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Abstract: The successful development of effective treatments against nonalcoholic steatohepatitis
(NASH) is significantly set back by the limited availability of predictive preclinical models, thereby
delaying and reducing patient recovery. Uniquely, the guinea pig NASH model develops hepatic
histopathology and fibrosis resembling that of human patients, supported by similarities in selected
cellular pathways. The high-throughput sequencing of guinea pig livers with fibrotic NASH (n = 6)
and matched controls (n = 6) showed a clear separation of the transcriptomic profile between NASH
and control animals. A comparison to NASH patients with mild disease (GSE126848) revealed a 45.2%
overlap in differentially expressed genes, while pathway analysis showed a 34% match between the
top 50 enriched pathways in patients with advanced NASH (GSE49541) and guinea pigs. Gene set
enrichment analysis highlighted the similarity to human patients (GSE49541), also when compared
to three murine models (GSE52748, GSE38141, GSE67680), and leading edge genes THRSP, CCL20
and CD44 were highly expressed in both guinea pigs and NASH patients. Nine candidate genes
were identified as highly correlated with hepatic fibrosis (correlation coefficient > 0.8), and showed a
similar expression pattern in NASH patients. Of these, two candidate genes (VWF and SERPINB9)
encode secreted factors, warranting further investigations as potential biomarkers of human NASH
progression. This study demonstrates key similarities in guinea pig and human NASH, supporting
increased predictability when translating research findings to human patients.

Keywords: nonalcoholic steatohepatitis; fibrosis; transcriptome; animal model; guinea pig; biomarkers

1. Introduction

Hepatic fibrosis is the primary prognostic marker of mortality in nonalcoholic steato-
hepatitis (NASH) globally affecting millions [1]. However, treatment options are scarce,
and drug development is hampered by the lack of animal models reflecting the disease
spectrum and etiology. Though frequently applied, many mouse and rat models do not
develop NASH with advanced fibrosis (bridging fibrosis and cirrhosis) without the use of
hepatotoxins and micronutrient-deficient diets, consequently compromising construct and,
by extension, predictive validity [2–4].

Uniquely, guinea pigs develop NASH with advanced fibrosis when subjected to
a westernised diet [5–7]. Similar to human NASH, lesions originate from the hepatic
central veins and sequentially progress from mild fibrosis to advanced (bridging) fibrosis
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within 25 weeks [6,7]. Furthermore, guinea pigs and humans share an LDL-dominant
lipoprotein profile in contrast to the HDL-dominant profile of rats and mice, and targeted
analysis of genes related to hepatic lipid metabolism, inflammation, and fibrogenesis
further supports a high degree of similarity between the guinea pig disease model and
human NASH [8,9]. However, unbiased systematic analysis of the guinea pig NASH
transcriptome has not previously been undertaken, and is impeded by the incompletely
annotated guinea pig genome. Using RNA sequencing and human orthologue mapping
to improve annotation, this paper investigates the translational validity of the guinea pig
NASH transcriptome and directly compares transcriptome remodelling to profiles from
two patient datasets representing either mild or advanced disease, and three frequently
used mouse models. Lastly, we propose a selection of candidate genes present in both
human and guinea pig fibrotic NASH that may prove valuable in future drug discovery
and biomarker development.

2. Materials and Methods
2.1. Animals

Animal experiments were approved by the Animal Experimentation Inspectorate
under the Danish Ministry of the Environment and Food, and in accordance with the
European Legislation of Animal Experimentation 2010/63/EU.

This study utilises a subset of liver samples, collected from intact nonperfused livers,
from a previously published study [6]. Briefly, 10-week-old female Hartley guinea pigs
(Charles River Laboratory, Lyon, France) were allowed one week of acclimatisation before
being block-randomised into groups on the basis of body weight. Consistent with previous
studies, this study was only performed on female guinea pigs, as hierarchical fighting in
males is a critical welfare concern in long-term studies of this kind. The guinea pigs were
fed a high-fat (20% fat, 15% sucrose, and 0.35% cholesterol) or chow (4% fat, 0% sucrose, 0%
cholesterol) diet for 25 weeks. The exact dietary compositions were published elsewhere [6].
Six high-fat-fed animals with grade 3 (bridging) fibrosis and six randomly selected control
animals without NASH and fibrosis were used for RNA sequencing.

At termination, the animals were preanaesthetised with 0.8 mL/kg body weight Zoletil
mix (125 mg tiletamine (0.93 mg/kg), 125 mg zolazepam (0.93 mg/kg, Zoletil 50 Virbac
Laboratories, Carros, France) + 200 mg xylazine (1.49 mg/kg, Narcoxyl vet 20 mg/mL;
Intervet International, Boxmeer, Holland) + 7.5 mg butorphanol (0.06 mg/kg; Torbugesic
vet 10 mg/mL; Scanvet, Fredensborg, Denmark) diluted 1:10 in isotonic NaCl), placed on
isoflurane (3–5%) and, following the disappearance of intradigital reflexes, euthanised by
decapitation as previously described [6].

