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Abstract: General linear modeling (GLM) has been widely employed to estimate the hemodynamic 

changes observed by functional near infrared spectroscopy (fNIRS) technology, which are found to 

be nonlinear rather than linear, however. Therefore, GLM might not be appropriate for modeling 

the hemodynamic changes evoked by cognitive processing in developmental neurocognitive stud-

ies. There is an urgent need to identify a better statistical model to fit into the nonlinear fNIRS data. 

This study addressed this need by developing a quadratic equation model to reanalyze the existing 

fNIRS data (N = 38, Mage = 5.0 years, SD = 0.69 years, 17 girls) collected from the mixed-order design 

Dimensional Change Card Sort (DCCS) task and verified the model with a new set of data with the 

Habit-DisHabit design. First, comparing the quadratic and cubic modeling results of the mixed-order 

design data indicated that the proposed quadratic equation was better than GLM and cubic regres-

sion to model the oxygenated hemoglobin (HbO) changes in this task. Second, applying this quad-

ratic model with the Habit-DisHabit design data verified its suitability and indicated that the new 

design was more effective in identifying the neural correlates of cognitive shifting than the mixed-

order design. These findings jointly indicate that Habit-DisHabit Design with a quadratic equation 

might better model the hemodynamic changes in preschoolers during the DCCS task. 

Keywords: cognitive shifting; fNIRS evidence; modeling hemodynamic changes; dimensional change 

card sort (DCCS) task; preschoolers 

 

1. Introduction 

Near-infrared spectroscopy (NIRS) technology is a portable and comfortable way to 

measure the hemodynamic changes in targeted brain areas [1–3]. It can generate time-

sensitive data that can be analyzed using general linear modeling (GLM) to estimate the 

changes in oxygenated hemoglobin (HbO) and deoxyhemoglobin (HbR) between the task 

and baseline. For instance, Li et al. examined the effect of heavy tablet use on preschoolers’ 

executive function during the Dimensional Change Card Sort (DCCS) task using functional 

NIRS (fNIRS) [4]. They conducted t-tests and GLM to compare the hemodynamic changes 

in the non-user and the heavy user groups. They found a significant between-group dif-

ference in activating the prefrontal cortex (Brodmann Area 9, BA 9). The ‘Non-user’ acti-

vation pattern was ‘normal and healthy’, whereas the ‘Heavy-user’ pattern was ‘not normal 

and thus needs further exploration’ [4]. However, they presented no further statistical evi-

dence to demonstrate how ‘abnormal’ the ‘Heavy-user’ pattern was, as the GLM results 
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provided no details about the local maximum of HbO changes and their estimated time, 

making exact comparisons of the two ways impossible. In addition, the hemodynamic 

changes over time in brain areas are a nonlinear rather than linear relationship; thus, the 

GLM analysis conducted by Li et al. [4] might be inappropriate or even inaccurate. To 

solve this problem, Li et al. [5] proposed a quadratic function to better model the hemo-

dynamic changes of the DCCS task, demonstrating a nonlinear U-shape paradigm. Still, 

they did not compare the quadratic results against the GLM and the cubic equation anal-

yses. Thus, they could not conclude whether the quadratic equation would be better than 

GLM and cubic equation results. To fill this gap, this study aimed to re-analyze the same 

data with a quadratic and cubic equation to identify a better way to model the hemody-

namic responses in the DCCS task. Furthermore, the proposed quadratic equation was 

also applied to analyze a set of DCCS data with a new design to verify its suitability and 

appropriateness. 

1.1. Modeling Hemodynamic Changes with GLM 

fNIRS technology allows us to monitor brain activation by measuring hemodynamic 

changes, such as the concentration of HbO and HbR in targeted brain areas. The HbO and 

HbR data are dynamic and changing over time; thus, advanced statistical analyses are 

needed to examine this type of time-sensitive data [1–3]. However, no systematic and 

standardized approaches were established in the first decade of this millennium; thus, 

NIRS scientists had the liberty to choose the statistical methods they believed to be appro-

priate and adequate. Schroeter et al. [6] initially proposed employing general linear model-

ing (GLM) as the standard statistical approach to analyzing fNIRS data. Accordingly, 

Pouliot et al. [7] concluded that GLM could be used as a legal analysis to examine fNIRS 

data for spikes and seizures. In 2014, Tak and Ye [8] systematically reviewed the com-

monly used statistics such as principal component analysis, independent component anal-

ysis, false discovery rate, and inference statistics such as the standard t-test, F-test, analysis 

of variance, and statistical parameter mapping framework. Eventually, they proposed 

adopting the GLM mixed-effect model with restricted maximum likelihood variance esti-

mation to model hemodynamic changes [8]. 

Since then, employing GLM to estimate hemodynamic changes has become the 

standard inference statistic for fNIRS data. GLM empowers scientists to assess the subject, 

channel, and task-specific evoked hemodynamic responses and to robustly separate the 

evoked brain activity from systemic physiological interference using independent 

measures of nuisance regressors [1–3]. In addition, GLM can significantly enhance the 

contrast-to-noise ratio of the brain signal, improve feature separability, and ultimately 

lead to better classification accuracy. In 2015, for example, Bonomini et al. [9] proposed 

and confirmed a GLM-based new algorithm to statistically estimate the hemodynamic ac-

tivations, with a K-means method to cluster channels as activated or not activated. Later, 

Pinti et al. [10] presented a novel analysis method based on the GLM least-squares fit anal-

ysis and verified its accuracy and feasibility in modeling fNIRS data in naturalistic envi-

ronments. Recently, von Lühmann et al. [11] found that GLM could provide better single-

trial estimates of brain activity and a new feature type, such as the weight of the individual 

and channel-specific hemodynamic response function regressor. However, the hemody-

namic changes recorded by fNIRS are nonlinear rather than linear; thus, GLM might not 

be an appropriate statistical method. This study endeavored to identify a better statistical 

way by comparing quadratic and cubic modeling results of the same DCCS fNIRS data. 

