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Abstract: Individuals born preterm have shorter lifespans and elevated rates of chronic illness that
contribute to mortality risk when compared to individuals born at term. Emerging evidence suggests
that individuals born preterm or of low birthweight also exhibit physiologic and cellular biomarkers of
accelerated aging. It is unclear whether, and to what extent, accelerated aging contributes to a higher
risk of chronic illness and mortality among individuals born preterm. Here, we review accelerated
aging phenotypes in adults born preterm and biological pathways that appear to contribute to
accelerated aging. We highlight biomarkers of accelerated aging and various resiliency factors,
including both pharmacologic and non-pharmacologic factors, that might buffer the propensity for
accelerated aging among individuals born preterm.
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1. Introduction

Preterm birth, defined as birth before 37 weeks of gestation, affects about 15 million
(11%) births worldwide each year and is the most frequent cause of infant mortality [1–3].
Individuals born preterm have a shorter lifespan than those born at term [4] and higher
risks of chronic illness that contribute to mortality risk [5–9]. Such illnesses increase physical
and emotional stress [10] and accelerate biological aging [11], resulting in an individual’s
biological age exceeding their chronological age [12]. Biological age reflects the pace of
aging as influenced by external and internal stressors such as environmental exposures or
genetic factors [13].

Chronic illnesses to which individuals born preterm birth are at increased risk include
cognitive [14,15], cardiovascular [5,16,17], pulmonary [6,18], metabolic [19,20], kidney [21],
and psychiatric disorders [22,23], and these conditions often persist through the life course.
Since chronic illnesses are associated with accelerating aging, it is possible that accelerated
aging is a mechanism that links preterm birth and chronic health disorders across the
life course [24]. Currently, a clear understanding of the impact of accelerated aging on
individuals born preterm is lacking because few cohorts of preterm births have been
followed beyond early adulthood.

In this paper, we review (1) phenotypes and biomarkers of accelerating age; (2) studies
of associations between gestational age at birth or birth weight and phenotypes/biomarkers
of aging; (3) biological mechanisms underlying aging; and (4) pharmacologic and non-
pharmacologic risk and resiliency factors that could influence the pace of biological aging.
We emphasize studies focused on individuals 18 years and older who were born very
preterm (<32 weeks of gestation) or extremely preterm (<28 weeks of gestation) [25], while
also including findings from cohorts of very low birth weight (VLBW; birth weight < 1500 g)
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and extremely low birth weight (ELBW; birth weight < 1000 g) neonates, which are com-
prised primarily of individuals born prematurely [26]. To illustrate the potential link
between preterm birth and accelerated aging, we describe associations between preterm
birth and accelerated aging phenotypes (AAP) within various organ systems, illustrated
in Figure 1: (1) cardiovascular/circulatory; (2) metabolic–endocrine; (3) brain; (4) lung;
(5) muscular system; (6) kidney; and immune systems.
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Methods used in this narrative review were not prospectively specified. We limited
our attention to papers published in English. We used PubMed and Google Scholar
to identify papers with information that we regarded as relevant to the focus of our
paper using the following search strategies: (1) [very low birth weight/extremely low
birth weight/very preterm/extremely preterm] AND [cognitive impairment/cerebral
palsy/brain MRI/brain volumes/lung/bronchopulmonary dysplasia/kidney/renal/
immunity/hepatic/diabetes/obesity/cardiometabolic/blood pressure/hypertension/
cardiovascular/metabolic/sarcopenia/aging], where each of the 4 terms listed in the
first set of brackets was paired with each of the 11 terms in the second set of brackets;
(2) biomarkers AND [aging/epigenetic clocks/telomere length/inflammation/oxidative
injury], where biomarkers was paired with each of the terms listed in the brackets; and
(3) senolytics. For the first set of searches, we reviewed the abstracts to identify the age of
study participants and excluded studies that included participants younger than 18 years
of age. In general, when searching for studies of “biomarkers and aging” and the search
for senolytic drugs, we limited our attention to reviews that were available to us as full
manuscripts from PubMed or Google Scholar. All associations and correlations that are
described in this review were regarded by the original authors as statistically significant,
except where we have specifically stated otherwise.

