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Abstract: Chromosomal imbalance is implicated in developmental delay (DD), congenital malforma-
tions (CM), and intellectual disability (ID), and, thus, precise identification of copy number variations
(CNVs) is essential. We therefore aimed to investigate the genetic heterogeneity in Saudi children
with DD/CM/ID. High-resolution array comparative genomic hybridization (array CGH) was used
to detect disease-associated CNVs in 63 patients. Quantitative PCR was done to confirm the detected
CNVs. Giemsa banding-based karyotyping was also performed. Array CGH identified chromosomal
abnormalities in 24 patients; distinct pathogenic and/or variants of uncertain significance CNVs were
found in 19 patients, and aneuploidy was found in 5 patients including 47,XXY (n = 2), 45,X (n = 2)
and a patient with trisomy 18 who carried a balanced Robertsonian translocation. CNVs including
9p24p13, 16p13p11, 18p11 had gains/duplications and CNVs, including 3p23p14, 10q26, 11p15,
11q24q25, 13q21.1q32.1, 16p13.3p11.2, and 20q11.1q13.2, had losses/deletions only, while CNVs
including 8q24, 11q12, 15q25q26, 16q21q23, and 22q11q13 were found with both gains or losses in
different individuals. In contrast, standard karyotyping detected chromosomal abnormalities in ten
patients. The diagnosis rate of array CGH (28%, 18/63 patients) was around two-fold higher than
that of conventional karyotyping (15.87%, 10/63 patients). We herein report, for the first time, the
extremely rare pathogenic CNVs in Saudi children with DD/CM/ID. The reported prevalence of
CNVs in Saudi Arabia adds value to clinical cytogenetics.

Keywords: array comparative genomic hybridization; copy number variations; developmental delay;
congenital malformations; Saudi Arabia

1. Introduction

Children under the age of 5 years are categorized as individuals with global develop-
mental delay (DD) if they present with slow performance in reaching at least two of the
following milestones: gross or fine motor activity, speech or language, cognition or mental
activity, and social or personal activities of daily living [1,2]. Individuals with congenital
malformations (CM) had a problem in the heart, kidney, brain, muscles, or skeleton since
birth, and individuals with intellectual disability (ID) had problems with general mental
abilities: (i) intellectual functioning (such as learning, reasoning, problem-solving) and/or
(ii) adaptive functioning (such as language, number concept, time calculation, memory,
social responsibility, communication, and independent living) [3,4]. The Saudi Popula-
tion Registry (statistics authority) reported a combined disabilities population of around
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7.1%, including hearing impairment (n = 289,355), attention-deficit/hyperactivity disorder
(n = 30,155), mobility impairment (n = 833,136), visual impairment (n = 811,610), autism
spectrum disorder (n = 53,282), Down’s Syndrome (n = 19,428), etc., but nothing specific
to DD/CM/ID. Genetic disorders and congenital abnormalities occur in 2–5% of all live
births, causing approximately 50% of childhood deaths globally and approximately 35%
of perinatal deaths in Saudi Arabia [5]. Until recently, conventional karyotyping was the
method of choice for diagnosing individuals with DD/CM/ID in government-funded
hospitals and clinics, but its diagnostic rate has been only ~5% because of major limitations
such as size, accuracy, and specificity [6,7]. Although fluorescence in situ hybridization
(FISH) has improved diagnostic yield by another 2–3%, identification of disease-associated
chromosomal alterations or any well-known syndrome remains challenging.

Genomic variations include single nucleotide variants (SNVs), small insertions or
deletions (indels), copy number variations (CNVs), large structural variants (SVs), and
abnormalities in chromosome number [8]. CNVs are genomic regions frequently gained
or lost in a population, and the average individual harbors hundreds of CNVs [9]. Most
are benign but some play a role in human disease through dosage imbalance, altered
gene expression, and disruption of regulatory elements. Although CNVs are common in
the human genome, they are rarely linked to genetic diseases [10]. Those linked to such
diseases are associated with complex phenotypes and disease susceptibility because they
alter gene copy numbers and gene expression. To analyze CNVs, the aforementioned
low-resolution cytogenetic technologies such as karyotyping (approximately >10 Mbp) and
FISH (5–10 Mbp) are routinely used [11], but they suffer from bottlenecks of low diagnostic
rates and inability to detect short CNVs [12]. However, with the advent of array CGH and
next-generation sequencing technology, one can now identify small variants of 10–25 kb
using the former and even up to 50 bp using the latter [13–15].

