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Abstract: Mendelian disorders are prevalent in neonatal and pediatric intensive care units and are a
leading cause of morbidity and mortality in these settings. Current diagnostic pipelines that integrate
phenotypic and genotypic data are expert-dependent and time-intensive. Artificial intelligence (AI)
tools may help address these challenges. Dx29 is an open-source AI tool designed for use by clinicians.
It analyzes the patient’s phenotype and genotype to generate a ranked differential diagnosis. We
used Dx29 to retrospectively analyze 25 acutely ill infants who had been diagnosed with a Mendelian
disorder, using a targeted panel of ~5000 genes. For each case, a trio (proband and both parents) file
containing gene variant information was analyzed, alongside patient phenotype, which was provided
to Dx29 by three approaches: (1) AI extraction from medical records, (2) AI extraction with manual
review/editing, and (3) manual entry. We then identified the rank of the correct diagnosis in Dx29’s
differential diagnosis. With these three approaches, Dx29 ranked the correct diagnosis in the top 10
in 92–96% of cases. These results suggest that non-expert use of Dx29’s automated phenotyping and
subsequent data analysis may compare favorably to standard workflows utilized by bioinformatics
experts to analyze genomic data and diagnose Mendelian diseases.

Keywords: artificial intelligence; natural language processing; genomics; differential diagnosis;
computer assisted diagnosis; electronic medical record; pediatrics; neonatal; intensive care unit

1. Introduction

Mendelian disorders, genetic diseases attributable to a single gene, are prevalent in
neonatal and pediatric intensive care unit (NICU/PICU) settings and are associated with
significant morbidity and mortality [1–4]. Rapid diagnosis of Mendelian disorders can
shape clinical decision-making and lead to improved outcomes [4–7]. However, these
diseases often have multiple underlying etiologies and variable presentation, making
them challenging to diagnose. Advances in genome-wide sequencing such as exome
and genome sequencing (ES and GS) have allowed clinicians to address this challenge
for patients with suspected Mendelian disorders [5,8,9]. Nevertheless, several barriers to
the universal adoption of these technologies remain, including the education of frontline
medical professionals, high costs, and complex data analysis processes [10,11].

ES and GS occur in two general steps: first, extraction and sequencing of DNA from
the patient sample (blood, saliva, etc.); second, analysis of the sequencing data in which
variants are identified by comparing the sequence to a genomic standard. The variants
are then filtered according to the analysts’ parameters (e.g., population frequency) to
identify those most likely to cause disease. In addition to genomic analysis, manual review

Children 2023, 10, 991. https://doi.org/10.3390/children10060991 https://www.mdpi.com/journal/children

https://doi.org/10.3390/children10060991
https://doi.org/10.3390/children10060991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/children
https://www.mdpi.com
https://orcid.org/0000-0002-7541-2718
https://orcid.org/0000-0001-7090-9648
https://doi.org/10.3390/children10060991
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children10060991?type=check_update&version=1


Children 2023, 10, 991 2 of 11

of a patient’s medical records identifies key phenotypic features to guide the diagnostic
process. Standard diagnostic pipelines that integrate a patient’s phenotypic and genotypic
information are time-intensive; even rapid optimized pipelines can require days to weeks
to result in a diagnosis [7,12–14]. These processes are also dependent on extensive genetics
and bioinformatics expertise (Figure 1) [15]. For NICUs and PICUs not connected to
academic medical centers, access to this expertise can be limited. In the United States, more
than 23,000 NICU beds are spread across almost 1400 hospitals; of these hospitals, less than
one-third are estimated to be affiliated with an academic institution [16,17]. Integration of
artificial intelligence (AI) into these analytical pipelines is an active area of research that
may help address this expertise gap [18–21].
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Figure 1. Overview of a typical genomic diagnostic pipeline, from sample collection to final results.
DNA extracted from whole blood is sequenced, generating a FASTQ file. Variants, typically thousands
of them, are then identified by comparing the sequencing data to a genomic standard. These variants
are compiled into a VCF file and then filtered and analyzed to identify those that are most likely to
cause disease. The results are narrowed down to a diagnosis by incorporating the patient’s phenotypic
or symptomatic information, which is obtained through a manual review of clinical records.

