
Citation: Kozioł-Kozakowska, A.;
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Abstract: Obesity is currently one of the most significant public health challenges worldwide due to
the continuous increase in obesity rates among children, especially younger children. Complications
related to obesity, including serious ones, are increasingly being diagnosed in younger children. A
search was performed from January 2023 to September 2023 using the PubMed, Cochrane Library,
Science Direct, MEDLINE, and EBSCO databases. The focus was on English-language meta-analyses,
systematic reviews, randomized clinical trials, and observational studies worldwide. Four main
topics were defined as follows: disorders of glucose metabolism; liver disease associated with
childhood obesity; the relationship between respiratory disorders and obesity in children; and the
effects of obesity on the hypothalamic–pituitary–gonadal axis and puberty. Understanding potential
complications and their underlying mechanisms can expedite the diagnostic process and enhance
the effectiveness of treatment. We aspire that this study will bring insight into the often-overlooked
complications associated with obesity.
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1. Introduction

Obesity is currently a prevalent health issue and one of the foremost public health
challenges worldwide. In the last four decades, there has been a rise in the prevalence of
childhood obesity among children aged 5 to 19 years in most regions and countries. In
2016, it was determined that the number of obese young children (<5 years old) globally
exceeded 41 million [1]. Additionally, there has been a noticeable increase in the occurrence
of severe obesity (morbid, extreme obesity) in progressively younger age groups.

It is well established that excess body weight in adults is linked to comorbid car-
diometabolic and psychosocial diseases as well as premature mortality. Complications
of obesity, leading to at least 2.6 million annual deaths, are increasingly diagnosed in
individuals under 18 years of age [2].

The global surge in childhood obesity can be attributed to various factors. Firstly, there
has been a widespread shift in the diets of young people. Scientific evidence unequivocally
confirms a significant increase in both the size and frequency of meals consumed by children
and adolescents over the last 40 years. There is also a notable rise in the consumption
of high-energy, processed foods that are rich in fats and sugars but deficient in vitamins,
minerals, and other essential microelements. Simultaneously, lifestyle changes resulting
from progressive urbanization have compelled a reduction in physical activity.
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Equally important is the exposure of children and adolescents to chronic stress stimuli,
inadequate stress coping mechanisms, a lack of support, and disruptions in their length
and quality of sleep. These factors indirectly lead to the development of compensatory
mechanisms, often associated with the consumption of excess high-calorie foods and drinks,
even at night. All these environmental factors strongly interact with genetic predisposition,
which significantly influences body weight control [3]. Obesity, being a multifaceted health
concern, necessitates a nuanced understanding of its diverse complications, both obvious
and non-obvious. Non-obvious complications refer to health issues or consequences that
may not be immediately apparent or visible, especially in the early stages of obesity. These
complications may not present obvious physical symptoms or signs, making their detection
and diagnosis more challenging. Non-obvious complications may involve subtle or internal
changes that can have significant impacts on health over time. Identifying and understand-
ing these non-obvious complications is crucial for comprehensive healthcare, as it enables
early intervention and targeted management to mitigate potential risks associated with
obesity. The study’s objective is to identify and discuss non-obvious complications of obe-
sity in children, contributing to a better understanding of the mechanisms accompanying
childhood obesity.

2. Methods

A search using the keywords “obvious” and “non-obvious” obesity complications was
conducted across the PubMed, Cochrane Library, Science Direct, and EBSCO databases from
January 2023 to September 2023. The objective was to identify worldwide English-language
meta-analyses, systematic reviews, randomized clinical trials, and observational studies.
As a result, the complications identified in children are shown in Figure 1. Ultimately, the
following 4 main topics were identified: disorders of glucose metabolism; liver disease
related to childhood obesity; the relationship between respiratory disorders and obesity in
children; and the effects of obesity on the hypothalamic–pituitary–gonadal axis and puberty.
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Figure 1. Classification of complications of childhood obesity.