Array CGH can help scan the entire genome at higher resolution and detect chromoso-
mal alterations by comparing hybridization intensity between the DNA of a patient and
a healthy control [16]. Two meta-analyses involving 46,298 and 28,526 individuals with
genetic disorders have shown the clinical impact of array CGH, detecting 35% and 46%
of pathogenic abnormalities, respectively [17,18]. Both the International Collaboration for
Clinical Genomics and American College of Medical Genetics and Genomics (ACMG) have
recommended array CGH as the first-tier cytogenetic diagnostic test for patients with DD,
CM, and ID [19,20]. However, it has not been implemented in Saudi Arabia yet because of
a lack of sufficient validation studies.

Precise identification and accurate clinical annotation of CNVs are vital for evaluating
patients with DD, CM, and ID. Recent guidelines issued jointly by ACMG and the Clinical
Genome Resource (ClinGen) recommend classifying CNVs based on their pathogenic-
ity [21]. Studies conducted to identify disease-associated CNVs have broadly classified
them as follows: (i) pathogenic, causing common or rare syndromes, and (ii) variants of
uncertain significance (VUSs), not known to be directly causative of a disease but some-
times associated with disease/disease-like conditions [6,7,22,23]. G-banding karyotyping
is routinely used to detect chromosomal abnormalities in unexplained genetic diseases.
Recently, however, array CGH has emerged as a high-resolution genetic screening method
and may soon replace conventional karyotyping. Unfortunately, because array CGH is
more expensive, it remains unavailable in most clinical laboratories, and countries like
Saudi Arabia still mostly use standard karyotyping as the method of choice.

The diagnostic application of array-CGH in Saudi DD/CM/ID patients, to the best
of our knowledge, has not been reported yet. However, a few studies have reported the
application of array-CGH in the identification of disease-causing variants such as recurrent
spontaneous abortion in Saudi Arabia [24], juvenile myoclonic epilepsy [25], acute myeloid
leukemia [26], Lynch Syndrome [27], gastric cancer [28], Williams’ syndrome [29], DiGeorge
Syndrome [30], and congenital heart disease [31]. Hence, in the present study, we aimed
to investigate the genetic heterogeneity in Saudi children with DD/CM/ID. We then
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discuss the characteristic features and clinical significance of the detected CNVs including
pathogenic and VUS and compare the diagnostic yields of array CGH with previous reports.

2. Materials and Methods
2.1. Patients and Ethical Approval

We recruited 63 children with DD, CM, and/or ID after obtaining their informed con-
sent from parents/guardians and research approval from the institutional ethics committee
(approval Code # 012-CEGMR-ETH-0), and work was performed in accordance with the
Declaration of Helsinki. Children below the age of 18 years who were diagnosed with
distinct features of DD, CM, and ID and were residents of the Western region of Saudi
Arabia were included in the study. Patients who refused to give informed consent were
excluded. Clinical examination of the patients was conducted at the Center of Excellence
in Genomic Medical Research referred by the KAU Hospital (Jeddah), the Maternity and
Child Hospital (Jeddah), and the Pediatrics Clinic of Taif Hospital (Taif), all in Saudi Arabia,
and were referred to the Center of Excellence in Genomic Medical Research for molecular
cytogenetic testing. Clinical information and family history were recorded to establish the
DD etiology and to elucidate the diagnostic process of unexplained DD/CM/ID.

2.2. Cytogenetics Analyses

Karyotyping based on G banding using Trypsin and Giemsa (GTG banding) was
performed based on microscopic examination of at least 20 metaphases per case. Chromo-
somes were analyzed using Applied Imaging Karyotyping software (Applied Imaging,
Santa Clara, CA, USA), and karyotypes were described according to the International
System for Human Cytogenomic Nomenclature (ISCN, 2020) [24,32,33].

2.3. DNA Preparation and Whole-Genome Array CGH

Genomic DNA from 5 mL patient’s blood was extracted using QIAamp DNA Blood
Mini Kit (Qiagen, Hilden, Germany) and purified using QIA-Miniprep Kit (Qiagen). The
concentration and quality of DNA were determined using a NanoDrop 2000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA).