AI has been applied to clinical genomics in a variety of ways [19,22]. One prominent
example is the use of Natural Language Processing (NLP)—an AI technology that allows
for analysis of unstructured text—to aid in diagnosis of patients with genetic diseases
by automatically extracting phenotypic information on a patient via analysis of his/her
medical records; in combination with a patient’s genetic data, automated phenotyping may
reduce the amount of time between DNA sequencing and diagnosis [18,20,21]. However,
many AI programs developed to date are proprietary and largely designed for use by
bioinformaticists and geneticists rather than the clinicians overseeing patient care [18,20].

Dx29 (Foundation Twenty-Nine, Madrid, Spain), by contrast, is an open-source web-
based AI application developed to simplify the genetic diagnostic process by making it
accessible to clinicians directly caring for patients with suspected Mendelian disorders [23].
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By using a patient’s phenotype (supplied manually by the clinician or extracted automat-
ically from patient records using NLP), either alone or in conjunction with a patient’s
genetic data, Dx29 generates a differential diagnosis consisting of the diseases that would
best account for the patient’s clinical and molecular features. Dx29 differs from other AI
applications in that it is open-source and designed for use by general clinicians rather
than bioinformaticists. Moreover, Dx29 allows patients and families to collaborate with
providers in the diagnostic process by uploading documents and reporting symptoms.

Accessibility of the genetic diagnostic process in NICUs and PICUs could proffer a
number of benefits, including lower costs and increased utilization of new technologies such
as ES and GS. It could also facilitate reanalysis of a patient as his/her clinical presentation
evolves. Therefore, validation of accessible, open-source tools such as Dx29 is essential. In
this study, we tested the ability of Dx29 to retrospectively identify the correct Mendelian
disease in previously diagnosed acutely ill infants in the NICU and PICU. These infants
were diagnosed through a typical genomic diagnostic pipeline (Figure 1), using a targeted
sequencing panel called RapSeq (ARUP Laboratories, Salt Lake City, UT, USA) [7,8].

2. Materials and Methods
2.1. Participants

We retrospectively analyzed 25 trios (infant + parents) who met the following two
criteria: (1) the infant was admitted to the NICU or PICU; and (2) the infant had been
diagnosed with a Mendelian disorder using RapSeq, a targeted ~5000-gene panel that
covers most known disease-causing genes [7,8].

2.2. Dx29: Technology and Data Protection

Dx29 uses NLP powered by Microsoft Text Analytics for Health (Microsoft Corpo-
ration, Redmond, WA, USA) to identify symptoms and signs in patient medical records
and translate those data into Human Phenotype Ontology (HPO) terms, a hierarchy of
standardized phenotypic descriptors [24,25]. To generate a differential diagnosis using both
phenotypic and genotypic information, Dx29 uses Exomiser, an open-source tool [26,27].
To generate a differential diagnosis with phenotypic information alone, Dx29 compares
patient phenotype to information in the Orphanet and OMIM databases to identify likely
disease candidates [28,29].

Dx29 is hosted on Microsoft Azure servers, which are equipped with identity man-
agement services, threat protection, compliance tools, data privacy tools, and encryption
mechanisms for stored and in-transit data to ensure the privacy and security of patient
medical information. Patient data may also be withdrawn from Dx29 by the patient at
any point.

2.3. File Types Relevant to This Study

• Variant Call Format (VCF) files

# Following DNA sequencing, the raw sequencing data are compared to a genomic
standard to identify the proband’s genetic variants. These variants are compiled
into a VCF file. We used trio VCFs (merged data from the proband and two parents)
for our genetic analysis in Dx29.

• Pedigree (PED) files

# A PED file is a structured text document that explains the relation between multiple
genetic samples. For each case, we prepared a PED file that listed the sex of each
genetic sample and indicated which sample corresponded to the proband. Dx29
requires a PED file when performing trio analyses.

