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Abstract: Both the IGF1 axis and hypovitaminosis D play a role in childhood obesity, either as a
cause or a causality. While some studies suggest an interrelation between vitamin D status, IGF1,
and obesity, this mechanism remains obscure. The aim of this study, therefore, was to explore
associations between four genetic polymorphisms in the IGF1 axis in hypovitaminosis D-related
obesity. The study included 116 pre-pubertal Israeli Arab children (52 girls), mean age 9.4 ± 2.6.
Serum 25(OH)D was measured and anthropometric measures were obtained. Genomic DNA was
extracted from peripheral EDTA-treated anti-coagulated blood using a standard protocol. Genotypes
were determined using the Taqman allelic discrimination assay. The IGF genetic score was computed
according to the additive genetic score model. A moderate-to-high negative correlation (r = 0.580,
p < 0.05) was seen between the vitamin D status and body mass index (BMI) percentile of participants
with high GS. Yet, no correlations were seen between vitamin D status and BMI percentile for
participants with a low-to-moderate genetic score (GS) (GS ≤ 2). These results suggest that IGF1
genetic scores associated with elevated circulating IGF1 may indicate a tendency toward developing
hypovitaminosis D-associated obesity.
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1. Introduction

Children suffering from obesity tend to exhibit normal-to-accelerated growth despite
decreased growth hormone (GH) secretion. Associations between energy intake and body
mass index (BMI)-Z score or childhood obesity have been identified [1,2]. Yet, conflicting
reports exist as to the impact of obesity on components of the GH-insulin-like growth
factor-I (IGFI)-IGF-Binding Proteins (IGFBPs) system [3]. The insulin-like growth factor
(IGF) family of ligands, as well as binding proteins, constitute an important growth factor
system in the development and maintenance of the body’s normal cell functioning. In
addition, circulating IGFI concentrations are regulated by GH, that can be found in the
body’s systemic circulation and expressed in tissue [4].

IGF1 is encoded by the IGF1 gene that is located on chromosome 12 (12q23.2). Defects
in this gene are known to cause a deficiency in the IGF polymorphism in the promotor
region of the IGFI gene, which is associated with IGFI serum levels, birth weight, and body
height in both adults [5–7] and children [8]. In addition, genetic polymorphisms in the
promoter region of the IGFI gene have also been found to be associated with higher fat
mass, body weight, and body mass index (BMI), as well as with a larger waist circumference
in adolescents and children [8]. It should be noted, however, that such associations were
not seen in children from a previous generation (even though they tended to be leaner than
this present generation) [8].

Vitamin D deficiency is the most common type of vitamin deficiency in the world, and
the worldwide prevalence of this condition varies greatly from country to country. Approx-
imately one billion people worldwide are estimated to suffer from vitamin D insufficiency,
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with the largest prevalence at the pediatric age [9,10]. Vitamin D plays a role in many func-
tions of the human body’s metabolism. The established health consequences of a vitamin
D deficiency include increased fracture risk, tooth loss, osteomalacia, and rickets [11], as
well as impact on cognitive function [12], and inflammatory bowel disease among children
and adolescents [13] Therefore, identifying and treating vitamin D deficiency during this
period may be of particular importance.

The vitamin D precursor 7-dehydrocholesterol, found primarily in the epidermal
layer of the skin, is activated by sunlight to produce vitamin D-3 and is bound to
the vitamin D binding protein. This complex is then transported to the liver where
it is rapidly hydroxylated by vitamin D-25-hydroxylase to form 25-hydroxyvitamin D
[25(OH)D]—the major circulating form of vitamin D [11]. Through further hydroxylation
by the enzyme 25-hydroxyvitamin D-1-α-hydroxylase, 25(OH)D is converted into the
biologically active form of 1,25 di-hydroxyvitamin D [1,25(OH)2D] which regulates more
than 200 genes, directly or indirectly, by binding them to vitamin D nuclear hormone
receptors (VDRs) [14,15].