To investigate genome defects, we applied high-density array CGH using SurePrint
G3 Human CGH Microarray Kit in 1 × 244 K (AMADID Number: 014693) and 2 × 400 K
(AMADID Number: 021850) formats, consisting of 244,000 and 400,000 copy number
probes, respectively (Agilent Technologies, Santa Clara, CA, USA), with UCSC hg18 as
the reference genome. The overall median probe spacing of the 1 × 244 K and 2 × 400 K
chip was 8.9 kb and 5.3 kb, respectively, whereas the spacing of RefSeq genes was 7.4 kb
and 4.6 kb, respectively. Microarray analysis was conducted according to Agilent’s assay
procedures, with modifications. Commercial human reference DNA was used (Agilent
Technologies, Santa Clara, CA, USA). Upon being enzymatically digested using AluI and
RsaI, the DNA samples were labeled with cyanine 3-deoxyuridine triphosphate (Cy3-
dUTP) using SureTag DNA Labeling Kit (Agilent Technologies), whereas sex-matched
reference DNA samples were labeled with Cy5-dUTP. The labeled DNA was purified
before being mixed with Cot-1 DNA, 10× array CGH blocking agent, and 2× HI-RPM
hybridization buffer (Agilent Technologies); this mixture was dispensed into a microarray
slide. Hybridization was performed in an Agilent hybridization chamber at 67 ◦C and
20 rpm for 24 h and then washed stringently with wash buffer 1 and wash buffer 2 (Agilent
Technologies). Microarray slide images were captured using Agilent SureScan Microarray
Scanner G2505C.

2.4. Interpretation of CNVs

CNV analysis was performed using Agilent Cytogenomics v5.2.0.2 and human genome
build hg18. A CNV was considered either a gain or loss if the region had at least three
consecutive probes with a mean log2 ratio of ±0.25, respectively. A mean log2 ratio > 0.58
was considered a gain, whereas that <−1 indicated a loss. Following the recommended
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guidelines for detecting pathogenic variants, CNVs < 300 kb were excluded from further
analysis. In addition, the CNVs were classified as benign if the corresponding regions did
not harbor genes or were present in the healthy normal controls (Database of Genomic
Variants, DGV; http://projects.tcag.ca/variation, accessed on 25 November 2022).

To interpret and confirm the clinical significance of the CNVs, they were analyzed
across multiple public databases, including UCSC (http://genome.ucsc.edu, accessed
on 25 November 2022), DGV (http://dgv.tcag.ca/dgv/app/, accessed on 25 Novem-
ber 2022), OMIM (http://www.omim.org/, accessed on 26 November 2022), DECIPHER
(http://decipher.sanger.ac.uk/, accessed on 26 November 2022), and PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/, accessed on 27 November 2022). Pathogenic
CNVs (common and rare syndromic/non-syndromic) were identified for DD/CM if they
overlapped with previously reported pathogenic CNVs. Novel VUSs was identified by
exploring genomic alterations, including microdeletions/duplications. The detected CNVs
were classified as VUS if any genes present in this region were linked to known functions
but could not be directly associated with the disease under investigation.

2.5. Quantitative Real-Time PCR

Quantitative real-time PCR (qPCR) was used to validate the deletions and duplications
of CNVs detected by array-CGH. The primer sets were designed for selected genomic
regions of the target genes including FLI1, SHANK3, and MBP, and an endogenous GAPDH
gene as an internal control using Primer-3 Software (V.0.4.0). The reaction was run in a final
volume of 10 µL, comprising of 5 µL SYBR-Green qPCR master mix (KAPA Biosystems,
Wilmington, NC, USA), 10 pmol of each primer, and 20 ng genomic DNA. The PCR was
performed in triplicate using SYBR-Green qPCR master mix (KAPA Biosystems, USA) in a
96-well plate. Raw data was generated by StepOne Plus™ Real-Time PCR Systems and
Data Assist software. qPCR data were analyzed by ∆∆CT or Livak method and the Graph
Pad PRISM software was used for presentation.