1.2. Modeling Hemodynamic Changes in the DCCS Task 

The DCCS task asks children to sort a set of two-dimensional (i.e., color and shape) 

test cards (3.5 × 7.0 cm) according to the two target cards that match the former in one 

dimension but not the other. Then, the children are asked to sort the test cards according 

to one extent matching the target card (red/blue; shape: boat/rabbit). And the rule for 

matching is changed according to the experimenter’s instruction (See Figure 1). Initially, 
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Morriguchi and his colleagues [12] conducted fNIRS studies on the DCCS task. They con-

ducted t-tests and correlation analyses to compare HbO changes between the task and 

baseline conditions. Recently, Moriguchi and Lertladaluck [13] and Xie et al. [14] con-

ducted the exact t-tests and correlation analyses of the HbO changes during the same 

DCCS task. However, the results were contradictory: Moriguchi and Lertladaluck [13] 

found no significant relationship between prefrontal activations and English proficiency, 

whereas Xie et al. [14] found a significant correlation. This inconsistency indicated that 

either the data analysis or the DCCS task paradigm employed by the two teams might 

need to be revised in identifying the specific neural correlates responsible for cognitive 

shifting of the DCCS task. 

 

Figure 1. The mixed-order design DCCS tasks [4,12,14]. It was a block design with a mixed order of 

switching rules. The children performed three consecutive test sessions, each consisting of three rest 

phases (20 s) and three testing phases (25 s). This mixed-order design prevented the children from 

accurately predicting the switching rules and, thus, could not generate habituation. 

Therefore, first, Li et al. [15] developed the “habituation–dishabituation paradigm of 

DCCS task” (“Habit-Dishabit Design” hereafter) and proposed a more direct and critical 

indicator—the “V shape by GLM” to identify cognitive shifting. As shown in Figure 2, this 

paradigm has improved the arrangement of testing items to maximize the chances of ha-

bituation and dishabituation in the participating children. In the pre-switch period (20′), 

the children were asked to sort six or more cards using the same rule and thus tended to 

be habituated. Then, they were asked to use the other rule to sort another set of cards (6 

or more) in the post-switch period (20′). The three sessions followed the same sorting rule 

as the second period of the previous session: Session 1: color (6 cards) → shape (6 cards); 

Session 2: shape (6 cards) → color (6 cards); and Session 3: color (6 cards) → shape (6 

cards). The children tended to be habituated when they anticipated that the second round 

of sorting cards should follow the same rule. In other words, this paradigm helped to 

trigger the occurrence of habituation and dishabituation. Second, they [15] proposed a 

pair of GLMs to estimate HbO changes (∆HbO) for the pre- and post-switch periods, using 

the same regression formula: 

YΔHbO = a pre-switch or post-switch X time + b + ε. (1) 

In this GLM equation, X time refers to the response time and Y predicts each channel’s 

hemodynamic changes (∆HbO). A perfect V-shape could be verified if the a pre-switch is 

negative (−a), whereas the a post-switch is positive (+a), and both models are significant. 

The corresponding channel was identified as the neural correlate of ‘cognitive shifting’ 

[15]. Using this new paradigm, they found a V-shape in BA 6, BA 8, BA 9, BA 10, BA 40, 

and BA 44, which should be regarded as the neural correlations of cognitive shifting dur-

ing the DCCS task [15]. 
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Figure 2. The Habit-DisHabit Design DCCS Task [15]. It was a block design with a fixed order of 

switching rules. The children performed three consecutive test sessions, each consisting of three rest 

phases (30 s) and three testing phases (40 s). This fixed-order design promoted the children to pre-

dict the switching rules accurately and thus habituate their responses. 

1.3. The Context of This Study 

Recently, Li et al. [4] adopted the mixed-order design DCCS and GLM by Moriguchi 

and Lertladaluck [12] and Xie et al. [13] to examine the impact of tablet use on preschool-

ers’ executive function. Using the V-shape by GLM (Equation (1)), they found that the 

non-users outperformed the heavy users with a significantly higher correct rate in the 

DCCS task. And the two groups differed significantly in the activation of BA 9 (ch 16), 

indicating that the Non-user pattern was ‘normal and healthy’ [4]. In contrast, the heavy 

user pattern was ‘not normal and needs further exploration’. However, the hemodynamic 

changes in each channel should be a kind of nonlinear relationship [1–3]. In addition, the 

V-shape by GLM was analyzed and confirmed using a pair of GLMs (Equation (1)): one 

for the pre-switch period and the other for the post-switch period. This might not be ap-

propriate for modeling the continuous HbO changes evoked by cognitive processing dur-

ing the DCCS task. The children’s hemodynamic responses are continuous and indivisible 

during the two periods. Therefore, Li et al. [5] proposed a quadratic function (Equation 

(2)) to better model the hemodynamic changes of the DCCS task: 

𝑌∆𝐻𝑏𝑂 = 𝑎𝑋𝑡𝑖𝑚𝑒
2 + 𝑏𝑋𝑡𝑖𝑚𝑒 + 𝑐 + 𝜀(𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚) (2) 

In particular, ∆HbO refers to the HbO changes between the task and baseline, 𝜀 is 

randomly distributed with a mean of zero, and Xtime refers to the experiment time [14]. 