Studies suggest a possible interaction between vitamin D and IGF1 [16–18]. Reduc-
tions in circulating IGF1 and in some IGF1 binding proteins (especially IGFBP-1), as well
as hypovitaminosis D, have been found to be associated with metabolic syndrome and
its related components. In obesity, both IGF1 concentrations and vitamin D status are
reduced [19,20]; yet, for both variables, associations have been seen between lower concen-
trations and high blood pressure, disturbed glucose metabolism, cardiovascular disease,
and adverse lipid profiles, regardless of body mass [21]. Associations between metabolic
risk and vitamin D and IGF1 axes have been seen in clinical trials, prospective studies, and
dose-related effects, indicating that these associations might be causal. Still, the mechanism
through which vitamin D and IGF1 axes lead to human disease are not yet fully understood.
Moreover, regardless of evidence indicating physiological interactions between these risk
factors [22–25], much is still unknown about their combined impact, especially in children
and adolescents. As such, the objective of this study was to examine the associations be-
tween IGFI genetic variant vitamin D status and various anthropometric measures among
pre-pubertal children.

2. Materials and Methods
2.1. Study Population

The participants in this study included 116 Arab children from Israel, all pre-pubertal
(Tanner stage 1–2), including 52 girls, ages 6–12 (average ± standard deviation (AVG (SD))
age 9.4 ± 2.6). Their body measurements were documented and blood was taken to assess
their vitamin D status. Approval to conduct this study was received by the Institutional
Review Board of the Hillel Yaffe Medical Center, om Hadera, Israel, as per the Declaration
of Helsinki (Approval # HYMC 0018-12). All participants and their parents signed an
informed consent form for participation in this study.

2.2. Vitamin D Status

To measure Serum 25(OH)D, a chemiluminescent immunoassay was used (ARUP Lab-
oratories, Salt Lake City, UT, USA). The intra-assay variation coefficient at 30.8 nmol/liter
was 6% and was 4% at 90.5 nmol/liter; the inter-assay variation coefficient at 31.0 nmol/liter
was 8% and was 6% at 90.5 nmol/liter. Finally, vitamin D status was defined as deficient
(serum 25(OH)D ≤ 20 ng/mL), insufficient (serum 25(OH)D > 20 to <30 ng/mL), or suffi-
cient (serum 25(OH)D ≥ 30 ng/mL) [26,27].

2.3. Anthropometric Measures

To measure the participants’ weight and height, standard calibrated scales and sta-
diometers were used; their BMI was then calculated based on these measurements. Obese or
overweight participants were determined based on percentiles for age, as per the standards
stated by the National Center for Health Statistics and the Centers for Disease Control [28].
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Participants were classified as overweight if their BMI was above the 85th percentile but
below the 95th percentile for their given age group; they were classified as obese if their
BMI was above the 95th percentile for their given age group. Finally, the participants’
physical maturity was determined through a widely-used self-administered questionnaire
as a noninvasive indicator of their pubertal status [29,30].

2.4. Genotyping

Using standard protocols, genomic DNA was extracted from peripheral Ethylene-
diaminetetraacetic acid (EDTA)-treated anti-coagulated blood. The genotype analysis
was then performed in the Genetics and Molecular Biology Laboratory at the Wingate
Institute (Academic College of Physical Education and Sport Sciences). The internal
control was ensured for each genotype analysis using negative and positive controls
from different DNA aliquots that had already been genotyped using the same method,
in line with recent guidelines for replicating genotype–phenotype chi-square association
research studies [31].

Genotypes of the examined genetic polymorphisms (IGF1-C1245T rs35767; IGF1 T/C
rs6220; IGF1 A/G rs7136446; and IGF1R A/C rs1464430) were defined based on the TaqMan
allelic discrimination assay. To set up TaqMan allelic discrimination essay primers and
probes, the Assay-by-Design service (https://www.thermofisher.com/il/en/home.html,
accessed on 1 December 2021) was utilized (see Table 1).