3. Results
3.1. Clinical Finding

We examined 63 DD/CM/ID patients for genome defects using chromosomal mi-
croarray analysis. They exhibited complex DD/CM/ID with distinct additional features,
including delayed speech (n = 20), congenital heart defects (n = 12), dysmorphic features
(n = 15), microcephaly (n = 7), hypotonia (n = 4) and ID (n = 5). The patient male-to-female
ratio was 1.42, and the mean age was 2.3 years (ranging from 8 days to 16 years). Most
individuals were children aged 1–5 years (n = 34), followed by those aged 6–15 years
(n = 18), <1 year (n = 9) and >15 years (n = 2) (Supplementary Table S1).

3.2. Cytogenetic Abnormalities

According to the GTG banding karyotype analysis, ten individuals had chromosomal
abnormalities, including Turner syndrome, Klinefelter syndrome, Edward syndrome, and
gain/loss within chromosomes 1, 9, 11, 13, 14, 18, and 22 (Table 1). These abnormalities
were confirmed by the array CGH results. Notably, an 8-day-old patient [BL-401-13] with
DD, congenital heart disease, and dysmorphic features exhibited two types of chromosomal
abnormalities: translocation t(13;14)(q10;q10) and trisomy 18.

3.3. Pathogenic CNVs

Array CGH detected chromosomal abnormalities in 28% of the patients (n = 19;
10 male and 8 female), whereas conventional G-band karyotyping detected chromosomal
abnormalities in 15.87%. Two-thirds of the patients with pathogenic CNVs were under
5 years of age, including 3 newborns (0–2 months), 9 infants (2–12 months), 22 toddlers
(>1–4 years), and 9 children (>4–5 years).

http://projects.tcag.ca/variation
http://genome.ucsc.edu
http://dgv.tcag.ca/dgv/app/
http://www.omim.org/
http://decipher.sanger.ac.uk/
https://www.ncbi.nlm.nih.gov/pubmed/
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Table 1. Chromosomal abnormalities detected using G-banding and array comparative ge-
nomic hybridization in pediatric developmental delay/congenital malformations/intellectual
disability patients.

S. No Biobank Code G-Banding Result Array CGH Results

1 BL-080-12 46,XY,del(11)(q24) arr[hg18] 11q24.2q25(123615752_134432324)x1

2 BL-181-13 47,XX,+del(9)(q22) arr[hg18] 9p24.3p13.1(194193_38745183)x3

3 BL-210-12 46,XX,dup(3)p36-p33 arr[hg18]1p36.33p33(746956_48281628)x3

4 BL-401-13 46,XX,t(13;14)(q10;q10) + 18 * arr[hg18] 18p11.32p11.21 (75432_14092527)x3
arr[hg18] 18q11.1q23(16910049_76111023)x3

5 Bl-628-12 45,X arr[hg18]Xp22.33p11.1(2711273_58499110)x1
arr[hg18]Xq11.1q28(61848414_154582526)x1

6 BL-664-11 47,XXY arr[hg18]Xp22.33p11.1(2711273_58499110)x4
arr[hg18]Xq11.1q28(61848414_154570236)x4

7 BL-664-13 45,X arr[hg18] Xp22.33p11.1(2711273_58499110)x1
arr[hg18] Xq11.1q28(61848414_154582526)x1

8 BL-793-13 46,XY,del(22)(q11.2q11.2) arr[hg18] 22q11q21(17269039_19794119)x1

9 BL-902-10 47,XY,+mar or 47,XY,+i(18)(p10) arr[hg18] 18p11.32p11.21(114641_15062794)x4

10 BL-1288-13 47,XXY arr[hg18] Xp22.33p11.1(2711273_58499110)x4
arr[hg18] Xq11.1q28(61848414_154570236)x4

* The balanced translocation between chromosomes 13 and 14 was not identified by aCGH.