2. Results
2.1. Accelerated Aging Phenotypes and Biomarkers
2.1.1. Prematurity or LBW and Cardiovascular Diseases

The risk of cardiovascular diseases increases with advancing age and also increases
among adults born preterm [27–29]. This accelerated aging phenotype includes decreased
arterial distensibility, hypertension, coronary heart disease, and heart failure. Frequently
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used in research studies of aging are non-invasively measured markers including systolic
blood pressure (SBP) [30], diastolic blood pressure (DBP) [31], pulse pressure [32], and heart
rate [33]. Elevated SBP (>140 mm Hg), DBP (>90 mm Hg), and heart rate (>90 beats per
minute) tend to increase with chronological age and are associated with increased risk of
cardiovascular death and/or all-cause mortality. Endothelial dysfunction, which elevates
SBP, can be assessed non-invasively by measuring the hyperemic response to transient
arterial occlusion; decreased hyperemia is indicative of endothelial dysfunction and is
associated with advancing age [34–36]. Blood levels of homocysteine have also been used
as a biomarker for cardiovascular risk; higher levels are associated with atherosclerosis and
adverse cardiovascular events [37].

Many of these cardiovascular markers have been identified within populations of
preterm or LBW individuals. In the HAPI (Health of Adults Born Preterm Investigation)
cohort, adults (18–29 years old) who were born before 30 weeks of gestation had increased
arterial stiffness and diastolic blood pressure, as compared to controls [38]. In a group of
young adults born with VLBW, reactive hyperemia was decreased and SBP was increased,
as compared to non-VLBW controls [39]. A systematic review of 10 studies of individuals
born preterm or VLBW, concluded that preterm birth and VLBW were associated with
elevated blood pressure [27]. In the ESTER (Preterm Birth and Early Life Programming
of Adult Health and Disease) birth cohort from Finland, average blood pressure from
24 h monitoring was 5.5 mmHg higher in individuals born preterm than in term-born
controls [40]. In the Cardiovascular Risk in Young Finns Study, average systolic blood
pressure was 7.3 mmHg higher among adults born preterm (mean age of 41 years) [41].
Similarly, in an international collaboration involving 9 cohorts with 1571 VLBW adults
and 777 term-born control adults, adults born VLBW, as compared to controls, have higher
systolic [3.4 mm Hg; 95% confidence interval, 2.2–4.6] and diastolic blood pressure [2.1 mm
Hg, 95% confidence interval 1.3–3.0] [42].

Hypertension and decreased arterial distensibility increase the risk of heart failure. A
preterm cohort born in the United Kingdom (UK), with average gestational age at birth of
30 weeks and average age of 25 at follow-up, had larger left ventricular (LV) and LV wall
thickness, with decreased LV internal cavity diameter and LV stroke volume, as compared
to controls born at term [43]. In addition to hypertension, adults born preterm in the ESTER
cohort had other cardiovascular risk factors including a higher percentage of body fat,
higher waist circumference, and a higher rate of cardiometabolic syndrome [44]. Similarly,
in the Aberdeen Children of the 1950s cohort, the lighter the participants were at birth, the
greater the likelihood of them developing coronary heart disease or stroke [45]. Finally,
adult males who were born at a low birth weight (LBW) in Helsinki, Finland had higher
mortality due to coronary heart disease [46].

2.1.2. Prematurity or LBW and Metabolic–Endocrine Diseases

Metabolic diseases including obesity and diabetes mellitus (DM) are major public
health concerns, with obesity classified as a near-global epidemic [47]. Preclinical models
and epidemiologic studies indicate associations between decreasing insulin sensitivity and
shorter lifespan [48]. Higher insulin levels, reflecting lower sensitivity, are associated with
greater age-related cognitive decline [49], and Alzheimer’s disease and type 2 diabetes
mellitus share numerous mechanistic pathways [50]. A measure of insulin insensitivity
over an extended timeframe is glycated hemoglobin (HgA1c). Obesity is associated with
insulin insensitivity, so measures of obesity, such as body mass index and waist-to-hip ratio,
are inexpensive methods that provide some insight into age-related changes in glucose
and lipid metabolism. Dysregulated lipid metabolism is associated with age-related health
disorders [51] and allostatic load [52]. Adults with type 1 diabetes mellitus have accelerated
brain age as compared to controls without diabetes [53].