The Polymerase Chain Reaction (PCR) mixture comprised of 5 ng genomic DNA
(1 ng/µL), 0.125 µL TaqMan assay (40*, ABI, 0.025 µL/µL), 2.5 µL Master mix (ABI)
(0.5 µL/µL), and 2.375 µL water. PCR was conducted with 96 well PCR plates in an
ABI 7300 PCR system (Applied Biosystems Inc., Foster City, CA, USA), with an initial
denaturation of 5 min at 95 ◦C, followed by 40 cycles with a denaturation of 15 s at 95 ◦C.
This was performed in addition to 60s annealing and extension at 63 ◦C. The results were
then analyzed via the ABI TaqMan 7900HT, based on the sequence detection system 2.22
software (Applied Biosystems Inc., Foster City, CA, USA).

2.5. Genetic Score

The combined impact of four IGF axis polymorphisms was computed as the IGF
Genetic Score (IGF-GS), based on a previously used model [32]. To do so, each genotype
was scored within each polymorphism, according to the genotype’s related vitamin D
status (i.e., the BMI percentile correlation). An additive model was assumed, as per the
number of alleles associated with the vitamin D status, i.e., the BMI percentile correlation
that was conducted for each participant’s polymorphism. In this manner, a genotype score
(GS) of 0, 1, or 2 was assigned to each genotype, each being theoretically associated with
a low, medium, or high vitamin D status–BMI percentile correlation, as seen in Table 2.
The studied polymorphisms are all listed in Table 3. The IGF-GS score scale ranged from
0 (the “worst” GS, which represents low genetic potential towards vitamin D status–BMI
percentile correlation) to 7 (the “best” GS, which represents high genetic potential towards
vitamin D status–BMI percentile correlations).

https://www.thermofisher.com/il/en/home.html


Children 2023, 10, 1610 4 of 12

Table 1. Primers and probes for studied polymorphisms.

Primer Sequences: Probe Sequences:
Forward Reverse Forward: VIC Reverse: FAM

IGF1 A/G (rs7136446), NC_000012.12
AATTGGTTACCTGCTACATTGA GGAGTTAACGCATCTCCTTACTG CGCGTAGTCGAGCG CGCTCGCTGCCCTAAGTGCT

IGF1-C1245T (rs35767), NC_000023.11
GGATTTCAAGCAGAACTGTGTTTTCA GGTGGAAATAACCTGGACCTTGAAT TTTTTCCGCATGACTCT TTTTTTTTCCACATGCTCT

IGF1 T/C (rs6220)
AACAAAGAGATTTCTACCAGTGAAAGG GCCTAGAAAAGAAGGAATCATTGT AGTAAAACCTTGTTT AATAC AGTAAAACCTCGTTT AATA

IGF1R A/G (rs1464430)
GGATTTCAAGCAGAACTGTGTTTTCA GGTGGAAATAACCTGGACCTTGAAT TTTTTTCCGCATGACTCT TTTTTTTTCCACATGACTCT
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Table 2. Current study: vitamin D status–BMI percentile correlations according to genotype.

IGF1_rs3567 CC CT + TT

N 81 33
r, p −0.331, 0.060

IGF1_rs7136446 AA AG GG AG + GG

N 29 58 27 85
r, p −0.641, 0.014

IGF1R_rs1464430 AA AC CC AC + CC

N 30 62 22 84
r, p −0.244, 0.081

IGF1_rs6220 TT TC CC TC + CC

N 44 51 19 70
r, p −0.337, 0.080

N = number of genotype carriers; r = correlation ratio; p = statistical significance.

Table 3. Genetic scoring of IGF-1 axis genetic polymorphisms based on genotypes’ association to
vitamin D status.

Symbol Polymorphism MAF Genetic Score (GS)

IGF1
A/G (rs7136446) 28% AA = 2, AG = 0, GG = 0
-C1245T (rs3567) 30% CC = 0, CT = 0, TT = 1

T/C (rs6220) 36% TT = 1, TC = 0, CC = 0
IGF1R A/G (rs1464430) 40% AA = 0, AC = 0, CC = 1

MAF—Minor allele frequency (from https://www.genecards.org/, accessed on 1 August 2021).