3.4. Characteristics of Disease-Associated CNVs

Investigations with two array-CGH chips (1 × 244 K, n = 11; 2 × 400 K, n = 52) revealed
2537 CNVs, including 1326 CNVs of ≥300 kb and 1211 CNVs of <300 kb. However, only
24 CNVs (from 13 individuals) qualified as causative for disease (Table 2). Additionally,
five individuals were detected with chromosomal aneuploidy (two 47,XXY, two 45,X, and
one a patient with trisomy 18 on a karyotype carrying a balanced translocation between
chromosome 13 and 14 (46,XX,t(13;14)(q10;q10)+18) were excluded from CNV analysis.
The remaining 2490 CNVs were classified as benign if they were present in the healthy
population, <300 kb in size, without any contiguous critical genes, or not clinically sig-
nificant (Figure 1). The prevalence of chromosomal loss (58%, 14/24) was greater than
that of chromosomal gain (42%, 10/24). Gains/duplications were found in 8q24, 9p24p13,
11q12q13, and 18p11 CNVs, while losses/deletions were found in 3p23p14, 10q26, 11p15,
11q24q25, 13q21.1q32.1, 15q25q26, 16p13.3p11.2, and 20q11.1q13.2. Interestingly, both gain
and loss were found in some CNVs, including 16q21q23, 18p11.32p11.21,and 22q11q13 in
different individuals.

Table 2. Pathogenic and variants of uncertain significance and syndromic copy number variations
detected by array CGH in pediatric developmental delay, congenital malformations, and intellectual
disability patients.

S. No Biobank Code CNVs CNV Classification OMIM Genes Associated Syndromes

1 BL-080-12 arr[hg18]11q24.2q25(123615752_134432324)x1 Pathogenic FLI-1, KCNJ1, KCNJ5, JAM3 Jacobsen syndrome

2 BL-161-14 arr[hg18]16q21q23.1(65021970_74573408)x1 VUS CDH11, CBFB, TK2, GOT2, BEAN, 16q22 deletion syndrome

3 BL-181-13 arr[hg18]9p24.3p13.1(194193_38745183)x3 Pathogenic SMARCA2, VLDLR Nicolaides-Baraitser
syndrome

4 BL-210-12

arr[hg18]11q12.2- q13.5(60243525_ 75206053)x3 VUS DAGLA, FADD, FGF3 Spinocerebellar ataxia 20

arr[hg18]16p13.3 p11.2(28087_ 31446768)x3 Pathogenic CREBBP, DNASE, TRAP1, TELO2 16p13.3 duplication
syndrome

arr[hg18]22q11.1q13.33(15834835_ 49525130)x3 VUS LARGE, SHANK3, TBX1, HPS4 Duplication of 22q12/13

5 BL-363-12

arr[hg18]3p23p14.2(31581603_58552982)x1 VUS WNT5A, HESX1, FLNB,
CCK, GLYCTK Robinow syndrome 1

arr[hg18]15q13.1q26.1(27196809_89833172)x1 Pathogenic CHRNA7 and OTUD7 15q13.3 microdeletion
syndrome

arr[hg18]16p13.3p11.2(1103363_33495560)x1 VUS CREBBP, DNASE, TRAP1, TELO2 16p13.3 deletion syndrome

arr[hg18]20q11.1q13.2(28252372_50274994)x1 VUS GDF5, EPB41L1, SAMHD1 20q deletion

arr[hg18]22q11.1q13.31(14513474_44350783)x1 VUS PEX26, SHANK3, TBX1, HPS4 Deletion of 22q12/13
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Table 2. Cont.

S. No Biobank Code CNVs CNV Classification OMIM Genes Associated Syndromes

6 BL-457-12 arr[hg18]16q21q23.1(65021970_74573408)x1 VUS CDH11, CBFB, TK2,
GOT2, BEAN, KARS1 16q22 deletion syndrome

7 BL-461-12

arr[hg18]13q21.1- q32.1(57009987_95317681)x1 VUS DIAPH3, PIBF1, TBC1D1, FBXL3,
EDNRB, PCDH17

DD, ID, skeletal and other
abnormalities

arr[hg18]16q21-q23.1(65109284_74852983)x3 VUS CDH11, CBFB, TK2, GOT2,
BEAN, KARS1 16q22 duplication syndrome

8 BL-464-12
arr[hg18]10q26.13q26.3(127272748_135284168)x3 Pathogenic DOCK1, C10ORF90 10q26 duplication syndrome

arr[hg18]18q23(7234653976111023)x1 VUS CTDP1, GALR1 18q23 deletion syndrome

9 BL-518-13 arr[hg18] 15q25.1q26.3(78427008_100298411)x3 Pathogenic AP3B2, HOMER2,
SH3GL3, CHD2 Levy-Shanske syndrome

10 BL-597-12 arr[hg18]18p11.32p11.21(121700_14112521)x4 Pathogenic TGIF1, NDUFV2, PIEZO2, GNAL Partial trisomy 18p

arr[hg18]22q11.1q13.33(15681796_49571118)x3 VUS LARGE, SHANK3, TBX1, HPS4 Duplication of 22q12/13