• PDF files

# Dx29 can analyze and extract a patient’s phenotype from PDFs, text documents,
or images of documents. All records uploaded to Dx29 for this study were PDFs,
including scanned images saved as PDFs.
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2.4. Dx29 Workflow

Dx29 is a web-based application (http://dx29.ai, accessed on 2 August 2021). After
signing into the application, these are the general steps to performing an analysis on a
patient’s data:

1. Enter the case ID (required) and demographic information (optional).
2. Provide phenotype information by performing the following:

a. Entering patient’s phenotype manually as HPO terms.
b. Uploading patient medical records for automated extraction of phenotypic information.
c. Typing a medical description of the patient and then using the automated extraction.

3. Phenotype extraction: If medical records were uploaded as PDFs, text documents, or
images of documents, Dx29 will then review each record and identify symptoms and
translate them to HPO terms. This step is multilingual, supporting 50+ languages.
The accuracy of the HPO identification depends on the languages, and user validation
is important.

a. A user may optionally review the extracted HPO terms within Dx29. Under each
term, Dx29 will show, in context, where it was identified in the files provided. Terms
deemed inaccurate or irrelevant can be removed from the subsequent analysis.

4. Genotype analysis: The trio’s merged VCF file and corresponding pedigree file are
uploaded; Dx29 then filters and annotates the variants according to preset parameters.
The variants are then ranked by likelihood of causing disease based on the predicted
variant pathogenicity and the clinical significance of the affected gene. Those most
likely to be disease-causing are prioritized in the ranking of the final differential
diagnosis.

a. Dx29 allows some exploration of the salient variants, including type of mutation,
ClinVar status, in silico pathogenicity scores, and references to relevant literature.
At the time of this study, there was no functionality in Dx29 that allowed for the
removal of a particular variant from consideration when building the patient’s
differential diagnosis.

5. Generation of differential diagnosis: Manually provided or automatically extracted
phenotypic information is compared to the candidate variants to generate a differential
diagnosis.

a. The generated differential diagnosis consists of up to 100 diseases that are ranked
by how plausibly that diagnosis could explain the patient’s symptoms and find-
ings, while also considering how the patient’s genotype does or does not support
that potential diagnosis.

b. For each diagnosis on the list, Dx29 will show how the patient’s symptoms
overlapped with the expected phenotype for that disease and show the potentially
causative variant.

c. Because HPO terms are organized hierarchically, when making comparisons
between a patient’s phenotype and the expected phenotype of a disease, Dx29
can extrapolate on imperfect matches. For example, if a patient is assigned the
HPO term “abnormal aortic valve morphology” (HP:0001646), which is found
under “abnormal heart valve morphology” (HP:0001654) in HPO hierarchy, this
is considered by Dx29 to be a match between terms.

Of note, not every disease in the ranked differential diagnosis generated in Step 5 is
associated with a variant. Some diagnoses are ranked only on the basis of phenotypic overlap.

2.5. Study Design

Each patient’s phenotypic information (HPO terms) was uploaded to Dx29 and ana-
lyzed alone and in combination with genotypic information (VCF files). Dx29 used both
the phenotypic data alone and the phenotypic and genotypic data together to generate

http://dx29.ai
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a ranked differential diagnosis consisting of the most probable diagnoses based on the
data provided.

2.5.1. Phenotype Analysis

Each patient’s set of HPO terms was determined using three distinct approaches:

1. The patient’s medical records were uploaded to Dx29, and HPO terms were extracted
automatically from the text and not manually reviewed.

2. The patient’s records were uploaded to Dx29 for automatic extraction of HPO terms,
and then each term was reviewed to determine if it had been extracted in error
(Section 2.4, step 3a). Terms that were incorrectly identified (e.g., “cerebral palsy”
being identified in a document that uses the abbreviation “cp” for some other purpose)
were then removed from the analysis. Terms were removed strictly based on whether
they had been correctly identified by Dx29 from the provided records, and not on
judgment of their perceived relevance to a genetic diagnosis.