Thus, if a > 0, the curve is a typical U-shape; if a = 0, the quadratic function does not exist, 

indicating a linear relationship that GLM could model; and if a < 0, the curve is a reversed 

U-shape. 

However, Li et al. [5] did not compare the quadratic results against GLM and the 

cubic equation analyses, thus failing to identify the best model. Therefore, in this study, 

we hypothesized that this U-shaped curve by the quadratic function might be more sta-

tistically appropriate for modeling hemodynamic changes in the DCCS task than the V-

shape by GLM [14]. In addition, we also hypothesized that the “Habit-DisHabit Design” 

might be more appropriate for identifying the neural correlates of cognitive shifting. Ac-

cordingly, this study is dedicated to addressing the following questions: 

1. Is a quadratic equation better than GLM and cubic equations to model the hemody-

namic changes caused by cognitive shifting in the DCCS task? 

2. Is mixed-order design better than Habit-DisHabit design to identify cognitive shifting in 

the DCCS task? 
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2. Materials and Methods 

2.1. Participants 

This study first re-analyzed the fNIRS data from Li et al. [4], which recruited 38 chil-

dren (ages 4 to 6.3 years, Mage = 5.0 years, SD = 0.69 years, 17 girls, 21 boys). Please refer to 

Li et al. [4] for sample details. Then, we applied the quadratic equation to analyze fNIRS 

data collected from the same sample with a new experiment design: the Habit-DisHabit 

Design DCCS Task. According to Li et al. [4], their parents consented and completed the 

survey to help identify the heavy users or non-users of tablets at home. Eight children 

never used tablets; thus, they were included in the ‘Non-user’ group (two girls and six 

boys). About 16 (12 girls and 4 boys) children were classified into the ‘Heavy-user’ group” 

because (1) their daily screen time was more than the mean level (M = 17.98 min, SD = 

14.29); (2) their tablet use was neither regulated nor limited; and (3) they carried out mul-

tiple activities with tablets. In particular, all the participating children were recruited from 

one public kindergarten in a middle-class Shenzhen community. Their parents and class 

teachers reported no problems in the children’s neurological or general physical and men-

tal health status. They conducted a post hoc power analysis on G*Power 3.1, using a two-

tailed test, a medium effect size (d = 0.50), and an alpha of 0.05 and found that the results 

could achieve a power of 0.32 [4]. 

2.2. Experimental Paradigm and Instructions 

2.2.1. The Mixed-Order Design DCCS Task 

This task included 2 target cards and 24 test cards, each different in shape and color. 

One pair of target trays was used for the three consecutive test sessions, and each session 

consisted of a rest (20 s) phase and a mix (25 s) phase. During the rest phase, the children 

were asked to be still, doing nothing. As shown in Figure 1, the children were asked to sort 

the cards according to the instructed rule (color or shape) during the mix phase. The children 

were given the rule before each trial. Then, in each block, the rule-changing order was 

fixed and mixed: shape, shape, color, shape, shape, color, shape, shape (a total of 8 cards 

per block). This fixed order was applied to all the participants to overcome habituation, 

resulting in more color-to-shape switches in total [4]. For details about this mixed-order 

design’s experimental paradigm and instructions, please refer to Li et al. [4]. 

2.2.2. The Habit-DisHabit Design DCCS Task 

This task is different from the mixed-order design. As shown in Figure 2, the children 

were asked to sort eight to twelve cards using the same rule within the pre-switch period 

(20 s). Then, they were asked to use the other rules to sort another eight to twelve cards 

within the post-switch period (20 s). The three sessions followed the same sorting rule as 

the second period of the previous session: Session 1: color (20 s) → shape (20 s); Session 2: 

shape (20 s) → color (20 s); and Session 3: color (20 s) → shape (20 s). This design was 

inductive to cognitive habituation and dishabituation by repeating the changing rules in 

the pre-switch period [15]. For details about this design’s experimental paradigm and in-

structions, please refer to Li et al. (2021) [15]. 

2.3. System and Acquisition 

2.3.1. The fNIRS System 

In Li et al.’s studies [4,15] and this study, the same multiple-channel fNIRS system 

(Oxymon Mk III, Artinis, The Netherlands) and child caps were used to simultaneously 

measure the concentration changes in HbO, HbR, and total hemoglobin (HbT) in the par-

ticipants. In particular, both studies employed child caps accompanied by the NIRS in-

strument, which digitized the optode positions, corresponding to Brodmann areas, as 

shown in Figure 3. An experienced NIRS technician conducted cap placement, hair ma-

nipulation and tossing, and optode installation (based on the 10/20 system). This process 
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usually took 10 min, during which the participant was engaged in storybook reading with 

an experienced preschool teacher. For details, please refer to Li et al. [4]. 

2.3.2. Data Acquisition 

Two wavelengths in the near-infrared range (i.e., 760 nm and 850 nm) were used to 

measure the changes in optical density and were then converted into changes in the con-

centration of HbO and HbR using the modified Beer–Lambert law [4,14]. The 17 channels 

were located following the international 10/20 system for EEG, as shown in Figure 1 of Li 

et al. (2021) [4], with a 2.5 cm distance between each paired emitter and detector. In par-

ticular, the region of interest (ROI) was located at Brodmann areas (BAs) 6/8/9/10/40/44 

[4]. In particular, as shown in Figure 3, channels 1 and 9 were located in BA 6, channels 

13, 15, and 17 were located in BA 10, channel 10 was located in BA 8, channels 11, 12, 14, 

and 16 were located in BA 9, channel 4 was located in BA 40, and channels 2, 3, 5, 6, and 7 

and 8 were located in the right inferior frontal gyrus (BA 44). 