3. Disorders of Glucose Metabolism

Overt and persistent hyperglycemia in obese children is not as common as in adults [4].
Type 2 diabetes occurs in only 1–2% of obese pediatric patients, with the highest prevalence
only in genetically predisposed ethnic groups, for example, Native American, Canadian
First Nation, Indigenous Australian, African American, Hispanic, etc. This does not mean,
however, that the pediatric population affected by obesity is free from glucose metabolism
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disorders [5]. However, they may be less obvious, such as reactive hypoglycemia. The
term “reactive hypoglycemia” was first used in 1924 by Harris, who used this name to
describe a set of symptoms similar to those occurring in diabetic patients after insulin
administration [6]. Symptoms such as feelings of hunger and behavioral and mood dis-
orders, from agitation and irritation to slowness and drowsiness, weakness, even loss of
consciousness, increased sweating, and heart palpitations, occur in people without diabetes
and are associated with a rapid decrease in blood glucose concentration in response to a
carbohydrate-rich food stimulus. Symptoms disappear after consuming simple carbohy-
drates. Their direct cause is the incorrect secretion of insulin at a time and in an amount that
is not adapted to the body’s current needs. Recent studies indicate that individuals with
obesity may have blood glucose levels below 70 mg/dL without significant hypoglycemic
symptoms, except for hunger [7]. That, in turn, may be responsible for snacking behav-
ior [8]. The cause of reactive hypoglycemia is inappropriate insulin secretion. In children
with obesity and reactive hypoglycemia, the first phase of insulin secretion is altered in
response to the carbohydrates supplied. Subsequently, a large amount of insulin is secreted
as a compensatory factor, and, as a consequence, serum glucose concentration is excessively
reduced 3–5 h after a meal. As shown in studies using continuous glucose monitoring,
reactive hypoglycemia may be experienced by up to 50% of obese patients during an oral
glucose tolerance test (OGTT) [7]. Interestingly, only a few report the symptoms described
above. In the rest, the disorder is asymptomatic. Traditional glucose measurements involv-
ing venipuncture or finger pricks fail to capture the exact fluctuations in blood glucose
over time, specifically the variability in glucose levels. Disorders can only be documented
using continuous glucose monitoring systems. Alternatively, when interpreting OGTT
results, it is worth paying attention not only to the high glycemia values at 120 min after a
load but also to those that are within the reference range but are lower than the preload
glycemia values. In obese patients with symptoms typical of reactive hypoglycemia or an
uncontrollable tendency to snack on sweet snacks, it is worth considering a prolonged oral
glucose tolerance test (up to 180 or 240 min) [8]. The basis of treatment is to modify the diet
and make the patient aware of the importance of eating regular, well-composed meals and
avoiding carbohydrates in the diet. In some situations, metformin or GLP-1 analogues may
be helpful. That, however, needs further investigation in the pediatric population.

4. Liver Disease Related to Childhood Obesity

One of the many complications related to childhood obesity is pediatric fatty liver dis-
ease associated with metabolic dysfunction (MAFLD), previously known as non-alcoholic
liver disease (NAFLD). The diagnostic criteria include liver histology (biopsy), imaging
(ultrasound, MRI), or blood sampling (evidence of intrahepatic fat accumulation). It is
crucial to underline that the relatively new name MAFLD emphasizes the importance of
metabolic causes of the disease, which were not previously included in NAFLD.

In the last two decades, the prevalence of this disease has doubled, and estimates for the
European pediatric population vary from 13% to 25% among children aged 3–18 years, depend-
ing on the diagnostic criteria [9,10]. Among obese children in the USA, approximately 38%
are estimated to have fatty liver disease [11]. In a Polish retrospective study, steatosis was
reported in 4.2% of children aged 6 months to 18 years, with 55.6% of these children being
overweight [12].