3. The HPO terms used by the RapSeq team in reaching the original diagnosis were
uploaded to Dx29 without any of the patient’s medical records; these terms were
generated by manual review of the patient’s records by genetic counselors in the
RapSeq pipeline.

2.5.2. Patient Medical Records

For the analyses that required patient medical records to be uploaded to Dx29 (Sec-
tion 2.5.1, approaches 1 and 2), up to 14 days of records were used. If a patient’s stay in the
NICU or PICU exceeded 14 days, records were taken from the patient’s first seven days and
the seven days preceding collection of the patient’s genetic material. Only records from
the patient’s time in the NICU/PICU before a genetic sample was obtained for sequencing
were included. Additionally, only records of the following types were used: progress notes
written by physicians or advance practice clinicians (APCs), imaging reports, history and
physical documents, admission/discharge/transfer summaries, consultation notes written
by physicians and APCs, and procedural findings. Notes were written by NICU/PICU
providers and inpatient consulting services (e.g., genetics, surgery, and neurology). Records
were downloaded as PDFs, and all potentially identifying patient information was redacted
in Adobe Acrobat before uploading to Dx29. Because Dx29 is not presently equipped to
process larger medical records, all files were split into fragments of about 500 KB or smaller
before upload.

2.5.3. Preparing for Genotype Analysis

At the time we performed this study, Dx29 required VCFs from the patient and their
parents to be combined into a single VCF file and for a pedigree file to be provided alongside
the VCF. We used bcftools (version 1.12-57-g0c2765b) to process and combine the VCF files
from each patient and their parents and PLINK (version 1.90b6.24) to prepare a pedigree
file for each trio [30,31].

2.6. Outcomes

Our two primary outcomes in this study were the following:

1. The processing time for each case, beginning with creation of a patient case in Dx29,
progressing through phenotypic and genotypic analysis, and ending when the ranked
differential diagnosis was generated (Section 2.4, steps 1–5);

2. How often the patient’s correct diagnosis was identified in the top 5 or top 10 potential
diagnoses generated by Dx29.

3. Results

In a previous report, patients were recruited in the RapSeq study to assess the
diagnostic capability in the NICU of a rapid genome-wide panel encompassing about
5000 genes [7,8]. The diagnostic pipeline for RapSeq is shown in Figure 1. The process
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is expertise-dependent and involves manual review of patient records to identify salient
phenotypic features as HPO terms. HPO terms are then correlated with the variant analysis
pipeline to reach a final diagnosis. Twenty-five trios previously sequenced and analyzed
in the RapSeq study were selected for analysis by Dx29. The affected gene and OMIM
diagnosis for each case are shown in Table 1. Of note, at the time of this study, Dx29 was not
set up to predict a negative result; whether a likely candidate disease was identified or not,
a differential diagnosis was generated in each case. Additionally, Dx29’s interface did not
facilitate sufficient exploration of each variant and potential disease to allow us to rule out
a diagnosis with this interface alone. Accordingly, only positive RapSeq cases that resulted
in the identification of a variant that explained the patient’s phenotype were included.

Table 1. Affected gene and corresponding OMIM diagnosis for each of the 25 positive cases included
in this analysis. Also included are the rank assigned to the correct diagnosis in Dx29’s differential
diagnosis for each of the 4 approaches used in this study to analyze the participants: genetic analysis
+ automatic extraction of HPO terms from medical records, genetic analysis + automatic extraction
followed by review of the extracted terms, genetic analysis + providing Dx29 with the same terms
used in the original RapSeq pipeline, and using only the phenotype data from automatic extraction
(no accompanying genetic analysis).