2.6. Statistical Analysis

The achieved data are presented as mean ± standard deviation (SD) for continu-
ous variables and n (%) for categorical ones. t-tests were used for comparison between
continuous variables, while chi-square was calculated for categorical variables. Finally,
correlations between the participants’ anthropometric measures and their vitamin D status
were conducted using Pearson correlations for normal distribution. All data analyses were
conducted using SPSS version 20.5.

3. Results

Table 4 presents the participants’ anthropometric measurements and their vitamin
D status. Continuous variables are presented as (AVG (SD)). Categorical variables are
presented as n (%). All participants were found to be vitamin D insufficient (i.e., below
25 ngr/mL), with 80% fitting the deficient category. In addition, more than 45% of the
children were classified as overweight or obese.

Table 5 presents the data on allele and genotype frequencies. Our findings indi-
cate that the genotype subtype did not differ by sex or age. Moreover, the genotype
distribution was found to be in agreement with the Hardy–Weinberg equilibrium in over-
weight/obese children and participants of normal weight (p > 0.05) for all studied genetic
polymorphisms. Genotype and allele frequencies did not differ between normal-weight
and overweight/obese children for IGF1-C1245T (rs35767), IGF1 T/C (rs6220), and IGF1R
A/G (rs1464430) polymorphisms. The prevalence of IGF1 rs7136446 AA genotype carriers
was found to be higher in the normal-weight children (32.4%) than in the overweight/obese
participants (12.5%) (p = 0.019).

https://www.genecards.org/
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Table 4. Participants’ anthropometric measures and vitamin D status.

(AVG (SD)) or n (%)

Age 9.4 (2.6)

Mean BMI percentile 65.0 (29.3)

Mean Body Fat 16.9 (5.7)

Overweight prevalence 38 (33.3)

Obesity prevalence 15 (13.1)

Height percentile 54.2 (35.3)

Weight percentile 63.2 (31.2)

Serum vitamin D (mcg/dL) 11.2 (3.9)

Borderline vitamin D (%) (19.4)

Vitamin D deficiency (%) (80.6)

Table 5. Obesity/OW according to IGF polymorphism.

Total Normal Weight Overweight/Obese p

IGF1 rs7136446 A/G

AA 29 (25.4) 24 (32.4) 5 (12.5) 0.052

AG 58 (50.9) 34 (45.9) 24 (60.0)

GG 27 (23.7) 16 (21.6) 11 (27.5)

A—allele 116 (50.9) 82 (54.7) 34 (42.5) 0.079

G—allele 112 (49.3) 68 (45.3) 46 (57.5)

IGF1 rs1464430 A/C

AA 30 (26.3) 22 (29.7) 8 (20.0) 0.216

AC 62 (54.4) 41 (55.4) 21 (52.5)

CC 22 (19.3) 11 (14.9) 11 (27.5)

A—allele 122 (53.5) 85 (57.4) 37 (46.3) 0.106

C—allele 106 (46.5) 63 (42.6) 43 (53.7)

IGF1 rs3567 C/T

CC 81 (71.0) 51 (68.9) 30 (75.0) 0.231

CT 32 (28.1) 23 (31.1) 9 (22.5)

TT 1 (0.9) 0 (0) 1 (0.9)

C—allele 194 (85.1) 125 (84.4) 69 (86.2) 0.717

T—allele 34 (14.9) 23 (15.6) 11 (13.8)

IGF1 rs6220 T/C

TT 44 (38.6) 30 (40.5) 14 (35.0) 0.708

TC 51 (44.7) 31 (41.9) 20 (50.0)

CC 19 (16.7) 13 (17.6) 6 (15.0)

T—allele 139 (60.9) 91 (61.5) 48 (60.0) 0.827

C—allele 89 (39.1) 57 (38.5) 32 (40.0)