 

Figure 3. Localization of regions of interest [4,6,14]. The red and blue solid circles present the light 

sources and the probes, respectively. The numbers on the small spheres on the brain map indicate 

the 17 channels (ch). Channel localization was based on the upper central probe, anchored at Fz 

according to the international 10–20 system and located at the midpoint between channels 11 (ch 11) 

and 12 (ch 12). Ch 1 and ch 9 were located in Broadmann area (BA) 6, ch 10 was located in BA 8, ch 

11, ch 12, ch 14, and ch 16 were located in BA 9, ch 13, ch 15, and ch 17 were located in BA 10, ch 4 

was located in BA 40, and ch 2, ch 3, ch 5, ch 6, ch 7, and ch8 were located in the right IFC (BA 44). 

2.3.3. Data Analysis 

In Li et al. [4,15] and this study, the mean of the z-scores (HbO and HbR) was calcu-

lated for each DCCS task block separately for each participant. Then, the mean of the z-

scores (HbO and HbR) was calculated by averaging across the three task blocks for each 

participant. Finally, the means of the z-scores (HbO and HbR) across all channels were 

compared using t-tests between the ‘Non-user’ and the ‘Heavy-user’ groups using SPSS. 

Li et al. [4] conducted GLM analysis predicting z-scores (HbO and HbR) in channel 16 in 

R (𝑌∆𝐻𝑏𝑂 = 𝑎𝑋𝑡𝑖𝑚𝑒 + 𝑏 +  𝜀) [Equation (1)]. This study explored two sets of polynomial re-

gression to better fit the nonlinear relationship between the hemodynamic changes and 

the experiment time. The first set was a quadratic equation using R [𝑌∆𝐻𝑏𝑂 = 𝑎𝑋𝑡𝑖𝑚𝑒
2 +

𝑏𝑋𝑡𝑖𝑚𝑒 + 𝑐 + 𝜀(𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚)] [Equation (2)]. If a > 0, the curve is a typical U-shape; if a = 0, 

the quadratic function does not exist, indicating a GLM linear relationship; and if a < 0, 

the curve is a reversed U-shape. The second set was a cubic equation analysis using the 

following equation: 

𝑌∆𝐻𝑏𝑂 = 𝑎𝑋𝑡𝑖𝑚𝑒
3 + 𝑏𝑋𝑡𝑖𝑚𝑒

2 + 𝑐𝑋𝑡𝑖𝑚𝑒 + 𝑑 + 𝜀(𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚)   (3) 

If a = 0, the cubic function does not exist, indicating that a quadratic equation or GLM 

(if b = 0) should be considered. This study would compare the statistical results of the three 

equations (Equations (1)–(3)) and identify the best-fit model. 
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3. Results 

3.1. Comparison of the Quadratic and Cubic Modeling Results 

First, as shown in Table 1 and Figure 4, the quadratic analysis results for the non-user 

group indicated that: (1) a U-shaped curve (a > 0) was observed in nine channels (ch 1, 2, 

5, 6, 7, 8, 9, 11, and 14), and the quadratic model could significantly explain 7.5% to 94.3% 

of the variance in HbO, R2s > 0.075, Fs > 5.94, ps < 0.001; (2) the quadratic model did not 

exist in channels 3 and 4 (a = 0), R2s >. 66, Fs = 145.65, ps < 0.001, whereas GLM applied; 

and (3) a reversed U-shaped curve (a < 0) was observed in channels 10, 12, 13, 15, 16, and 

17, R2s > 0.27, Fs > 27.27, ps < 0.001. The significant R2s, F-values and p-values jointly indi-

cated that the U-shaped curve was found for BA 6 (ch 1 and 9), BA 9 (ch 11 and 14), and 

BA 44 (ch 2, 5, 6, 7, and 8), which were involved in cognitive shifting. Only two channels 

(ch 3 and 4) could not be estimated by this quadratic equation modeling. Next, a set of 

cubic equation analyses was conducted for the non-user group, with X3 as the cubic term 

in addition to X2 as the quadratic term and X as the linear term. However, as shown in 

Table 2, the results for the non-user group indicated that only two channels (ch 11 and 13) 

could apply to the cubic regression (a ≠ 0). All other channels should be modeled with a 

quadratic equation (a = 0). These results indicated that the proposed quadratic equation 

might be more appropriate than the cubic equation to analyze the DCCS data collected in 

this study. 

Table 1. The quadratic modeling results for the non-user group. 

 Model Summary Regression Estimates Quadratic 
 R2 F Sig. c b a  

Ch 1 0.566 96.041 0 −0.107 −0.108 0.004  

Ch 2 0.943 1217.46 0 0.219 −0.271 0.011  

Ch 3 0.846 405.072 0 −0.465 −0.033 0 GLM 

Ch 4 0.665 145.654 0 −1.149 0.065 0 GLM 

Ch 5 0.358 41.019 0 −0.574 0 0.001  

Ch 6 0.353 40.048 0 −0.185 −0.049 0.002  

Ch 7 0.729 198.044 0 −0.492 −0.076 0.004  

Ch 8 0.832 363.664 0 −0.652 −0.121 0.005  

Ch 9 0.075 5.941 0.003 −0.158 −0.037 0.001  

Ch 10 0.636 128.357 0 −0.05 0.08 −0.003  

Ch 11 0.358 40.957 0 −0.211 0.008 0.001  

Ch 12 0.352 39.98 0 0.32 0.028 −0.001  

Ch 13 0.271 27.279 0 0.027 0.114 −0.004  

Ch 14 0.807 307.87 0 0.357 −0.097 0.001  

Ch 15 0.624 121.91 0 0.424 0.027 −0.001  

Ch 16 0.919 830.919 0 0.506 0.057 −0.001  

Ch 17 0.562 94.382 0 −0.23 0.057 −0.001  

Note: YHbO change = ax2 + bx + c. 