The manifestations of MAFLD may include steatosis alone, steatohepatitis with and
without fibrosis, or even cirrhosis. Since a definitive diagnosis requires a liver biopsy, which
is an invasive procedure, the disease is often suspected based on biochemical results (ele-
vated aspartate aminotransferase (AST) or alanine aminotransferase (ALT) concentrations)
or imaging, particularly a liver ultrasound, including elastography. A study conducted
among adults in the USA using ultrasound elastography showed that 24% of participants
had steatosis and 4.4% had significant fibrosis [13]. A corresponding study among obese
children revealed that both AST and ALT were significantly higher than in the norm-weight
control group. Additionally, 25% of participants showed steatosis on an ultrasound, and
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elastography showed higher values reflecting fibrosis in the obese pediatric population [14].
The long-term results of MAFLD are not completely defined, as much of the data, especially
among the pediatric population, come from retrospective studies and case reports [15,16].
Nevertheless, it is important to underline that, although rare, severe complications such
as cirrhosis, liver failure, and hepatocarcinomas have been reported [17]. Obesity in late
adolescence and early adulthood appears to increase the risk of severe MAFLD complica-
tions, such as liver cancer [18]. The duration of the disease may also play an important role.
Two randomized controlled trials among pediatric patients with fatty liver disease showed
disease progression in a two-year span, based on histological examinations. Disease pro-
gression was also correlated with insulin resistance [19]. According to studies focusing on
children who underwent liver biopsy due to fatty liver disease, up to 70% of them showed
some degree of fibrosis by the time of diagnosis, including advanced fibrosis in 16–30% of
cases. End-stage liver failure requiring liver transplantation due to fatty liver disease was
reported even in very young children. According to the USA transplantation registry, from
1987 to 2012, 14 children younger than 18 underwent this procedure [20]. The severity of
MAFLD appears to be linked to both the age of the patient and the stage of the disease. It is
also twice as common in adolescents with type 2 diabetes [21]. Nevertheless, when treating
an obese pediatric patient with fatty liver disease, it is crucial to remember to look for other
treatable causes of liver dysfunction, especially if there is poor improvement after weight
loss, such as Wilson’s disease, viral hepatitis, or autoimmune hepatitis.

5. Relationship between Respiratory Disorders and Obesity in Children

Asthma is a prevalent chronic disease among children, with a prevalence varying
between 1% and 18% [22]. The recently observed rise in the occurrence of obesity and
asthma in the pediatric group and their interrelation has been the subject of numerous
studies [23]. However, this connection is not well understood [24–26]. We often encounter
a vicious cycle where asthma contributes to obesity and vice versa. In children with inade-
quately managed asthma, multiple factors are typically at play, including the utilization of
systemic corticosteroids or decreased physical activity. These factors can ultimately disrupt
carbohydrate metabolism and elevate the risk of obesity.

Recent findings have indicated a potential connection between the development of
asthma and gradual weight gain over time [23,27–29]. According to Lang et al., school-aged
children before reaching puberty are most susceptible to developing asthma linked to
obesity, specifically those between the ages of 7 and 11 [30]. Their suggestion was that
the initiation of asthma could be influenced by both the duration and severity of being
overweight, and they proposed that the period before puberty, especially among girls,
might be a particularly high-risk timeframe for the development of asthma associated with
obesity. In their study, Chen et al. monitored the emergence of obesity over a 10-year
follow-up in children with asthma. They noted that children who were not obese initially
had a 51% greater likelihood of developing obesity when compared to children who did
not have a prior asthma diagnosis. Nonetheless, the presence of obesity was not directly
linked to the future development of asthma [30–32].

Asthma presents with clinically diverse symptoms, such as wheezing, shortness of
breath, chest tightness, and cough, all originating from chronic airway inflammation.
Obesity has been associated with a decline in lung function, as both forced expiratory
volume in one second (FEV1) and forced vital capacity (FVC) exhibit a negative correlation
with waist circumference [33–35]. On average, every 1 cm increase in waist circumference
was linked to a 13 mL decrease in FEV1 and an 11 mL decrease in FVC [36].

The “Obese-Asthma” phenotype displays a distinct molecular pattern compared to
the classic form. The Th2-low pattern is characterized by a predominant presence of neu-
trophils in the bronchial mucosa, alongside low levels of IgE and limited eosinophilic
infiltration [37,38]. Excessive adipose tissue accumulation has proinflammatory effects as-
sociated with increased leptin production, hypoxia, focal adipocyte necrosis, and activation
of neutrophils, reactive oxygen, macrophages, and natural killer cells [39]. Addition-
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ally, obesity-related insulin resistance generates proinflammatory molecules, promoting
the development of inflammation [29,40]. Furthermore, coexisting hyperinsulinemia, by
inhibiting the presynaptic processes of M2 muscarinic receptors, leads to bronchial hyperre-
activity. In the research conducted by Leija-Martínez et al., the presence of “Obese-asthma”
alongside an elevated Th17 immune response was correlated with airway hyperreactivity
(AHR), severe asthma, and resistance to corticosteroid treatment [29,40–42].

In the study by Machado et al., it was found that leptin may be a potential pre-
dictor of asthma control in children. A weak predictive value was shown for BMI and
adiponectin [43].