11 BL-793-13 arr[hg18]22q11.21(17269039_19794119)x1 Pathogenic PRODH, SLC25A1,
SNAP29, TBX1 DiGeorge Syndrome

12 BL-902-12 arr[hg18]18p11.32p11.21(114641_15062794)x4 Pathogenic TGIF1, NDUFV2, PIEZO2, GNAL Partial trisomy 18p

13 BL-1086-11

arr[hg18]8q24.3(142081172_146142017)x1 Pathogenic PUF60, GRINA Verheij syndrome

arr[hg18]11p15.5p15.4(234177_2917590)x1 Syndromic CDKN1C, IGF2, KCNQ1OT1 Beckwith-Wiedemann
syndrome
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Figure 1. Flowchart for the filtration of pathogenic/VUS CNVs in Whole-Genome Array CGH results.
Out of 2537 chromosomal abnormalities, 5 aneuploidy, 1211 CNVs of <300 Kb, 951 CNVs present in a
healthy population, 249 CNVs without contiguous critical genes, and 97 non-clinically significant
CNVs were removed to filter out 24 pathogenic/VUS CNVs among 13 DD/CM/ID patients.

Based on their association with disease phenotypes and prevalence in previous studies
and the OMIM database, the clinically significant CNVs were classified into two groups,
specifically pathogenic (52%, 13/24 CNVs) and VUSs with variable effects (48%, 11/24
CNVs). Pathogenic CNVs were 8q24, 9p24p13, 10q26, 11p15, 22q11q13, 11q24q25, 15q25q26,
and 16p13p11, and 18p11,. VUS CNVs were 3p23p14, 11q12.1q14, 13q21.1q32.1, 16q21q23,
18q23, 20q11.1q13.2, and 22q11q13. Interestingly, 22q11q13 was detected in at least four
individuals, while 16q21q23.1 and 18p11.32p11.21 were found in three individuals.

We discovered that in a few cases, the size of the chromosomal abnormalities over-
lapped, including contiguous essential genes for the same syndrome. Sizes of the disease-
associated CNVs varied and can be grouped as: <5 Mb (17.8%), 5–10 Mb (13.5%), 10–20 Mb
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(22.7%), 20–25 Mb (18.4%), and >25 Mb (27.6%). The total number of detected CNVs was
24 while distinct non-overlapping CNVs were 16. The 3p23p14.2 deletion was detected in
one patient [BL-363-12]. 3p23p14 deletion (Robinow syndrome 1, Septo-optic dysplasia,
Spondylocarpotarsal synostosis syndrome) causes severe intellectual disability, abnormal
physical features, and developmental delay in language and motor skills.

We detected a rare microdeletion of the 8q24.3 region in a 6-year-old patient [BL-1086-11]
with intellectual disability, ADHD, dysmorphic, seizures, small ears, triangular Face, VSD
at birth, no speech, delayed walking, and epilepsy. A gain of 38.5 Mb at 9p24.3p13.1
was detected in a 2.6 year old girl [BL-181-13] with hypotonia, delayed speech, not
walking, cleft-lip, VSD, ASD, pulmonary stenosis, and dysmorphic features. A rare
10q26.13-q26.3 deletion was detected in a female of 1.6 years [BL-464-12] with short stature
and DD. Furthermore, we detected three CNVs in chromosome 11, including deletion
of 11p15.5p15.4 [BL-1086-11], duplication of 11q12.11q13.3 [BL-210-12], and deletion of
11q24.2q25 [BL-080-12] (Figure 2).
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Figure 2. (A) Chromosomal microarray analysis showing 10.8 Mb subtelomeric deletions of chromo-
some 11q24.2q25 in a 4-year-old male [BL-080-12] patient with developmental delay, delayed speech,
and dysmorphic features. (B) Detected region of chr11: 123,615,752-134,432,324bp encompasses many
pathogenic genes, including FLI1, KCNJ1, KCNJ5, ETS1, and JAM3 that cause Jacobsen syndrome.