ID Gene Diagnosis/OMIM Diseases Automatic Automatic with
Review RapSeq Terms Phenotype Only

001 CHAT Congenital presynaptic myasthenic
syndrome 6 31 31 30 20

004 FNLA X-linked periventricular nodular
heterotopia 14 6 4 unranked

005 FANCB X-linked VACTERL with
hydrocephalus syndrome 2 2 2 42

007 KMTD2 Kabuki syndrome 1 1 1 2 unranked

009 CHD7 CHARGE syndrome 1 1 1 2

013 ASXL1 Bohring–Opitz syndrome 1 1 1 8

014 FBN1 Neonatal Marfan 1 1 1 3

023 PAX3
Craniofacial–deafness–hand
syndrome, Waardenburg syndrome,
type 1 and type 3

1 1 1 unranked

026 CACNA1A Developmental and epileptic
encephalopathy 42 5 4 1 unranked

027 KCNQ2 Early infantile epileptic
encephalopathy 7 1 1 1 44

028 HDAC8 Cornelia de Lange syndrome 5 1 1 1 1

029 AHCY Hypermethioninemia with deficiency
of S-adenosylhomocysteine hydrolase 1 1 1 60

035 ACAD9 Mitochondrial complex I deficiency,
nuclear type 20 1 1 3 43

036 CDAN1 Dyserythropoietic anemia, congenital,
type Ia 3 3 1 60

037 AMER1 Osteopathia striata with cranial
sclerosis 1 1 2 unranked

041 TCIRG1 Osteopetrosis 1 1 1 1 9
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Table 1. Cont.

ID Gene Diagnosis/OMIM Diseases Automatic Automatic with
Review RapSeq Terms Phenotype Only

042 RYR1

Autosomal recessive and autosomal
dominant congenital neuromuscular
disease with uniform type 1 fiber and
with central core disease

3 1 1 unranked

044 RYR1

Autosomal recessive and autosomal
dominant congenital neuromuscular
disease with uniform type 1 fiber and
with central core disease

5 1 1 unranked

045 GUSB Autosomal recessive
mucopolysaccharidosis VII 1 2 2 unranked

047 ASNS Asparagine synthetase deficiency 7 6 2 57

050 CHD7 CHARGE syndrome 1 1 1 unranked

054 ACTA1 Unspecified myopathy 1 1 8 unranked

058 KCNQ3 Early infantile epileptic
encephalopathy 7 1 1 1 unranked

068 ASXL1 Bohring–Opitz syndrome 1 1 2 7

069 SLC35A2 Congenital disorder of glycosylation,
type IIm 1 2 11 unranked

3.1. Analysis with Automated Extraction of HPO Terms

In the first phase of the study, data in the form of a combined VCF and pedigree file
for each trio were uploaded to Dx29, alongside selected documentation from the patient’s
NICU stay, and Dx29 performed an automated analysis of the patient’s clinical records
and genetic data. Once Dx29 populated the list of potential diagnoses for each patient, we
determined (1) the processing time for each case and (2) how often the correct diagnosis
appeared in the top 5 or 10 potential diagnoses put forward by Dx29.

The average processing time for the cases was 0.32 ± 0.21 h (mean ± SD), with the
majority of the time spent on analyzing the medical records to extract HPO terms. Dx29
ranked the correct diagnosis in the top 5 diseases in the differential diagnosis in 88% (22/25)
of these positive cases and in the top 10 diseases in 92% (23/25) of cases. The median,
mean, minimum, and maximum ranks for the 25 cases are reported in Table 2, and the rank
assigned to each individual case is shown in Table 1.

3.2. Analysis with Automated Extraction of HPO Terms Followed by Manual Review

For the manual review, we inspected each identified HPO term in context and removed
it if it was erroneously pulled from the medical record. On average, the manual review
removed 115.5 ± 27.4 (mean ± SD), or 59% ± 9% (mean ± SD), of the automatically
extracted HPO terms, leaving an average of 82.8 ± 26.9 (mean ± SD) total HPO terms
per case after manual review. After manual review, the patient’s correct diagnosis was in
Dx29’s top 5 potential diseases in 88% (22/25) of cases and in the top 10 in 96% (24/25) of
cases. The manual review process added an average of 1.66 ± 0.81 h (mean ± SD) to the
processing time, for an average time of 1.96 ± 0.85 h (mean ± SD).