Elevated levels of CRP, often observed in obese patients due to cytokine stimulation
from adipose tissues, have been correlated with the risk of asthma development and its
severity [35]. Excessive abdominal tissue deposition also exerts a mechanical influence
on the respiratory system by reducing chest expansion and decreasing tidal volume and
residual capacity [44]. Afshar-Mohajer et al.’s research revealed that obese children with
asthma are more susceptible to the effects of air pollution, specifically PM 2.5, compared
to non-obese children. This increased susceptibility was attributed to their higher tidal
volumes and minute ventilation. These factors contribute to an elevated risk of experiencing
more severe and uncontrolled asthma [45].

The primary approach to addressing pediatric obesity involves lifestyle modifications,
including moderate energy consumption, increased physical activity, decreased sedentary
behaviors, and active family engagement in the treatment process. Weight reduction in
asthmatic children not only decreases the clinical symptoms of asthma but also improves
lung function and asthma control, leading to a better quality of life [46]. It has been reported
that even a 5–10% reduction in weight can result in improved asthma outcomes [47].
Willeboardse et al. conducted a study monitoring 87 children who were both asthmatic
and overweight or obese over 18 months [46]. The intervention involved a combination of
activities, including sports sessions, dietary adjustments, parental participation, counseling,
and behavioral therapy. Over the course of the study, clinically significant improvements
in body weight, lung function, and asthma-related characteristics were observed in both
the intervention and control groups. However, certain effects were more prominent in the
intervention group, such as FVC, asthma control, and overall quality of life. This suggests
that weight-reduction interventions can have clinical benefits for children with asthma.

It is important to note that steroids are less effective for individuals with asthma
who are obese compared to those with a lower BMI [48]. Specifically, obese individuals,
particularly those with severe obesity, have a reduced likelihood of achieving asthma
control. While there have been conflicting reports on this matter, a retrospective cohort
study involving data from six European centers found that obesity was not considered a
significant risk factor for asthma exacerbations [49]. Up to 40% of children and adolescents
with obesity may experience obesity hypoventilation syndrome (OHS) [50]. It typically
manifests during sleep through recurrent episodes of either shallow breathing or complete
cessation of airflow through the upper airways while chest and abdominal movements
continue. Signs of OHS may encompass mouth breathing, disruptions in breathing rhythms,
nighttime snoring, difficulties with concentration, as well as restlessness, headaches, and
excessive daytime drowsiness. Ventilation dysfunction leads to multiple episodes of hy-
poxia and hypercapnia, negatively affecting the functioning of the entire body, including
growth, development, and psycho-emotional well-being, and leading to the development
of other complications of obesity, such as hypertension [51]. Several studies have explored
the connection between body mass index measurements and lung function parameters,
along with polysomnographic evaluations, in children with asthma. In a retrospective
study that examined the polysomnographic data of 448 children aged 7 to 18 years with
asthma, efforts were made to investigate the relationship between spirometry results, body
mass index, and polysomnography parameters. This analysis also considered the influence
of the medications administered. The study revealed that obese children had less favorable
sleep patterns and more pronounced disruptions in gas exchange compared to children
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of normal weight. Additionally, it was found that asthma medications, such as inhaled
glucocorticosteroids and leukotriene antagonists, had an impact on sleep pattern distur-
bances, consequently triggering pathological activations of the sympathetic nervous system.
Recognizing the presence of “obesity-related asthma” is vital to initiating personalized
interventions for children. These interventions aim to encourage physical activity, cultivate
healthy habits, and improve asthma self-care, ultimately reducing long-term morbidity
and mortality.

6. Effects of Obesity on the Hypothalamic–Pituitary–Gonadal Axis and Puberty
6.1. Obese Girls

The increasing number of obese children is associated with a broad spectrum of gy-
necological consequences for adolescent girls, impacting them during adolescence and
later in adulthood. Precocious puberty may have adverse effects on girls’ mental and
psychosocial health. Obesity heightens the risk of low self-esteem and depression, par-
ticularly in girls who are prone to engaging in risky sexual conduct and demonstrate
ineffective use of contraception. Irregular menses, amenorrhea, abnormal uterine bleeding,
dysmenorrhea, and polycystic ovary syndrome (PCOS) at heightened rates may contribute
to infertility, pregnancy complications, as well as breast and endometrial cancers later in
adult life [52–58].