A 4-month-old [BL-461-12] with DD, dysmorphic features, short stature, failure to
thrive, small finger with two phalanges, and a simian crease in left hand harbored a
13q21.1q32.1 deletion. Deletion of the chromosome 15 q arm (15q13.1q26.1, 62.6 Mb) was
detected in a 2-year-old [BL-363-12] with DD, speech delay, and dysmorphic features. A
deletion and duplication of the chromosome 16 p arm (16p13.3p11.2, 32.6 Mb) was detected
in a 2-year-old [BL-363-12] with DD, speech delay, and dysmorphic features, and in a
6-year-old [BL-210-12] with DD and delayed speech, respectively. Another deletion and
duplication of 16q21q23.1 were detected in a 1-year-old [BL-161-14] with DD, VSD, and
failure to thrive, and a 2-year-old [BL-210-12] with DD, delayed speech, and dysmorphic
feature, respectively. A 1-month-old [BL-597-12] with dysmorphic features, low-set ears,
and closed VSD and a 16-year-old [BL-902-10] with DD, microcephaly, ID, and dysmorphic
features had 18p11.32-p11.21 duplication. Duplication of 18q23 was found in a 1.5-year-
old [BL-464-12] with DD and short stature (Figure 3). A deletion of 20q11.1q13.2 was
found in a 2-year-old [BL-363-12] with DD, speech delay, and dysmorphic features. A
duplication of 22q11.1-q13.33 was found in a 6-year-old [BL-210-12] with DD and speech
delay; a deletion of 22q11.21 was present in a 3-month-old [BL-793-13] with DD, congenital



Children 2023, 10, 662 8 of 14

heart disease, and DiGeorge syndrome; and a deletion 22q11.1q13.31 was identified in a
2-year-old [BL-363-12] with DD, speech delay, and dysmorphic features (Figure 4).
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3.5. Confirmation of CNVs by Quantitative Real-Time PCR (qPCR)

qPCR results confirmed the CNVs detected by array CGH. We found a significant
decrease in the gene copy number of FLI1 (11q24q25 deletion) and SHANK3 (22q11q13
deletion), and a significant increase in MBP (18q23 duplication) (Figure 5).
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4. Discussion

In this study, we identified the CNVs associated with DD/CM/ID, and the diagnostic
yield of array CGH (28%) was in accordance with previous findings [1,19,34]. The clinical
significance of identified CNVs was classified into three categories: established clinical
significance (syndromic pathogenic and non-syndromic pathogenic), VUSs, and without
clinical significance (benign). The pathogenic CNV is directly associated with patient
phenotype, the non-syndromic CNV encompasses diverse disorders that are indirectly
associated with individual phenotype, and the VUS is linked to indistinct disease vulnera-
bility. Rare chromosomal abnormalities with no systematic analysis of limited cases, where
common clinical manifestations remain elusive, were also classified as VUSs.

The human genome is diploid and expected to contain two copies of each autosome,
except the sex chromosome in men. However, in reality, genetic variations are commonly
present, ranging from large chromosome anomalies and copy number variations to single
nucleotide changes in the human genome. CNVs, usually DNA segment size range from
1 Kb to 10 Mb, are present at variable copy numbers in comparison with a reference
genome. Chromosome abnormalities are less frequent, but their presence leads to different
diseases/syndromes, while CNVs and SNPs are frequently present in the genome as benign
but a few are pathogenic as well [35,36]. In general, humans harbor 10–100 CNVs, which
are mostly benign [37]. Herein, we detected 2537 unfiltered CNVs among 63 individuals
(~40 CNVs per person) with most of them being benign. Only 42 CNVs across 19 patients
(~2 CNVs per person) were pathogenic or VUSs.

Microdeletions in 8q24.3 specifically PUF60 are linked to the rare Verheij syndrome [38].
Duplication of the 9p24.3p13.1 region involving the SMARCA2 gene cause Nicolaides–
Baraitser syndrome, which may be associated with DD, ID, microcephaly, and short
stature [39].