Table 2. The cubic modeling results for the non-user group. 

 Model Summary Regression Estimates   
 R2 F Sig. d C b a Quadratic 

Ch 1 0.840 256.361 0.000 0.447 −0.324 0.022 0.000  

Ch 2 0.985 1096.976 0.000 0.382 −0.271 0.011 0.000  

Ch 3 0.858 293.571 0.000 −0.384 −0.075 0.003 0.000  

Ch 4 0.789 181.806 0.000 −0.570 −0.161 0.018 0.000  

Ch 5 0.835 246.190 0.000 −0.105 −0.183 0.016 0.000  

Ch 6 0.355 26.737 0.000 −0.157 −0.060 0.003 0.000  
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Ch 7 0.885 372.941 0.000 0.050 −0.288 0.021 0.000  

Ch 8 0.863 307.565 0.000 −0.439 −0.204 0.012 0.000  

Ch 9 0.199 12.095 0.000 −0.466 0.083 −0.009 0.000  

Ch 10 0.789 182.221 0.000 0.266 −0.043 0.007 0.000  

Ch 11 0.772 165.231 0.000 0.514 −0.276 0.024 −0.001 Cubic 

Ch 12 0.440 38.205 0.000 0.481 −0.035 0.004 0.000  

Ch 13 0.726 129.252 0.000 0.919 −0.235 0.025 −0.001 Cubic 

Ch 14 0.858 294.045 0.000 0.720 −0.239 0.013 0.000  

Ch 15 0.642 87.397 0.000 0.505 −0.004 0.001 0.000  

Ch 16 0.953 976.936 0.000 0.663 −0.005 0.004 0.000  

Ch 17 0.890 394.158 0.000 0.356 −0.172 0.018 0.000  

Note: YHbO change = ax3 + bx2 + cx + d. 

 

Figure 4. Quadratic modeling the HbO changes in the non-user group. The dotted lines present the 

observed HbO changes, and the solid lines demonstrate the quadratic curves. The X-axis represents 

the time (t) and the Y-axis presents the z-scores of HbO changes. 
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Second, as shown in Table 3 and Figure 5, the quadratic analysis results for the heavy 

user group indicated that: (1) a U-shaped curve (a > 0) was observed in channels 2–5, 8, 12, 

16, and 17; the quadratic model could significantly explain 37.1% to 92.3% of the HbO 

changes, R2s > 0.037, Fs > 43.25, ps < 0.001; (2) the quadratic model did not exist in channels 

1, 6, 7, and 13 (a = 0), R2s > 0.059, Fs > 4.68, ps < 0.011, whereas the cubic model applied; 

and (3) a reversed U-shaped curve (a < 0) was observed in channels 9–11 and 14–5, R2s > 

0.117, Fs > 9.87, ps < 0.001. The significant R2s, F-values, and p-values jointly indicated that 

the U-shaped curve was found in BA 9 (12 and 16), BA 10 (17), BA 40 (ch 4), and BA 44 (ch 

2, 3, 5, and 8). Four channels (ch 1, 6, 7, and 13) could not be estimated by this quadratic 

equation (see Tables 3). In contrast, a set of cubic equation analyses was conducted for the 

heavy user group, with X3 as the cubic term in addition to X2 as the quadratic term and X 

as the linear term. As shown in Table 4, the results for the heavy user group indicated that 

no channels could be estimated by the cubic regression as a = 0. Therefore, all these results 

jointly indicated that the proposed quadratic equation might be more appropriate than 

the cubic equation to analyze the DCCS data collected in this study. 

Table 3. The quadratic modeling results for the heavy user group. 

 Model Summary Regression Estimates  

 R2 F Sig. c B a Quadratic 

Ch 1 0.06 4.687 0.011 −0.397 0.014 0 GLM 

Ch 2 0.727 196.141 0 0.769 −0.133 0.004  

Ch 3 0.887 576.348 0 0.332 −0.148 0.003  

Ch 4 0.595 107.839 0 0.356 −0.043 0.001  

Ch 5 0.371 43.26 0 0.446 −0.082 0.002  

Ch 6 0.432 56.012 0 −0.142 −0.002 0 GLM 

Ch 7 0.092 7.469 0.001 0.232 −0.007 0 GLM 

Ch 8 0.923 880.189 0 0.534 −0.129 0.003  

Ch 9 0.118 9.88 0 −0.142 0.022 −0.001  

Ch 10 0.816 325.979 0 0.025 0.075 −0.003  

Ch 11 0.568 96.717 0 0.399 0.071 −0.003  

Ch 12 0.669 148.69 0 0.547 −0.114 0.004  

Ch 13 0.521 79.901 0 0.078 0.025 0 GLM 

Ch 14 0.475 66.407 0 0.097 −0.003 −0.001  

Ch 15 0.477 67.002 0 −0.439 0.062 −0.002  

Ch 16 0.668 147.668 0 0.719 −0.18 0.005  

Ch 17 0.683 158.11 0 0.633 −0.104 0.003  

Note: YHbO change = ax2 + bx + c. 

Table 4. The cubic modeling results for the heavy user group. 