Measures of DM and obesity have been observed in preterm and LBW individuals. In
a study of United Kingdom (UK) adults (aged 18–27), people born preterm (mean: 29 weeks
gestation), as compared to those born at term, had higher levels of total and abdominal
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adipose tissue [54], risks factors for type 2 diabetes, hypertension, and dyslipidemia. In
another sample, adults (34–38 years old) born preterm had lower insulin sensitivity than
adults born at term [55]. In studies comparing ELBW adults with adults with normal birth
weight, ELBW adults were more likely to develop dysglycemia (unstable blood sugar) [56]
and had a higher percent of total body fat, fat in liver and pancreas, and subcutaneous
fat [57]. In studies comparing VLBW adults with normal birth weight controls, VLBW
adults had lower insulin sensitivity [58] and higher fasting concentrations of triglycerides
in chylomicrons, very-low-density lipoproteins, and high-density lipoproteins, increasing
the risk of cardiovascular disorders [20].

The Extremely Low Gestational Age Newborn (ELGAN) cohort is one of the largest
and most diverse cohorts of individuals born extremely preterm. Although the ELGAN
cohort has not yet been studied, this cohort exhibited an increasing frequency of obesity,
from 2 years to 10 years to 15 years of age [59,60], and, in this cohort, obesity was associated
with asthma [61].

2.1.3. Prematurity or LBW and Brain Disorders

With advancing age, cognitive function declines [62] and the risk of dementia in-
creases [63]. Cognitive functions that decrease with age include reasoning, spatial visual-
ization, working memory, and processing speed. Total brain, grey matter, and white matter
volumes also decrease with age [64]. Magnetic resonance imaging (MRI) can be used to
estimate the brain age gap estimate (brainAGE) [65], defined as the difference between
chronological age and age predicted from MRI data. Accelerated brain aging (estimated
brain age > chronological age) has been associated with markers of aging, such as weaker
handgrip strength, worse lung function, slower walking speed, lower fluid intelligence,
and increased mortality risk [66].

Individuals born preterm have higher risks of cerebral palsy, a brain-related impair-
ment that is about 80–90 times more prevalent among individuals born extremely or very
preterm, as compared to those born at term [67,68], and 20 times more prevalent among
those born VLBW as compared to those with normal birth weight [69]. The most prevalent
brain-related disorder among individuals born preterm is cognitive impairment, identified
with intelligence tests and assessments of executive function [70]. In a geographically
based cohort of infants born in the United Kingdom before 26 weeks of gestation, 15% of
young adults born extremely preterm had intellectual deficits, which was not found in
any of the 64 controls [14]. Similar disparities in the prevalence of cognitive impairment
between adults born preterm and those born at term have been reported in Norway [67] and
Bavaria [15]. Although a precise understanding of the reason for this disparity in cognitive
function between young adults born preterm and those born at term is lacking, adults born
very preterm have decreased neural between-network connectivity at resting state [71],
decreased brain volumes in deep grey matter structures [72], and reduced grey matter
volumes in multiple brain regions [73], including the cerebellum [74,75]. In studies where
both brain volumes and cognitive function have been assessed, reduced brain volumes
have been correlated with lower cognitive function [73,74].

Adults born preterm are two times more likely to develop cerebrovascular disease [76],
a risk factor for stroke. The risk of cerebrovascular disease is elevated among individuals
with obesity, hypertension, or diabetes, which are common phenotypes among adults
born preterm [77]. Preterm birth [78,79] and cerebrovascular disease [80,81] are associated
with systemic inflammation. In the ELGAN cohort, neonatal systemic inflammation was
associated with increased risks of cerebral palsy, learning and development deficiencies,
and reduced white and grey matter volumes in the brain [82–85]. Fetuses with biomarkers
of placental inflammation were more likely to exhibit neonatal systemic inflammation. With
continued follow-up into middle adulthood, the ELGAN study provides the opportunity
to evaluate the hypothesis that perinatal inflammation is associated with increased risks of
cerebrovascular disease decades later [86].
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2.1.4. Prematurity or LBW and Lung Diseases

Lung function declines with age and, as a group, individuals born preterm have
reduced lung function. In adults, lung function is most often evaluated by measuring
airflow as the study participant exhales as rapidly and forcefully as possible. Among
multiple measures of airflow, the most frequently used in epidemiologic studies is the
forced expiratory volume in one second (FEV1), referring to the volume of gas exhaled
during a forced expiration with maximal effort.