A deletion of 10q26.13q26.3 region (8 Mb) containing the DOCK1 and C10ORF90 genes
was an extremely rare chromosomal abnormality with less than 100 reported cases of
DD, ID, dysmorphic facial features, and heart problems as well as skeletal and urogenital
abnormalities [40]. The deletion of 11p15.5, including the CDKN1C and KCNQ1OT1 genes,
is associated with Beckwith–Wiedemann syndrome [41]. A deletion of the 11q12.2q14.1
region encompassing (DAGLA, BEST1, SPTBN2, SHANK2, FADD, FGF3, KMT5B, GAL,
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PHOX2A and CLPB) genes are known to cause spinocerebellar ataxia, deafness, epilepsy,
fibrosis of muscle type 2 and 3-methylglutaconic aciduria type VII [42,43]. Additionally, a
deletion of 11q24.2q25, associated with Jacobsen syndrome, is a rare chromosomal disorder
(1 in 100,000) manifesting as growth and psychomotor retardation [44,45].

A deletion of 15q13.1-q26.1, including HERC2, STRC, CHRNA7, FBN1, CAPN3, DNAAF4,
KBTBD13, SMAD3, CIB2, and OTUD7A genes, was a rare 15q13.3 and 15q25 microdeletion
syndrome with global DD, ID, hypotonia, and facial dysmorphism [46–49]. Deletion and
duplication of the 16p13.3-p11.2 region includes 16p11.2 duplication syndrome and 16p13.3
deletion/duplication syndrome [50]. The 16q22 deletion syndrome is associated with
DD, hypotonia, neurological disorders, failure to thrive, and dysmorphic features [51].
The deletion of 16q21q22 has also been reported with cleft soft palate and dysmorphic
features [52].

A duplication of 18p11.32p11.21 and 18q11.1q23 has been reported with rare con-
ditions of DD, short stature, ID, and dysmorphic facial features in two individuals [53].
A microduplication of 3.7 Mb at 18q23 encompassing the CTDP and TXNL4A genes are
reported to be associated with a failure to respond to growth hormone stimulation, fa-
cial dysmorphism, neuropathy, and sensorineural deafness [54]. A 20q11.1q13.2 deletion
encompassing CHMP4B, SEC23B, and OVOL2 genes are linked to DD, ID, skeletal abnor-
malities, and heart defects [55–57]. A 22q11.21 microdeletion encompassing the TBX1,
SHANK3, SOX10, AP1B1, FBXO7, MYH9, and SPECC1L genes cause DiGeorge syndrome,
which is associated with DD, ID, seizure, and cardiac malformations, with a prevalence
of 1 in 4000 [58,59]. A 22q11 deletion also causes velocardiofacial syndrome, conotruncal
anomaly face syndrome, and tetralogy of fallot [60].

Our data along with previous research demonstrates that array CGH is efficient in
identifying known and novel disease associated CNVs. Extensive CNV analysis of devel-
opmental disabilities identified eight VUSs (3p23p14, 11q12.1q14, 13q21.1q32.1, 16p13p11,
16q21q23, 18q23, 20q11.1q13.2, and 22q11q13 [61].

There are some limitations of the study, but it still has future directions. The cohort
size was not large enough to truly represent the population. Clinical pictures and images
were not available for publication because of confidentiality and the patient’s privacy
policy. The discrepancy was found in the G-banding and the array CGH result because a
couple of big CNVs (>10 Mb) were detected by array CGH but not found in G-banding,
despite using the allowed resolution band of 550, and this might be because the traditional
technique lacked accuracy. The array CGH confirmed all karyotyping results, but was
limited in detecting balanced translocations or inversions, ring chromosomes, and low-
level mosaicism. An additional challenge lies in interpreting VUSs found through array
CGH and validating their clinical significance. These considerations lead us to recommend
that diagnoses employ both array CGH and conventional karyotyping to confirm positive
cases and identify CNVs in negative cases. In the future, the validation of detected CNVs,
especially VUSs, and their confirmation on a bigger cohort will overcome the limitations of
the current study.

5. Conclusions

This is a first array CGH-based comprehensive study from Saudi Arabia, and for the
first time we herein, we report the extremely rare pathogenic CNVs/genes (8q24, 10q26,
11q24q25, 18p11, 15q25q26, and 16p13p11) among Saudi individuals with DD, CM, and
ID that may contribute to their genetic etiology. Additionally, our result showed a couple
of potential causative CNVs that may be re-classified as pathogenic CNVs after detailed
validation and functional characterization. Our results enhanced the knowledge of the copy
number variants underlying DD, CM, and ID in the Saudi population, and array technology
will potentially help to improve the genetic diagnosis of CNVs and novel syndromes in
neonatal and prenatal cases.
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