 Model Summary Regression Estimates   
 R2 F Sig. d c B a Quadratic 

Ch 1 0.506 49.781 0 0.203 −0.220 0.019 0.000  

Ch 2 0.732 132.969 0 0.833 −0.158 0.006 0.000  

Ch 3 0.887 383.652 0 0.362 −0.160 0.004 0.000  

Ch 4 0.740 138.207 0 0.658 −0.161 0.010 0.000  

Ch 5 0.603 73.794 0 0.845 −0.238 0.015 0.000  

Ch 6 0.461 41.568 0 −0.073 −0.029 0.003 0.000  

Ch 7 0.469 43.028 0 0.555 −0.134 0.010 0.000  

Ch 8 0.924 593.347 0 0.497 −0.114 0.002 0.000  

Ch 9 0.123 6.849 0 −0.171 0.033 −0.002 0.000  

Ch 10 0.829 236.693 0 0.090 0.049 −0.001 0.000  
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Ch 11 0.764 157.399 0 0.743 −0.063 0.008 0.000  

Ch 12 0.731 132.299 0 0.823 −0.222 0.013 0.000  

Ch 13 0.821 223.106 0 0.330 −0.073 0.008 0.000  

Ch 14 0.563 62.819 0 0.361 −0.107 0.008 0.000  

Ch 15 0.631 83.108 0 −0.219 −0.024 0.005 0.000  

Ch 16 0.793 186.167 0 1.186 −0.362 0.020 0.000  

Ch 17 0.739 138.152 0 0.814 −0.175 0.009 0.000  

Note: YHbO change = ax3 + bx2 + cx + d. 

 

Figure 5. Quadratic equation modeling the HbO changes in the heavy user group during the mixed-

order design DCCS tasks [15]. The dotted lines present the observed HbO changes and the solid 



Children 2023, 10, 1574 11 of 18 
 

 

lines demonstrate the quadratic curves. The X-axis represents the time (t) and the Y-axis presents 

the z-scores of HbO changes. 

3.2. Verification of Quadratic Modeling with New DCCS Data 

We applied quadratic modeling with the Habit-DisHabit design DCCS data to verify 

its suitability. As shown in Table 5 and Figure 6, the quadratic regression results for the 

non-user group indicated that: (1) a U-shaped curve (a > 0) was observed in 14 channels 

(ch 1, 2, 4, 5,7, 8, 9, and 11–17), and the quadratic predictor (experiment time) could explain 

48.1% to 96.3% of the variance (HbO), R2s > 0.48, Fs > 91.16, ps < 0.001; (2) the quadratic 

function does not exist in channels 3 and 6 (a = 0), R2s > 0.050, Fs = 5.39, ps < 0.005; and (3) 

a reversed U-shaped curve (a < 0) was observed in channels 10, R2 = 0.570, F = 130.73, p < 

0.001. The significant R2s, F-values, and p-values jointly indicated that the U-shaped curve 

was found for BA 6 (ch 1 and 9), BA 9 (ch 11, 12, 14, and 16), BA 40 (ch 4), and BA 44 (ch 

5, 7, and 8), which were involved in cognitive shifting. Only two channels (ch 3 and 6) 

could not be estimated by this quadratic equation. 

Table 5. Quadratic regression predicting HbO changes for the non-user group in the DCCS Habit-

DisHabit design task. 

 Model Summary Parameter Estimates U-Shape 
 R2 F Sig. c b a  

Ch 1 0.762 315.838 0.000 0.068 −0.128 0.003  

Ch 2 0.963 2586.161 0.000 0.960 −0.232 0.004  

Ch 3 0.076 8.130 0.000 0.390 0.000 0.000 GLM 

Ch 4 0.590 141.630 0.000 −0.559 −0.108 0.002  

Ch 5 0.862 616.488 0.000 0.232 −0.178 0.005  

Ch 6 0.052 5.391 0.005 −0.007 0.017 0.000 GLM 

Ch 7 0.798 388.446 0.000 0.256 −0.104 0.002  

Ch 8 0.895 841.443 0.000 −0.477 −0.207 0.006  

Ch 9 0.608 152.895 0.000 −0.383 −0.006 0.001  

Ch 10 0.570 130.726 0.000 0.669 0.116 −0.003 reversed 

Ch 11 0.685 213.853 0.000 0.532 −0.157 0.003  

Ch 12 0.844 5321.266 0.000 0.318 −0.218 0.005  

Ch 13 0.541 115.909 0.000 0.489 −0.092 0.002  

Ch 14 0.497 97.300 0.000 1.501 −0.163 0.004  

Ch 15 0.827 469.602 0.000 1.201 −0.123 0.002  

Ch 16 0.784 356.732 0.000 0.374 −0.155 0.002  

Ch 17 0.481 91.169 0.000 −0.384 −0.019 0.001  

Note: YHbO change = ax2 + bx + c. 
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Figure 6. Quadratic equation modeling the HbO changes in the non-user group during the Habit-

DisHabit DCCS Task. The dotted lines present the observed HbO changes, and the solid lines 
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demonstrate the quadratic curves. The X-axis represents the time (t) and the Y-axis presents the z-

scores of HbO changes. 