3.3. Analysis Using HPO Terms Utilized in the Standard Diagnostic Pipeline

These terms were generated by manual review of patient records at the time of the
RapSeq analysis that led to the patient’s diagnosis. These terms were entered into Dx29,
along with the corresponding trio VCF. With this approach, each case was assigned an
average of 12.8 ± 6.3 (mean ± SD) HPO terms. Dx29 identified the correct diagnosis in the
top 5 potential diagnoses in 88% (22/25) and in the top 10 in 92% (23/25).
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Table 2. How Dx29 ranked the correct diagnosis in each of the three approaches: automatic extraction
of HPO terms from medical record, automatic extraction followed by manual review of extracted
terms, and providing Dx29 with the same terms used in the original RapSeq pipeline. Average
turnaround time was defined as beginning at patient instantiation in Dx29 and ending with the
generation of Dx29’s differential diagnosis.

Automatic
Extraction of Phenotype

Automatic
Extraction + Manual
Review

RapSeq
Phenotypic Terms Phenotype Only

Correct diagnosis is in top 5
suggested diseases 88% 88% 88% 12%

Correct diagnosis is in top 10
suggested diseases 92% 96% 92% 24%

Median rank of correct diagnosis 1 1 1

Mean rank of correct diagnosis 3.48 2.92 3.28

Minimum rank of
correct diagnosis 1 1 1

Maximum rank of
correct diagnosis 31 31 30

Average time elapsed
(mean ± SD) in hours 0.32 ± 0.21 1.96 ± 0.85

3.4. Analysis Using Only the Patient’s Phenotype

For each positive case, we set up Dx29 to automatically extract the patient’s HPO
terms from their medical records but did not upload the accompanying VCF file. The
correct diagnosis appeared in the list of possible diseases generated by Dx29 in 52% (13/25)
of cases (Dx29 lists up to 100 potential diagnoses). The correct diagnosis appeared among
the top 5 diseases in 12% (3/25) of cases and in the top 10 diseases in 24% (6/25) of cases.

4. Discussion

Standard diagnostic pipelines for the analysis of genome-wide sequencing data and
diagnosis of rare genetic diseases remain complex and often dependent on extensive
genetics and bioinformatics expertise [15]. Dx29 is an AI-based clinical tool developed to
streamline this process by rapidly identifying a list of genetic diseases potentially associated
with the clinical presentation of a patient. Our data suggest that the fully automated
deployment of Dx29 or similar tools can efficiently and accurately identify a 10-disease
short list of potential diagnoses in cases with a positive genetic diagnosis. Further evolution
of these systems could provide a new paradigm to support clinicians in the NICU and
PICU who care for patients potentially affected by a genetic disease.

Standard diagnostic pipelines are not only complex but also time-consuming, with
turnaround times ranging, at best, from days to weeks [7,12–14,20]. The clinical and
analytical teams involved in the original RapSeq investigation did not track time from the
moment in which data analysis started to when the diagnosis was identified; however, we
estimate at least 6–12 h to be typically needed for this process. As the fully automated
analysis with Dx29 required an average of <1 h, including data upload, phenotype and
genotype analysis, and generation of the final differential diagnosis, this approach might
help clinicians to quickly identify a manageable list of potential diagnoses among the about
7000 rare genetic diseases reported so far.

A manual reanalysis of HPO terms following automated extraction by Dx29 prolonged
the time necessary for the generation of the ranked differential diagnosis. However, the
time remained <3 h on average. Although our data suggest that manual reanalysis may
increase the accuracy of Dx29, the improvement was limited. There was no difference in the
identification of the correct diagnosis in the top 5 diseases, with 88% in both circumstances,
and while we observed a marginal improvement in the top 10 diseases, from 92% to 96%
of cases, this will need to be confirmed in future studies with larger cohorts. Therefore,
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the data we present here support the automated utilization of Dx29 and confirm the
effectiveness of the algorithms it uses.