6.1.1. Premature Puberty

In the 1970s, it was hypothesized that a “critical body weight” is crucial to starting the
process of puberty [59]. Excessive levels of body fat are connected with an earlier onset
of menarche [60]. Leptin, a hormone secreted by adipocytes, provides information on an
organism’s nutritional status and acts via the stimulation of Kiss-1 neurons as a factor in
accelerating puberty. Levels of leptin and kisspeptin are higher in obese girls compared to
healthy-weight girls [61].

In obese girls, the most common form of premature puberty is the early appearance
of pubic and axillary hair (at <8 years of age). The excess of insulin, which is often
observed in obese children, appears to stimulate androgen secretion in ovarian theca
cells, even in the absence of luteinizing hormone (LH), and promote excessive androgen
production by the adrenal glands. Moreover, hyperinsulinemia decreases the hepatic
excretion of sex hormone-binding globulin (SHBG), which consequently leads to increased
androgen bioavailability (i.e., increased free testosterone) [62]. It may clinically present
as the premature appearance of pubic and axillary hair and may be accompanied by
the characteristic smell of sweat, which is typical of adolescence, mild acne, moderately
accelerated growth and bone age, and isolated mild elevations in dehydroepiandrosterone
sulfate (DHEAS) levels. Generally, the premature isolated development of pubic and/or
axillary hair is considered a benign process that does not disturb the normal timing and
course of puberty and does not affect the body’s final height. However, a connection was
noted between the occurrence of adrenarche praecox and obesity and the risk of developing
polycystic ovary syndrome in girls [63,64].

Another mechanism for the early onset of menstruation and puberty is increased
aromatase activity in fat cells, which leads to higher estrogen levels and may lead to
isolated thelarche—the less common manifestation of precocious puberty. Unlike in real
central puberty, in this mild variant, levels of LH remain unchanged but may occur with
mild increases in follicle-stimulating hormone (FSH). Growth rate and bone age do not
accelerate. The mild forms of precocious puberty in obese children do not require treatment;
they exhibit a stable or very slow progression.

6.1.2. Menstrual Disorders, Polycystic Ovary Syndrome (PCOS), and Other Syndromes
Connected with Obesity in Adolescent Girls

The menstrual cycle results from a complex balance and interaction of hormones. Any
disruption to these mechanisms can impact its physiology. Obesity in pubertal girls and
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young women may be a contributing factor to ovarian dysfunction. The most common
noticeable symptom of this dysfunction is an irregular menstrual cycle, which occurs twice
as often as in slim girls of the same age. Additionally, obesity is also associated with a
higher risk of other menstrual disorders, such as heavy or light bleeding, dysmenorrhea,
oligomenorrhea, secondary amenorrhea, and polycystic ovary syndrome (PCOS). All of
those disorders are related to disruptions in the hormonal balance between estrogens,
gestagens, and androgens, which occur secondary to other hormonal disorders, mainly
hyperleptinemia, hyperinsulinemia, and insulin resistance [62].