Next, as shown in Table 6 and Figure 7, the quadratic modeling results for the heavy 

user group indicated that: (1) a U-shaped curve (a > 0) was observed in channels 1, 2, 4, 8, 

9, 11, 12, 14, and 16, and the quadratic predictor (experiment time) could significantly 

explain 23.3% to 80.3% of HbO changes, R2s > 0.233, Fs > 29.95, ps < 0.001; (2) the quadratic 

function does not exist in channels 3, 5–7, 10, 13, 15, and 17 (a = 0), R2s > 0.028, Fs > 2.92, ps 

< 0.05; and (3) no reversed U-shaped curve (a < 0) was observed. The significant R2s, F-

values, and p-values jointly indicated that the U-shaped curve was found in BA 6 (ch 1 

and 9), BA 9 (11, 12, 14 and 16), BA 40 (ch 4), and BA 44 (ch 2 and 8). Eight channels (ch 3, 

5, 6, 7, 10, 13, 15, and 17) could not be estimated by this quadratic equation. 

Table 6. Quadratic regression predicting HbO changes for the heavy user group in the DCCS Habit-

DisHabit design task. 

 Model Summary Parameter Estimates U-Shape 
 R2 F Sig. c b a  

Ch 1 0.803 400.535 0.000 −0.358 −0.124 0.004  

Ch 2 0.755 304.194 0.000 0.493 −0.108 0.002  

Ch 3 0.029 2.924 0.056 −0.815 −0.001 0.000 GLM 

Ch 4 0.414 69.509 0.000 −0.555 −0.096 0.003  

Ch 5 0.484 92.488 0.000 0.447 −0.043 0.000 GLM 

Ch 6 0.123 13.867 0.000 −0.276 0.012 0.000 GLM 

Ch 7 0.040 4.107 0.018 −0.196 −0.012 0.000 GLM 

Ch 8 0.473 88.232 0.000 −0.412 −0.066 0.002  

Ch 9 0.233 29.960 0.000 0.151 −0.021 0.001  

Ch 10 0.740 280.658 0.000 0.231 0.050 0.000 GLM 

Ch 11 0.747 290.877 0.000 0.512 −0.097 0.002  

Ch 12 0.631 168.348 0.000 −0.284 −0.124 0.003  

Ch 13 0.381 60.718 0.000 −0.036 −0.005 0.000 GLM 

Ch 14 0.274 37.205 0.000 −0.273 −0.048 0.001  

Ch 15 0.160 18.810 0.000 −0.287 0.000 0.000 GLM 

Ch 16 0.523 108.047 0.000 −0.119 −0.103 0.003  

Ch 17 0.540 115.509 0.000 0.160 −0.045 0.000 GLM 

Note: YHbO change = ax2 + bx + c. 
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Figure 7. Quadratic equation modeling the HbO changes in the heavy user group during the Habit-

DisHabit DCCS task. The dotted lines present the observed HbO changes, and the solid lines 
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demonstrate the quadratic curves. The X-axis represents the time (t), and the Y-axis presents the z-

scores of HbO changes. 

In summary, the above modeling results for the mixed-order and Habit-DisHabit de-

sign tasks jointly indicated that Equation (2) might be the most suitable model for estimat-

ing the hemodynamic changes caused by cognitive shifting. As shown in the summary of 

Table 7, this model can help identify the most pronounced U-shape in all of the channels 

observed in the DCCS studies. 

Table 7. Observed U-shape by quadratic modeling in the HbO changes for the non-user and heavy 

user groups. 

DCCS Design Channel 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Non-user in mixed-order   L L              

Non-user in Habit-DisHabit   L   L            

Heavy user mixed-order L     L L      L     

Heavy user in Habit-DisHabit   L  L L L   L   L  L  L 

Brodmann area (BA) 6 44 44 40 44 44 44 44 6 8 9 9 10 9 10 9 10 

Note:  = U-shape by quadratic; L = linear relationship. 

4. Discussion 

4.1. Quadratic: More Appropriate Modeling 

Previous studies that investigated the HbO changes during the DCCS task [12–14] 

employed t-tests and correlation analyses, which are descriptive and correlational meth-

ods that depend on the sample size and may produce inconsistent results. For example, 

Moriguchi and Lertladaluck [13] found no significant effects, while Xie et al. [14] reported 

a significant correlation. Moreover, these methods could not establish the causal relation-

ship between behavioral and hemodynamic changes in the DCCS task. Thus, Li et al. [15] 

introduced the “V shape by GLM” (Equation (1)) to model the hemodynamic changes of 

cognitive shifting, which is an improvement over the previous analytical approaches. 

However, this linear model does not adequately capture the hemodynamic changes in 

each channel, as the HbO changes are continuous and wave-like rather than discrete and 

linear. Therefore, it is not suitable to use GLM to simulate the hemodynamic changes, and 

a more appropriate statistical model is needed. 

Accordingly, this study first reanalyzed the data in Li et al. [4], using both quadratic 

and cubic equations to model the continuous HbO changes in the DCCS tasks with the 

mixed-order design. In particular, as shown in Table 2 (the non-user group), only two 

channels (ch 11 and 13) could be modeled by Equation (3); the other 15 channels were 

quadratic models. Furthermore, for the heavy user group (Table 4), all channels could not 

be modeled by Equation (3) (cubic modeling); instead, only quadratic modeling could fit 

the HbO changes in the 17 channels. As shown in Figures 4 and 5, a comparison of the 

modeling results indicated that quadratic modeling (Equation (2)) was more effective and 

appropriate than cubic modeling (Equation (3)). 