We report here that the manual review of automatically extracted phenotypes resulted
in the removal of 59%, on average, of the HPO terms extracted by Dx29. As was noted, this
afforded only a modest improvement in the ranking of the correct diagnosis in the final list
of candidate diseases. While many of the terms that we removed were mistakes by the NLP
algorithms employed by Dx29 (e.g., “cerebral palsy” being identified in a document that
uses the abbreviation “cp” for some other purpose), other erroneous terms were identified
out of context; for example, commentary on a patient’s chin in the physical exam resulted
in Dx29 extracting the HPO term “abnormality of the chin.” That Dx29 was able to perform
nearly as well when these erroneous terms were included in the analysis as when they
were removed from consideration highlights how its algorithms focus on the phenotypic
features most important for diagnosis of a given genetic disease.

This is further illustrated by the fact that many terms that were correctly pulled from
patient records were not necessarily related to the patient’s eventual diagnosis. For example,
a patient experiencing respiratory distress will be correctly assigned the corresponding
HPO term by Dx29, even when this may be more relevant to the patient’s preterm birth than
his/her genetic syndrome. However, we saw no improvement in our outcomes when the
HPO terms that were identified by manual review of patient records and subsequently used
in the standard diagnostic pipeline were provided to Dx29 in place of the automatically
extracted terms.

When we used Dx29 to generate a differential diagnosis based solely on automated
patient phenotype extraction from medical records, only 13 of the 25 cases had the correct di-
agnosis listed at any rank in the differential, which contained up to 100 diseases, and 6 cases
had the correct diagnosis in the top 10. While Dx29 allows for a phenotype-only approach,
these data, contrasted with the analyses that included VCF files, demonstrate the impact of
using genetic and phenotypic information in tandem when analyzing complex patients.

This work has several limitations. A large limitation of Dx29’s functionality is its
inability to return a “negative” result. Whether or not there are strong candidate diseases
to explain the patient’s phenotype and genotype, a ranked differential diagnosis of up to
100 candidate diseases is generated, without clear criteria or metrics for excluding specific
diagnoses. Given that approximately 50 percent of RapSeq cases are “negative,” using Dx29
may lead clinicians who are inexperienced in genetics into a time-consuming and possibly
costly exclusion process for multiple potential diagnoses. Thus, this study demonstrates
ascertainment bias because we included only patients with a “positive” result in the
RapSeq study. Additionally, the ability to scrutinize variants identified in the patient’s VCF
is limited, which can further limit patient analysis using Dx29 alone; for instance, without
knowing the quality metrics of identified variants, it would be difficult to determine if a
specific variant was likely causative. Dx29 is not designed or currently equipped to make
or suggest a final diagnosis on its own; because of this and the abovementioned intrinsic
limitations, performing a prospective analysis with Dx29 would still require pairing it
with a conventional bioinformatics pathway to reach a diagnosis. However, the ability of
Dx29 to highly rank complex patients’ correct diagnoses is promising and suggests that
further development of AI tools such as Dx29 may make genomic analysis by clinicians a
future reality.

In using a targeted gene panel as the source of the genetic data for this study, which
resulted in VCF files of only a few megabytes, we were not able to assess how quickly
Dx29 functions when larger genetic files are uploaded; additionally, in its current iteration,
Dx29 is not able to analyze VCFs that are larger than about 1 gigabyte, which could limit
its utility in the analysis of WES and WGS data. Furthermore, the software utilized in Dx29
to process the genomic data (Exomiser) is not currently equipped to analyze copy number
variants or other large chromosomal abnormalities [27].

This study focused on infants in critical care settings (NICU and PICU) and excluded
older patients and those sequenced in ambulatory or inpatient but non-critical care settings.
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Future research is needed to determine how Dx29 or similar tools would benefit genetic
diagnosis for these patients. Similarly, Dx29 supports direct patient or family input of
symptoms into the diagnostic pipeline. Further prospective research is needed to investigate
the impact of this intriguing capability on patient and provider engagement, satisfaction,
and trust in the results afforded by genomic diagnosis.

Despite these limitations, our study further illustrates the potential role of AI in
aiding the diagnosis of complex genetic diseases in infants [18,20,21]. Use of Dx29 by non-
bioinformaticists yielded promising results, showing how Dx29 and similar AI platforms
may one day support genomic analysis by primary clinicians, with less dependance on
bioinformatics expertise, thereby streamlining the diagnostic process.
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