One of the most serious ovarian dysfunctions affected by obesity, with much more
far-reaching general health consequences, is polycystic ovary syndrome (PCOS). It can
manifest with a variety of clinical irregularities, including menstrual irregularities, acne,
hirsutism, acanthosis nigricans, and seborrhea. Diagnosing it in some patients can be
challenging during adolescence. In adolescent girls, it presents as irregular menstruation
and clinical hyperandrogenism. Ovulation disorders that occur during the course of the
syndrome may be a cause of fertility issues. The pathogenesis of PCOS is based on the
disturbance of insulin secretion and its activity, and it is associated with potentially harmful
health abnormalities such as hypertension, dyslipidemia, impaired glucose metabolism,
obstructive sleep apnea, and non-alcoholic fatty liver disease. Moreover, it can lead to
infertility and cardiovascular disease in adulthood [65]. Hyperinsulinemia is responsible
for the increased secretion of androgens by the ovaries and adrenal glands, along with the
reduced synthesis of sex hormone-binding globulin (SHBG), which consequently leads to
excess androgens. According to the consensus of 2017 and 2018, PCOS can be diagnosed
in adolescents if both of the following criteria are met: (1) the occurrence of menstrual
disorders (including irregular menses, oligomenorrhea, and secondary amenorrhea) and
(2) hyperandrogenism [66,67]. A diagnosis of PCOS can be made if at least 2 years have
passed since the first menstruation and persistent disorders in menstruation persist for over
2 years. Other potential causes of menstrual irregularities and hyperandrogenism should
be ruled out, including hypothyroidism, hypercortisolemia, hyperprolactinemia, congenital
adrenal hyperplasia, and androgen-secreting tumors. According to the evidence-based rec-
ommendation from 2023, it is recommended not to diagnose PCOS during adolescence due
to the overlap between the characteristics of physiological maturation and polycystic ovary
syndrome. For adolescents displaying PCOS characteristics but not meeting diagnostic
criteria, an “elevated risk” could be contemplated, and re-evaluation is advised at or before
full reproductive maturity, typically 8 years after menarche. This includes those with PCOS
characteristics before the start of the combined oral contraceptive pill (COCP), those with
persisting characteristics, and those with significant weight gain in adolescence [68]. The
goal of treatment is to restore normal monthly cycles. Weight loss is a necessary condition
for a lasting treatment effect, but, most often, it is not sufficient at the beginning; therefore,
it is usually necessary to use a contraceptive pill containing progestogen for an antian-
drogenic effect. In very young patients or with contraindications to the administration of
estrogens (venous thrombosis, migraine with aura), treatment with natural progesterone
in the second phase of the cycle can be considered. For girls with PCOS and disorders
of glucose metabolism or features of MAFLD, metformin may be recommended, which
not only improves metabolic parameters but also has a positive effect on the regularity
of cycles, monthly periods, and ovulation [66–68]. Metformin can ameliorate ovulation
and the metabolic risk of PCOS, and, currently, together with hormonal contraceptives, it
constitutes the basis of therapy in adolescents with PCOS. In addition to promoting weight
loss and systemic metabolic effects, metformin has been proposed to exert influence at the
ovarian level. Apart from its metabolic actions in the ovary, metformin has demonstrated
the inhibition of in vitro androgen production in isolated human ovarian granulosa cells,
with this impact being particularly notable in the presence of insulin. Furthermore, the
androgen-lowering effects of metformin were found to be secondary to decreased circulat-
ing insulin levels and the subsequent reduced activity of steroidogenic enzymes. Studies
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have also proposed a significant role for ovarian AMP-dependent kinase in mediating the
effects of metformin.

6.2. Obese Boys
6.2.1. Gynecomastia (Gm), Pubertal Gynecomastia (pGm), and Pseudogynecomastia
(Pseudo-Gm) in Adolescent Males

Gynecomastia (Gm) is one of the most embarrassing and hidden problems in over-
weight/obese adolescent boys. Gm is usually physiological during puberty but might also
be pathological [69,70]. Physiological pubertal gynecomastia (pGm) affects 20% to 70% of
pubertal boys and is usually benign and self-limiting [71,72]. A physical examination may
reveal a firm retroareolar mass that may be painful, and the skin is usually intact; however,
stretch marks (whitish or reddish) are frequently seen in overweight/obese adolescents,
and this is why adolescents seek medical advice [73]. Sometimes, however, the overlying
skin might be inflamed in the case of an infection from a juvenile retroareolar cyst, so
ultrasound confirmation is warranted.

Ultrasonography can also be useful in differentiating Gm from pseudogynecomastia
(pseudo-Gm), the most common cause of Gm, and other rare causes of Gm, such as
lipoma, neurofibromatosis, lymphangioma, or hematoma [74–78]. Pseudo-Gm, also called
lipomastia, steatomastia, or adipomastia, is caused by fat tissue accumulation resulting in
bilateral breast enlargement [74–78].

Considering the high incidence of Gm, further differential diagnoses of its causes
should include systemic disorders (e.g., liver disease), iatrogenic Gm in adolescents, es-
pecially the consequences of substance use, and endocrine disorders (e.g., adrenocortical
cancer, Klinefelter syndrome, partial androgen insensitivity, 11-beta hydroxylase deficiency,
or 17-ketosteroid reductase deficiency) [79].

Nowadays, in the obesity epidemic era, patients are presenting with more complex
Gm, which is a combination of glandular and fat tissue hypertrophy [80]. From a plastic
surgery point of view, the obese male population presents with a new cosmetic problem
of breast deformity resulting from the combination of gynecomastia, obesity, and weight
loss [81,82].