The most prevalent pulmonary function abnormality associated with preterm birth
is airway obstruction. Adults born preterm in a Norwegian cohort had lower FEV1 than
controls born at term [87] and had greater airway constriction in response to methacholine
exposure (hyperactive airways) than those born at term. Preterm birth is associated with
oxidative and inflammatory lung injury [88], which in some cases resolves and in other cases
evolves into a chronic lung disease referred to as bronchopulmonary dysplasia (BPD), the
risk of which is inversely related to gestational age at birth [89]. Among adults born preterm,
BPD is associated with decreased exercise tolerance [90], and, irrespective of whether they
have BPD, adults born very preterm have impaired exercise capacity [91], worse lung
function, and lower lung diffusion capacity for carbon monoxide [92]. Additional research
is needed to understand whether adults born preterm are more likely to develop chronic
obstructive airways, but such an association was found in a Swedish cohort of individuals
born preterm or VLBW [93]. Studies focused on adults born with VLBW, rather than
preterm birth, have found associations with lower FEV1 [94] and a higher likelihood of
being hospitalized for a respiratory illness, i.e., respiratory infection, asthma, or respiratory
failure [95].

2.1.5. Prematurity or LBW and Sarcopenia

Sarcopenia refers to the age-related decline in both muscle mass and strength which is
associated with an increased risk of falls and decreased ability to perform activities of daily
living, independence, and quality of life [96,97]. Muscle mass can be measured in a number
of ways, including computerized tomography (CT), magnetic resonance imaging (MRI),
dual-energy X-ray absorptiometry (DXA), and bioimpedance analysis [98]. However, these
methods are not well suited for large epidemiologic studies; in contrast, bioimpedance is
inexpensive and portable. In large studies, the most widely used tool for measuring muscle
strength (the magnitude of force generated) is a handgrip dynamometer to evaluate grip
strength, which correlates with leg strength. The stair climb power test takes only a few
minutes to complete and correlates well with other leg power impairment measures [99].

The risk of sarcopenia is increased by insulin resistance [100], which, as mentioned
previously, is associated with preterm birth. Few preterm birth or LBW cohorts have
evaluated biomarkers of sarcopenia beyond young adulthood. In a study of individuals
56–70 years old, born between 1934 and 1944 in Helsinki, Finland, birth weight was posi-
tively correlated with both lean muscle mass and grip strength, which are predictive of the
degree of fragility [101]. Similarly, adults with ELBW born in Ontario, Canada had reduced
grip strength at 23 years old when compared to adults born at a normal birth weight [102].
Thus, adults born preterm may be at increased risk of sarcopenia.

2.1.6. Prematurity or LBW and Kidney Diseases

On average, humans are born with one million nephrons, or functional units, per
kidney [103]. It is well established that the aging process significantly impacts the kidneys
as a result of the oxidative stress from high vascular blood flow and metabolic activity.
The hallmarks of kidney aging and chronic kidney disease include nephron loss, com-
pensatory hypertrophy of remaining nephrons, kidney fibrosis, and total kidney volume
loss [103–105]. Kidney biomarkers of aging and declining kidney function include serum
creatinine or cystatin c (from which glomerular filtration rate can be estimated) and urinary
protein. However, these biomarkers are less specific to aging and can be abnormal in the
setting of an active or chronic inflammation in the kidney. An increasing number of studies
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are emerging that explore the use of Klotho and p21 expression in kidney biopsy tissue,
plasma, and urine, and this may offer an opportunity to predict biological age in persons
at high risk for kidney disease [106,107]. More research is needed to explore less invasive
biomarkers which more specifically predict premature kidney aging.

Preterm birth or LBW are strong risk factors for the disruption of nephrogenesis and
decreased nephron number (functional units of the kidney) [108]. As a result, children
born preterm or with low birth weight, compared to infants born at term are about twice
as likely to develop chronic kidney disease (CKD) over a lifetime [21]. In human autopsy
kidney biopsy studies of infants born preterm, the same macro- and microscopic structural
changes seen in a chronologically advanced age kidney can be seen in the kidneys of infants
born preterm. For example, in a human kidney autopsy study, compared with gestational
controls, preterm kidneys had greater percentages of morphologically abnormal glomeruli
with significantly larger cross-sectional areas suggesting compensatory hypertrophy. Kid-
ney volume loss is most commonly seen in adults who have chronologically advanced age,
but abnormally reduced kidney volumes have also been shown to occur in individuals
born extremely preterm [109].

