlers, underscoring the
need for parental support to be adaptively tailored to meet the changing needs of toddlers.
The observed patterns of child engagement and parent support in challenging tasks align
with the concept of scaffolding in Vygotsky’s sociocultural theory. Within the caregiving
context, Vygotsky’s scaffolding principal centers on providing support and guidance to
a learner, adjusting the level of assistance as needed. EPT and LPT toddlers, possibly
due to their specific developmental readiness, may benefit from more effective parental



Children 2024, 11, 206 12 of 15

scaffolding at level 2 and level 3, respectively, facilitating their engagement and success at
an appropriate point in this challenging task [49,50].

Frontal lobe GMV only differed by age, where older children had greater GMV than
younger children due to increased neurodevelopment as they age. The differences by
age are similar across the three groups as expected. In line with our hypothesis that
parent support benefits high birth risk toddlers the most, there was an interaction between
gestational group and parent support, such that the high birth risk group (EPT) showed
greater right frontal lobe GMV with greater parent support. It is unclear why parenting
effects were right lateralized, one possibility is that right frontal lobe may be more involved
in ER and thus more malleable to environment specific stimulation, such as parenting
behavior [51]; whereas left frontal lobe may be more sensitive to other environmental
factors, such as rich language exposure. Although the constrained sample size of this study
warrants caution, it is essential to consider the finding that parental behavior impacted
the frontal lobe GMV in the gestational group at the highest neurodevelopmental risk (i.e.,
EPT). This finding aligns with the differential susceptibility theoretical framework [52],
which suggests that individuals more susceptible to adversity may also be more responsive
to positive influences, such as supportive parenting. Within the context of prematurity,
according to this framework, those at the highest neurodevelopmental risk may benefit the
most from supportive parenting practices. Consistent with our hypothesis, EPT toddlers
who received substantial parental support during the task exhibited significantly greater
gray matter volume in the frontal lobe. This EPT group experienced the most atypical
developmental journey and longest postnatal period, distinguishing them from the later
gestational groups. In this cohort with the highest birth risk, parental support appears
to play a crucial role in mitigating GMV deficiencies among preterm children, potentially
contributing to improved cognitive and socioemotional development and lowering the risk
of psychiatric disorders. Subsequent research, including a larger sample and longitudinal
design, should delve into the effects of parental intervention on preterm toddler GMV,
emotion regulation, and the intricate interplay with parental support.

Present findings highlighting the significant influence of parent support on the brain
development of toddlers at the highest birth risk are compelling but should be considered
within the context of the following limitations. First, to achieve these study aims, multi-
ple hypotheses were tested on a relatively small sample size, increasing the risk for false
positives. Toddlers born with low gestational ages (EPT and VPT) constitute a special-
ized population, which increases the potential impact of research findings; yet researchers
working with pediatric patient populations and their families are aware of health-related
(e.g., ongoing outpatient therapies, respiratory illness) barriers for recruitment and en-
rollment, ultimately limiting sample size. For this reason, the modest sample size in this
study necessitates cautious interpretation of results. Future studies with larger samples
are recommended to enhance generalizability and robustness of findings. Furthermore,
the cross-sectional nature of this study does not capture developmental change over time.
Instead, our study design allows for the inference of age-related changes in both brain
and behavior, alongside current environmental experience. Future longitudinal studies are
essential to provide a more comprehensive understanding of the dynamic developmental
and even infer differential trajectories of brain–behavior outcomes in preterm toddlers.

The inclusion of MRI data in this research provides valuable insights into the intricate
relationship between brain development and behavioral outcomes in toddlers born preterm.
Although the acquisition of MRI data from sleeping toddlers represents an innovative ap-
proach, it is important to note that a limitation was that frontal lobe volumetric analyses
were restricted to toddlers who remained asleep during MRI data acquisition. This limita-
tion might introduce bias, as our sample could be skewed toward toddlers who experience
less disruption during natural sleep. An anecdotal note of interest—investigators in this
study collect several variables on child sleep habits. Surprisingly, sensitivity to sound
during sleep and regular bedtime are not sufficient predictors of success; whereas, multiple
MRI data collection attempts and same day behavioral and MRI testing support MRI data
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acquisition. One final limitation, the study did not assess motor skill ability or milestones,
and it is plausible that EPT and VPT toddlers faced additional challenges in this domain
compared to LPT toddlers. While the Tool Task’s coding framework allows for scaling of
coded behaviors based on child capacity, future investigations should consider incorpo-
rating fine motor skill assessments to provide a more comprehensive understanding of
the interplay between parenting behaviors, emotion regulation, and motor development
challenges in preterm infants and toddlers.

5. Conclusions

Based on our results that parent support has the greatest impact on the highest birth
risk (under 28 weeks gestation) toddler brain development, parent interventions may be
warranted to normalize their child’s brain development from the start and create a lasting
positive impact. Future work research should target increasing positive parenting behavior
to improve brain development, ER, and other cognitive skills in toddlers born preterm.
Continuing to investigate the effects of parenting interventions on preterm toddlers could
establish the way for this population to have better ER/EF mechanisms and reach their full
developmental potential.
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