Notes: χ2 = 5.439 (df = 1), p = 0.0197 for IGF1 rs7136446 AA carriers’ prevalence among normal-weight participants
compared to overweight/obese children (above 85th BMI percentile for age).
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Due to the low prevalence of IGF1 rs3567 TT genotype carriers, we studied the preva-
lence of CT and TT genotype carriers together. A negative, low-to-moderate correlation
between vitamin D status and BMI percentile was seen for IGF1 rs3567 T allele carriers, IGF1
rs1464430 C allele carriers, and IGF1 rs6220 TT genotype carriers. These correlations were
close to statistical significance (p = 0.060, 0.080, and 0.081 for IGF1 rs6220, IGF1 rs1464430,
and IGF1 rs6220, respectively).

Participants’ GS according to their weight category are presented in Figure 1. In
total, 56 participants had low GS (<2), 37 had moderate GS (=2), and 23 had high GS
(>2). A high prevalence (69%) of participants with low GS were found among the obese
participants (BMI percentile > 95%) compared to overweight (85% < BMI percentile < 95%)
and normal-weight (BMI percentile < 85%) participants (43% and 47% for overweight and
normal-weight children, respectively), yet this difference was not statistically significant.
A high prevalence of high GS was found among normal-weight participants compared to
overweight and obese participants, yet this difference was not statistically significant either.
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Figure 1. IGF1 GS prevalence according to BMI percentile.

Correlations between the vitamin D status and the BMI percentile according to the GS
are presented in Figure 2. No correlation was found between the vitamin D status and the
BMI percentile for participants with a low or moderate GS score (GS ≤ 2). A moderate to
high negative correlation (r = 0.580, p < 0.05) between the vitamin D status and the BMI
percentile was found for participants with high GS.
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4. Discussion

The main finding of the current study is that IGF1 GS may mediate the relationship
between a person’s vitamin D status and their BMI percentile. Participants carrying high
IGF1 GS exhibited a significant inverse relationship between their vitamin D status and
their BMI percentile, whereby the participants’ elevated levels of vitamin D were associated
with a low BMI percentile, but not among participants carrying low IGF1 GS measures.
As such, the results suggest that participants carrying genotypes associated with elevated
circulating IGF1 are prone to developing hypovitaminosis D-associated obesity.

The IGF axis genetic panel was comprised of four polymorphisms which have been
found to be associated with circulating IGF1 levels. The C allele of IGF-1 T/C (rs6220)
polymorphism, for example, is associated with higher levels of circulating IGF-1 [33];
additionally, the IGF1 C1245T polymorphism (rs35767) is associated with higher levels
of circulating IGF1 [34–39]; finally, the G allele of a different IGF1 gene polymorphism
(rs7136446) has been found to be associated with higher circulating IGF-1 [35]. Free IGF-I
levels are inversely correlated with a range of obesity and body composition measures [40,
41]. In the current study, a strong prevalence of high IGF scores associated with increased
levels of circulating IGF1 was seen among participants with a BMI percentile lower than
85%; however, a high prevalence of low IGF scores, which is correlated with lower levels of
circulating IGF1, was found in children with a higher than 95% BMI percentile.

Our results suggest that among participants with higher GS (associated with elevated
circulating IGF1), those who exhibit lower levels of vitamin D (hypovitaminosis D) exhibit
higher BMI percentiles. This means that high GS (and possibly elevated circulating IGF1)
combined with low levels of vitamin D could serve as a risk factor for obesity, especially
as the association between hypovitaminosis D and obesity is well established [42,43]. In
addition, endocrine disorders, such as altered somatotropic axis, are common in obesity.
The insulin-like growth factor-1 (IGF1) values, however, are controversial. It is also yet
to be determined whether Vitamin D increases circulating IGF1 [44] or vice versa; IGF1
causes an increase in the circulating levels of vitamin D by stimulating the expression and
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activity of the 1α-hydoxylase that produces 1,25(OH)2D in the kidney [45,46]. However,
when vitamin D levels decrease (if IGF1 fails to increase vitamin D level or due to other
causes) hypovitaminosis D-associated obesity might occur [47].