In other human kidney disease states, aging biomarkers such as telomere length have
been shown to be significantly shorter among individuals with diabetic kidney disease in
comparison to age-matched controls without diabetic kidney disease [110]. Individuals
born preterm have shorter telomere length in comparison to aged-matched persons born
at term, and increased levels of this cellular aging biomarker are also associated with
kidney fibrosis seen in diabetic kidney disease [111]. Klotho is an anti-aging protein
expressed primarily in the kidney. It is downregulated in advanced chronologic age and
has anti-inflammatory and anti-apoptotic properties which influence intracellular signaling
pathways for aging biomarkers p53/p21CIP1 [112]. As a group, young adults born preterm
have reduced urinary kidney α-klotho excretion indicative of reduced Klotho expression in
the kidneys, as is also found in persons with chronic kidney disease [112,113].

In addition to findings demonstrating that reduced nephron number can be associ-
ated with senescence pathways and a premature aging phenotype (e.g., fibrosis) in the
kidneys, individuals with kidney disease are also known to experience premature vascular
calcifications and stiffness or vascular progeria that are also associated with biomarkers of
aging. Adults with hypertension and kidney disease, as compared to those without these
disorders, have higher expression of p16INK4a expression in kidney tissue [114]. Expression
of p16INK4a in the kidneys of persons born preterm has not been studied, but since preterm
birth is associated with hypertension, investigation of this protein in adults born preterm
seems warranted [115].

2.1.7. Immune Function Measures

Aging is associated with declining function of the immune system, increasing the risk
of cancer and infectious diseases [116]. Levels of protein mediators of inflammation tend
to increase with advancing age [117]. In epidemiologic studies of aging, the most often
studied biomarkers are interleukin-6 and C-reactive protein. The levels of these proteins
are inversely related to cognitive function in adults [118].

2.1.8. Hepatic Measures

As compared to other organs, the liver shows less evidence of age-related decline
in function, although the volume and blood flow are decreased in elderly adults [119].
Biomarkers of hepatic function include serum albumin and alkaline phosphatase [120].

2.2. Biomarkers of Mechanisms Contributing to Biological Aging

Biomarkers of mechanisms contributing to biological aging (Figure 2) [121,122] could
prove useful in designing interventions to prevent the acceleration of biological aging [123].
Below, we broadly classify biomarkers of aging mechanisms as related to either cellular
aging or chronic stress.
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2.2.1. Cellular Aging Biomarkers

Biomarkers of cellular aging include epigenetic changes, genetic instability, telomere
attrition, nuclear body disorders, mitochondria malfunction, proteostatic stress, metabolic
alterations, cell cycle arrest, signaling pathway dysregulation, and senescence-associated secre-
tory phenotype (SASP) [122]. Here, we emphasize epigenetic changes and telomere attrition.

Aging of individuals can be assessed using “epigenetic clocks” that are based on the
level of DNA methylation in a set of genes for which methylation varies as a function
of age” [124]. The first epigenetic clock, now known as Horvath’s epigenetic clock, was
established by Bocklandt et al. in 2011 where they identified associations between chrono-
logic age and the level of DNA methylation in specific sites in genes cells from saliva [125].
Subsequently, other epigenetic clocks have been developed for the placenta, blood, and
saliva [123,126]. In a cohort of adults 30–35 years old (45 EBLW; 47 normal birth weight
controls), males (n = 17) with EBLW had accelerated epigenetic age (p < 0.01), assessed with
Horvath’s method, as compared to normal birth weight controls (n = 20) [13].

Telomeres are an evolutionary conserved complex consisting of a repeated nucleotide
sequence and proteins situated at the ends of chromosomes to protect DNA from ero-
sion [127]. Following mitotic division, telomeres shorten slightly, leading eventually to
impaired cellular function. In preclinical models, telomere shortening has been implicated
in kidney aging [128]. Telomere attrition is associated with decreased lifespan and increased
risk of disease [129]. Adult males (18–27 years old) born very preterm had shorter telomere
length than controls, suggesting accelerated biological aging [111].