Etiology

Gm results from an imbalance in the estrogen to androgen (E/A) ratio favoring estro-
gen, as observed also in disorders known to influence E/A balance (Klinefelter syndrome,
partial androgen insensitivity syndrome, or aromatase excess syndrome) [75–78,83]. How-
ever, the findings of imbalances in sex hormones in adolescents with Gm are controversial
in the literature [74,76,83–88]. In a recent, excellent study by Reinehr et al. differentiating
pGm from pseudo-Gm with the use of ultrasound evaluation and adjusting the data for
testes volumes, pGm was characterized by a relative testosterone deficiency to estradiol con-
centrations in contrast to pseudo-Gm [74]. The combination of increased serum estrogens
in relation to a relatively delayed free testosterone rise and increased tissue sensitivity to
normal male levels of estrogen may possibly be a cause of gynecomastia in adolescents [89].

PGm is usually observed at around 13 years of age or at pubertal stage 3 to 4
by the Tanner scale when serum estrogens increase more abruptly than testosterone
levels [71,72,78,83]. Limony et al. have shown that pGm appears within a year in re-
lation to the age of peak height velocity (PHV), corresponding to Tanner stage 3 for pubic
hair and testicular volumes between 8 and 10 mL [90]. Interestingly, analyzing the GH-IGF-
I axis, Reinhert et al.’s group did not find any differences in the IGF-I levels between pGm
and pseudo-Gm groups; however, locally produced IGF-1 might be more relevant than
circulating IGF-1 for the development of gynecomastia, and hyperinsulinemia in obese
adolescents might also potentially influence its occurrence [74,86].

Physiological pGm in adolescents usually resolves within 6 months to 2 years after
onset; however, if it persists for over two years or beyond the age of 17 years, further
evaluation is suggested [91]. Androgens are aromatized to estrogens in adipose tissues,
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and as this process is increased in individuals with obesity, including obese pubertal boys,
gynecomastia is not only common but persists beyond mid-puberty [72]. As Gm occurs
together with pseudo-Gm, breast enlargement can be prominent and affect psychosocial
well-being. The primary cause of breast enlargement is the growth of the stroma, ac-
companied by ductal proliferation and mild Gm during the proliferative phase, which is
reversible [72,91–93]. However, as presented by Godwin et al., once breast hypertrophy
has been present for more than a year, stromal hyalinization and irreversible fibrosis of the
parenchyma occur; thus, the only effective treatment at this stage is surgery [80,94]. After
massive weight loss (MWL), e.g., after bariatric surgery, the chest may show significant
deformities. The surgical treatment of gynecomastia after MWL is complicated due to an
excess of skin that sometimes continues in the axilla or dorsal region, a predominantly fatty
rather than glandular component, the malposition of the enlarged nipple–areola complex,
ptosis, and an inframammary fold that is often marked [82].

Psychological Aspects of Gynecomastia and Pseudogynecomastia

Gynecomastia in obese adolescents may have a significant negative influence on their
well-being [95]. It can affect social relationships; the behaviors chosen by obese patients can
be a source of psychological discomfort associated with negative perceptions by peers but
also potentially a concern about sexual identity [96]. Bullying is common and can further
aggravate eating disorders, social isolation, and reduced physical activity [92,97].

6.2.2. Functional Hypogonadotropic Hypogonadism in Obese Adolescents

Pediatric and adolescent obesity may influence puberty, as this developmental stage
is sensitive to nutrition [98]. It is known from research conducted in obese adult males
that obesity can cause suppression of the hypothalamic–pituitary–gonadal (HPG) axis and
testosterone secretion [99]. However, in pediatrics, the differential diagnosis of delayed
puberty must exclude congenital and acquired/structural causes first. Hypogonadism
in adolescents can be caused by gonadal disease (primary hypogonadism), dysfunction
of the HPG axis (secondary hypogonadism), be transient/reversible (functional hypogo-
nadotropic hypogonadism, FHH), or be self-limited (constitutional delay in growth and
puberty, CDGP). FHH, a transient delay in HPG axis maturation, is usually a consequence
of chronic disease, such as celiac disease, inflammatory bowel disease, anorexia nervosa,
dysregulated diabetes mellitus, persistent obesity, or iatrogenic impacts (e.g., glucocorti-
costeroid therapy) [100,101]. CDGP, a nonpathological condition in which the maturation
of the HPG axis and PHV are delayed, is the diagnosis for exclusion [102,103]. FHH and
CDGP are found most frequently in boys [102,103].