Obesity in childhood causes a wide range of serious complications and increases the
risk of premature morbidity and mortality [48]. The primary common phenotype of obesity
is fat accumulation in adipose tissue and other organs. Increased adiposity is strongly
related to GH, insulin-like growth factor-I (IGFI) axis dysfunction [49] GH. A mixture of
peptides, may play a major role in controlling longitudinal growth in children [50]. GH is
bound to the circulating GH binding proteins (GHBP) [51] and exerts its biological effects
directly on target cells by binding to cell membrane receptors or/and through IGFI [52]. The
mechanism responsible for the altered GH and IGF1 secretion observed in obesity is largely
unclear. Since GH has a lipolytic effect in both obese and normal-weight participants, it
is suggested that low GH levels blunt lipolysis in obese subjects, thereby contributing to
increased fat development [53]. Moreover, free IGFI levels have been found to inversely
correlate with different measures of obesity and body composition [53], while obesity is
considered to be a risk factor for developing hypovitaminosis D [54].

Different mechanisms have been hypothesized to explain the association between
hypovitaminosis D and obesity, including lower dietary intake of vitamin D, less skin
exposure to sunlight due to less outdoor physical activity, decreased intestinal absorption,
impaired hydroxylation in adipose tissue, and 25(OH)D accumulation in fat [55]. In a
systematic review and meta-analysis of 10 intervention trials, a high dose of vitamin D
supplementation (over 4000 IU/d) did not alter the BMI status in children [56]. However,
it has also been speculated that a vitamin D deficiency itself could cause obesity; the
fat-solubility of vitamin D has led to the hypothesis whereby a sequestration process
occurs in body fat depots resulting in a lower bioavailability in the obese state [57].
Whether vitamin D is a cause or consequence of obesity is still unclear [58]. It is possible
that IGF1 polymorphism is one of the reasons for the inconsistent results of vitamin D
supplementation and weight loss.

Numerous studies have hypothesized an interaction between vitamin D and GH/IGF-
1. However, the exact mechanism by which they influence one another remains un-
known [59], particularly in obesity. Reductions in circulating IGF1 and hypovitaminosis D,
and a range of IGF1 binding proteins, have been found to be associated with metabolic syn-
drome and its components. Both vitamin D status and IGF1 concentrations are decreased
in obese individuals [19,20,60]. Despite evidence for a physiological interaction between
vitamin D and IGF1 axes with metabolic risk [22–24], little is known about their joint effects.

Studies indicate interrelations between vitamin D and IGF1 axes. For instance, the an-
ticancer impact of higher vitamin D availability includes the promoting of antiproliferative
effects on different body tissues, through increased IGFBPs production combined with the
suppression of cell growth-promoting IGFBP2 [61]. As such, IGF-1 could play an impactful
role through changes to vitamin D activation, whereas 1,25(OH)2D may act partly through
changes to IGF1 axis regulation.

Our results suggest a possible mechanism for the interrelations between IGF1, vitamin
D, and obesity. Participants who are genetically predisposed toward elevated levels of
circulating IGF1 are prone to a low BMI percentile, especially if their vitamin D status is
elevated. Yet, childhood obesity is a multifactorial trait resulting from various factors with
complicated interactions. Whether obesity is the cause or the result of hypovitaminosis D
is still to be determined.

5. Limitations

Despite the contribution of this study to the literature, this study has several limitations.
First, although the sample size is relatively small, we decided to include two genetic
polymorphisms in the GS scores that were close to statistical significance. Moreover,
children are seriously under-investigated, and this exploratory study should be followed by
larger sample size studies and more genetic polymorphisms. Finally, other environmental
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factors, such as nutritional intake, physical activity, and sun exposure were not measured.
Future studies focusing on sex differences and physical and nutritional effects are suggested.
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