2.2.2. Biomarkers of Stress Responses

Response to stress has the potential to accelerate biological aging [11]. Biomarkers
of stress responses include indicators of (1) allostatic load; (2) inflammation; (3) oxidative
injury; and (4) activation of the hypothalamic–pituitary–adrenal axis.

Allostatic load pertains to the cumulative stress experienced across an individual’s
life course and the physiologic “aftermath” of adapting to that stress [130,131]. McEwen
and Stellar refer to allostatic load as “the cost of chronic exposure to fluctuating or height-
ened neural or neuroendocrine response resulting from repeated or chronic environmental
challenge that an individual reacts to as being particularly stressful” [132]. In a review
of 58 studies of allostatic load, Juster et al. found the most frequently measured car-
diometabolic biomarkers were systolic and diastolic blood pressures, waist-to-hip ratio,
high-density lipoprotein cholesterol (HDL), and glycosylated hemoglobin (HbA1c); and
the most frequently measures neuroendocrine biomarkers were 12 h urinary cortisol,
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epinephrine, and norepinephrine output, and serum dehydroepiandrosterone-sulphate
(DHEA-S) [52]. Those 9 biomarkers, along with total cholesterol, were used in the longi-
tudinal MacArthur Studies of Successful Aging cohort to derive a count-based allostatic
load index [133]. In that cohort, higher allostatic load correlated with lower functioning,
poorer cognitive performance, and weaker physical performance at baseline [133], and
with higher all-cause mortality through 7 years of follow-up [134]. In addition to these
anthropometric, neuroendocrine, metabolic, and cardiovascular markers, a small number
of studies have included immune biomarkers, such as inflammation-related or proteins
involved with coagulation. It has been suggested that infants born preterm inherit a height-
ened vulnerability to allostatic load and might be less capable of adapting to higher levels
of stress [135].

Inflammation is a vital immune defense mechanism that can be activated by pathogens
or damaged tissues [136]. As discussed above, aging is associated with the declining
function of immune defenses against cancer and infectious diseases [116], but also with
increasing levels of inflammation-related proteins [117]. Accelerated aging phenotypes,
such as insulin resistance and increased adiposity [137] are pro-inflammatory. Preterm
birth is associated with prenatal inflammation [138,139], and the risks of inflammatory
neonatal diseases, such as necrotizing enterocolitis, sepsis, and BPD, are inversely related
to gestational age [140].

Oxidative injury involves the damage of cells and tissues due to reactive oxygen
species generated during a stress response, particularly inflammation [141]. Pregnancy
complications, such as preeclampsia and intrauterine infection are associated with oxidative
stress, and oxidative stress has been associated with neonatal complications of preterm
birth [88,142,143]. Reactive oxygen species disrupt metabolism and have been implicated in
the pathogenesis of numerous chronic diseases [144] and with shortening of telomeres [3].

The most widely used biomarker for hypothalamic–pituitary–adrenal (HPA) axis sig-
naling is cortisol, which regulates physical and emotional stress responses [145]. Biomarkers
of cortisol include the cortisol awakening response (cortisol released in the 30–45 min after
waking) [146] and total salivary cortisol in 24 h, based on repeated measurements during a
single 24 h period [147]. Total salivary cortisol evaluates diurnal variation [148]. Typically,
cortisol levels are highest in the morning and decrease to their lowest levels at night [147].
During gestation, the HPA axis signaling [149] can be altered by maternal stress, increas-
ing exposure of the fetus to glucocorticoids, with adverse consequences during the life
course [150]. The HPA axis has not been studied in large cohorts of adults born preterm;
however, among children born preterm, procedural pain during neonatal hospitalization
was associated with altered HPA axis functioning at 7 years of age [151].

The Dunedin Study of individuals followed from early childhood into middle age
illustrates how preterm cohorts could be studied to provide insights into potential links
among preterm birth, accelerated aging, and shortened healthspan [120]. In that study,
many of the biomarkers were selected based on their association with chronological age in
the U.S. National Health and Nutritional Examination Study, and include blood pressure,
hemoglobin A1c, total cholesterol, C-reactive protein, Cytomegalovirus IgG, creatinine,
blood urea nitrogen, albumin, alkaline phosphatase, and forced expiratory volume in one
second (pulmonary). Other biomarkers/phenotypes that were assessed in the Dunedin
cohort were VO2Max (a measure of cardiorespiratory fitness), waist-to-hip ratio, body mass
index, leukocyte telomere length, periodontal disease, white blood cell count, and lipid
profile [120].