Next, comparing the quadratic modeling results with the GLM results in Li et al. [4] 

indicated that nonlinear modeling might be a more sensitive and better fit than linear 

modeling. In particular, the GLM results in Li et al. [4] demonstrated that BA 9 was sig-

nificantly activated only in the non-user group during the DCCS task. In contrast, a sig-

nificant decrease was found for the heavy user group, demonstrating a substantial in-

crease after the twelfth second [4]. Thus, they concluded that BA 9 was significantly acti-

vated only in the non-user group during the DCCS task. However, this study reanalyzed 

the same data using the quadratic equation and found a significant U-shape in this chan-

nel (BA 9) for both non-user and heavy user groups, indicating that BA 9 was an essential 

neural correlate of cognitive shifting. Why could the GLM results not identify the nuance 
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changes in the heavy user group? This is because GLM could only generate a line to 

demonstrate the general trend. Thus, it could not model the second half of the quadratic 

curves of the mixed-order DCCS task, especially when there was a U-shape. Therefore, 

this comparison indicated that the U-shape by a quadratic equation might be more pow-

erful and efficient in identifying the neural correlates of cognitive shifting. 

Last, this study also applied Equation (2) with the new Habit-DisHabit design data 

and found a U shape in 14 channels; only one channel (ch 10) had a reversed U shape. This 

finding indicated that quadratic equations rather than GLM could help identify the neural 

correlations of cognitive shifting in the DCCS task. Therefore, the quadratic equation 

(Equation (2)) might be a better model of the hemodynamics of cognitive shifting and 

should be widely promoted to analyze the DCCS fNIRS data. 

4.2. Habit-DisHabit Design: More Effective for Identifying Cognitive Shifting 

This study first re-analyzed Li et al. [4] data with a quadratic equation and identified 

the U-shape in 9 channels for the non-user group. Then, an analysis of the new Hab-it-

DisHabit design data found a U-shape in 14 channels. Similarly, the re-analysis identified 

a U-shape in 8 channels within the heavy user group, whereas the new design data 

demonstrated it in 9 channels. The within-group increases in U shape indicated that the 

Habit-DisHabit design could help identify more correlated channels of cognitive shifting 

in the DCCS task. In addition, within the non-user group, the mixed-order design data 

indicated that six channels had a reversed U-shape, indicating that the corresponding 

channels’ HbO changes increased over time. 

In contrast, the Habit-DisHabit design data indicated only one channel (ch 10) had a 

reversed U-shape. Therefore, this accumulative increase cannot reflect the rise and fall of 

HbO over time corresponding to cognitive shifting. For the heavy user group, the mixed-

order design data indicated that five channels had a reversed U-shape, indicating that the 

HbO changes increased over time. In contrast, the Habit-DisHabit design data indicated 

no channel had a reversed U-shape, indicating a tendency of decreasing HbO in all the 

channels. This tendency might reflect the unique brain activation pattern of the Heavy 

user, which will be further explored in future studies. 

Most of the fNIRS studies on the DCCS task analyzed the changes in HbO between 

the task and baseline conditions and, accordingly, could not identify the specific neural 

correlates responsible for cognitive shifting (CS). There is an urgent need to identify the 

direct and critical indicator of CS, and the key to this search is ‘habituation’, the funda-

mental mechanisms underlying human being’s cognition and behavior [15]. When the 

same stimulus (switching rule) is repeated repeatedly, there will be a reduced response 

from the exact neural correlates and a decrease in HbO in the blood [16]. Unfortunately, 

the widely used mixed-order DCCS design [12–14] kept changing the switching rules, 

thus preventing children from habituating their responses. Therefore, this design could 

not generate the habituation–dehabituation process, which could be an observable marker 

of the CS. Instead, the Habit-DisHabit design prompted habituation and dishabituation 

in the children’s responses; the ‘U-shape’ with quadratic modeling could exactly demon-

strate the occurring moment of cognitive shifting for each channel, which is more power-

ful in identifying the neural correlates of CS. In summary, this comparison indicated that 

the Habit-DisHabit design might be more effective in identifying the neural correlates of 

and should be widely promoted in the DCCS tasks and should be widely promoted. Nev-

ertheless, further studies with more samples could help verify and improve this new de-

sign. 

5. Conclusions, Limitations, and Implications 

First, this study found that quadratic equations [Equation (2)] might be more appro-

priate for modeling the HbO changes in the DCCS tasks by re-analyzing Li et al. [4] and 

analyzing the new data. Second, this study proved that the Habit-DisHabit design DCCS, 
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in conjunction with the quadratic equation, could effectively identify the neural correlates 

of cognitive shifting. 

However, these results must be interpreted cautiously, as the sample size was tiny. 

The previous studies by Li et al. [4,15] were stopped by the unexpected COVID-19 lock-

down in China in late January 2020. Thus, only 38 complete cases were included in this 

study. In the future, more samples with more age ranges should be involved to further 

verify this quadratic modeling method and the Habit-DisHabit design. 

Nevertheless, the findings have some implications for future study and practical im-

provement. First, the quadratic equation should be considered a standard nonlinear 

model to estimate hemodynamic changes in the DCCS tasks. Second, the Habit-DisHabit 

design DCCS could be widely used and further developed to identify the neural correlates 

of cognitive shifting better. Third, the finding that non-users and heavy users had different 

brain activation patterns implies that further studies should be conducted to examine the 

impact of pad use on executive function, and we should consider limiting and regulating 

children’s digital use in the early years. Recently, Eng et al. [17], Kerr-German and Buss 

[18], Li et al. [19], and the pioneer Moriguchi and his colleagues [20,21] have conducted 

fNIRS studies on executive function development in young children using traditional 

GLMs. Even though these studies have advanced our understanding of the neural corre-

lates of executive function, reanalyzing their data using the quadratic modeling method 

(Equation (2)) will generate some unexpected results that could go deeper into the under-

lying neuropsychological mechanisms. 
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