Many research groups focus on the mechanisms underlying the influence of obesity
on puberty [104–112]. The activation of the HPG axis is triggered by pulsatile GnRH
secretion influenced by the activity of KnDY neurons (KNDY: kisspeptin, neurokinin
B, and dynorphin) [106–108]. Both reproductive KnDY neurons and metabolic neurons
(proopiomelanocortin/cocaine, amphetamine-regulated transcript, and agouti-related pep-
tide/neuropeptide Y) interact with GnRH neurons [109,110]. Additionally, the peripheral
signaling hormones Y polypeptide, cholecystokinin, insulin, leptin, adiponectin, and ghre-
lin interact with metabolic neurons related to the HPG axis [109–118].

There are several studies that evaluate the effect of obesity on the start of puberty
in males with controversial results; some studies from Europe and South America asso-
ciate obesity with early puberty and from North America with a later development of
puberty [119–123]. These differences could be due to the way pubertal staging was as-
sessed [104].

Despite different observations on the onset of puberty in obese adolescents, some
studies present that, apart from an advanced bone age potentially decreasing final height,
persistent obesity may suppress the HPG axis thereafter [104,124].
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The incidence of hypogonadism in obese adolescents is not known; however, one
study reported a prevalence of hypogonadism (low serum testosterone) of 33% among 14-
to 25-year-old males with obesity [125].

There are no pediatric guidelines on the management of FHH secondary to obesity in
adolescent males; therefore, FHH should be suspected in obese patients presenting clinical
symptoms of hypogonadism, such as delayed or incomplete pubertal development [126].

Obesity and hypogonadism are interconnected; obesity contributes to hypogonadism,
and hypogonadism increases obesity [107]. The mechanisms behind hypogonadism in obe-
sity are not well understood. Some researchers propose that obesity causes the suppression
of gonadotropins [127–129]. Increased peripheral aromatization of testosterone to estradiol
in fat tissue contributes to decreased serum testosterone [130,131]. Some authors propose
that relative hypogonadism could be related to insulin resistance and imbalances in leptin,
sex hormone-binding globulin, growth hormone, and insulin-like growth factor-binding
protein-3 ratios [127,128,130–132]. Inflammatory proteins such as cytokines and tumor
necrosis factor-α, produced in adipose tissues, inhibit kisspeptin secretion, decreasing
GnRH secretion [133,134].

Hypogonadism can cause many consequences, from metabolic to psychological [108].
Obese adolescents with pubertal delay are twice as distressed by their conditions, which
decreases their quality of life; therefore, this situation warrants detailed evaluation and
therapy in Multidisciplinary Endocrine Obesity Centers for Adolescents [82,106]. The
European Academy of Andrology (EAA) recommends lifestyle changes as the first line of
treatment in patients with functional hypogonadism, since weight reduction can increase
testosterone levels as well as improve reproductive function and fertility [135–137].

7. Summary

We envision that the insights provided in this study will significantly contribute to
awareness and understanding of the often-overlooked and non-obvious complications as-
sociated with obesity. By shedding light on these intricacies, we aim to empower healthcare
professionals with knowledge that can drive more informed decisions and interventions.
Obesity, being a multifaceted health concern, necessitates a nuanced understanding of
its diverse complications. This work endeavors to unravel its complexities, offering a
comprehensive perspective that surpasses surface-level manifestations. This way, we aspire
to bridge the gap in knowledge. Moreover, by highlighting non-obvious complications, we
aspire to inspire a paradigm shift in how obesity is perceived and managed. Recognizing
that certain complications may lurk beneath the surface, undetected for extended peri-
ods, underscores the importance of vigilant and comprehensive healthcare practices. Our
hope is that this work serves as a catalyst for ongoing research, policy development, and
community initiatives aimed at preventing and managing obesity-related complications.

Through increased awareness and a more profound understanding, we can work
toward more effective prevention strategies, early interventions, and holistic approaches
that address both the visible and concealed challenges posed by obesity.
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