2.3. Resiliency Factors and Moderators for Accelerated Aging

Preclinical and human epidemiologic [152] studies provide support for the concept
that the pace of aging is modifiable. Aging involves overlapping processes with marked
connectedness, and when developing interventions to slow aging and extend healthspan,
it is critical to address these highly intertwined processes, including metabolism, epige-
netics, inflammation, adaptation to stress, proteostasis, stem cells and regeneration, and
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macromolecular damage [153]. Although medical research has typically targeted diseases
separately, the functioning of individual systems is influenced by the health of other
systems. Therefore, interventions for aging must consider the effects on multiple organ
systems and morbidities. Interventions to modify aging include pharmacologic approaches,
environmental changes, and enhancement of specific lifestyle factors, such as physical
activity, diet, social relationships, and sleep [154].

Accumulating evidence suggests that non-pharmacological approaches that promote
social health and cognitive activity can decrease the pace of cognitive decline [155–157].
“Social health” refers to human capacities to engage in social activities and structural
and functional social networks. Cross-sectional studies have identified associations be-
tween higher social health factors and cognitive activities, larger total brain volumes and
hippocampal volumes, and the lower frequency of white matter hyperintensities [158],
providing some support for the biological plausibility linking higher social health factors
and/or cognitive activities and decreased pace of brain aging [159].

Improvements in physical exercise and sleep quality are additional avenues for inter-
ventions to moderate the pace of aging. More frequent physical exercise and adequate sleep
are associated with better health [160]. Exercise is an adjunctive therapy for various health
outcomes, including obesity, diabetes, hypertension, and coronary heart disease [161]. Sleep
promotes restorative functions which become increasingly important with age [162].

Alterations in dietary intake of micronutrients and calories may lower the risk of
chronic diseases associated with accelerated aging [163,164]. Deficiencies of vitamins B12,
B6, C, and E, folic acid, niacin, iron, and zinc can increase the risk of cancer [164], and risk
can be lowered by increased consumption of fruits and vegetables. In preclinical models,
reduced caloric intake can lengthen lifespan [165]. Caloric restriction becomes increas-
ingly important as individuals age, metabolic rate decreases, and body fat increases [166].
Metabolic rate can be increased by maintaining healthy muscle mass levels and physical
exercise [167].

Multiple aspects of the environment are potential targets for interventions to extend
healthspan; perhaps the most obvious contributors are air pollution and climate change.
Air pollution is largely caused by anthropogenic activities and exposure is associated with
adverse health outcomes including difficulty breathing, birth defects, and cancer [168].
Gestational exposure to particulate matter (PM) with a diameter of ≤2.5 µm is associated
with telomere shortening in cord blood and placenta, suggesting that molecular longevity
could be negatively impacted by poor air quality [169]. Climate change is indirectly
associated with aging through its effects on air pollution, heat stress, malnutrition, and
vector-born illnesses [170].

Pharmacological approaches currently under investigation include interventions to
reduce chronic inflammation and metabolic dysregulation [153], strategies to enhance
vaccine efficacy in the elderly [159], therapies targeting senescent cells [171], and thera-
pies to reduce the senescence-associated secretory phenotype [172]. In mice, rapamycin,
metformin, and acarbose extend lifespan [173].

3. Conclusions

Although adverse health outcomes among adults born preterm are well-documented,
knowledge gaps remain. Very few studies of extremely preterm individuals have collected
detailed information on aging biomarkers and phenotypes, and few have evaluated biologi-
cal mechanisms that could accelerate the pace of aging. For further studies of these research
areas, study designs could include recruitment of new cohorts and continued evaluation of
existing cohorts using serial measures of the exposome (aggregated index of environmental
exposures; e.g., toxic metal exposures and air pollution), cellular and stress biomarkers, and
accelerated aging phenotypes. Analyses could evaluate links among prenatal, perinatal,
and postnatal exposures and biomarkers and mechanisms of aging. If, as we posit, adults
born preterm are predisposed to accelerated biological aging, knowledge of biomarkers
and mechanisms of aging could inform the design of interventions to moderate the pace
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of aging and thereby increase healthspan among the millions of individuals who are born
prematurely each year.
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