2.2. Liver Samples and Histology

Liver samples were collected from the left lateral lobe (lobus hepatis sinister lateralis),
snap-frozen in liquid nitrogen, stored at −80

◦
C or fixed in paraformaldehyde, and sub-

sequently embedded in paraffin and stained with haematoxylin and eosin or Masson’s
trichrome for histological evaluation as previously published [6]. Liver histology was
scored in accordance with guidelines by Kleiner et al. [10]. Steatosis was scored as 0 (5%),
1 (5–33%), 2 (>33–66%), or 3 (>66%) of the overall parenchymal tissue. Ballooning was
scored as 0 (none), 1 (few/minimal), or 2 (many/prominent). Inflammation was scored
in three lobuli, defined by two portal areas and one central vein as 0 (no foci), 1 (1 foci),
2 (2–4 foci), or 3 (>4 foci) per × 200 field. A focus was defined as ≥3 inflammatory cells in
close proximity. Fibrosis was scored as 0 (none), 1A (mild, zone 3 perisinusoidal), 1B (mod-
erate, zone 3 perisinusoidal), 1C (periportal), 2 (perisinusoidal and periportal), 3 (bridging),
or 4 (cirrhosis). All scorings were performed in a randomised and blinded manner, and
were previously published [6]. For the quantification of the relative fibrosis area, sections
were stained with Picro Sirius Red and Weigert’s haematoxylin. Total collagen area was
analysed on digital images of the entire liver section using VisioPharm Image analysis
(version 2020.01.3.7887, VisioPharm, Hørsholm, Denmark) in accordance with quantifi-
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cations of picrosirius red staining in liver samples from preclinical models and human
patients [11,12]. Fibrosis area is shown in Supplementary Table S1, Additional File S1.

2.3. Guinea Pig Hepatic RNA Sequencing

RNA sequencing was performed on 12–24 mg of liver tissue from control (n = 6)
and NASH animals with bridging fibrosis (n = 6). RNA extraction, purification, and
sequencing were performed by QIAGEN Genomic Services (QIAGEN, Hilden, Germany).
Briefly, library preparation was performed using a TruSeq® Stranded mRNA Sample
preparation kit (Illumina Inc., San Diego, CA, USA), and library size distribution was
validated and quality-inspected on a Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA). Subsequently, single-read 75-nucleotide read-length sequencing was performed
on the Illumina NextSeq 500 platform with 30 million reads per sample according to the
manufacturer’s specifications (Illumina Inc., San Diego, CA, USA). Sequencing data are
available at GEO expression omnibus with accession number GSE158168.

2.4. Transcriptome Analyses

FASTQ files obtained from QIAGEN Genomic Services were processed in Trimmo-
matic (version 0.38.0) [13]. Reads shorter than 50 bases were removed, and all reads were
trimmed of the leading 9 bases due to base-call quality below a Phred score of 32 and
biased sequence composition. Trimmed reads were mapped to the Ensembl Cavia Porcel-
lus genome Cav.Por.3.0 (Ensembl release 98, September 2019) with Hisat2 (version 2.1.0);
multimapped reads were ignored for further analysis [14]. Subsequent transcript assembly
and quantification were performed using Stringtie and Stringtie merge (version 1.3.6) [15],
using the Cav Por.3.0 gene annotation as a guide. As the guinea pig genome is incompletely
annotated, BioMart (version 2.42.0) [16] was used instead to obtain human orthologues
(GRCh38.p13, Ensembl release 98, September 2019). Although the evolutionary distance of
the guinea pig genome is marginally smaller to that of mice than to that of humans [17],
many of the regulatory mechanisms of the immune system are more comparable between
humans and guinea pigs [18]. Human orthologues were obtained with a sequence identity
cut-off >50% using the Bioconductor package (version 3.10) [19]. Genes without annotation
were excluded from analysis, resulting in a total of 17,332 unique genes. To diminish
background noise, genes with total read count < 200 across all samples were excluded from
subsequent analysis, producing a final list of genes containing 11,896 genes, for which
differential expression was calculated using DESeq2 (version 1.26.0) [20].

2.5. Protein–Protein Association Network

A protein–protein association network was built using Cytoscape (version 3.8.0) [21]
of the 100 proteins with the strongest association to NASH, as annotated by the DISEASES
database [22,23]. Protein–protein associations were based on different confidence channels
(e.g., physical association from experimental data and functional associations from curated
pathways, automatic text mining, and prediction methods) provided by the STRING
database [24,25]. A STRING confidence score of at least 0.7 was applied. For gene identifiers
CBLC, CCN1, RACK1, PCDHGA6, and HCN2, no exact match was found by Cytoscape, and
they were thus excluded from analysis.

2.6. Translational Aspects of the Guinea Pig Model

To investigate the translatability and benchmark the guinea pig as a model of NASH,
the transcriptome was compared to two human datasets and three murine datasets (Table 1),
which were all publicly available through the GEO expression omnibus [26]. Specifi-
cally, the guinea pig transcriptome was compared to human dataset (GSE126848) Human
NASH1 (HNASH1) consisting of 14 healthy patients and 16 patients diagnosed with NASH
(steatosis–activity–fibrosis ≥ 2) [27,28]. To determine if a core set of NASH-associated
advanced-fibrosis genes could be identified for NASH irrespective of species, the guinea
pig dataset was compared to human gene-expression data (GSE49541) Human NASH
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2 (HNASH2), consisting of 40 patients with mild (F0–F1) nonalcoholic fatty liver disease
(NAFLD) and 32 patients with advanced NAFLD and F3–F4 fibrosis [29]. In addition,
guinea pig expression data were compared to two preclinical mouse NAFLD models,
Western Diet 1 (WD1) (GSE52748) [30], Western Diet 2 (WD2) (GSE38141) [31], and one
preclinical mouse NASH model, DIAMOND (GSE67680) [32] (Table 1). The mouse models
were selected on the basis of similarity in dietary content (high fat, cholesterol, and su-
crose), the availability of data, and the inclusion of a relevant control group without NASH
and fibrosis.

Table 1. Overview of included preclinical models.

Preclinical
Model Sex Species: Strain Weeks on Diet Histological

Phenotype

Guinea pig Female Guinea pig:
Dunkin-Hartley 25

NASH with fibrosis.
Histological scoring:

NASH CRN [10]

DIAMOND
[32] Male

Mouse:
B6/129 (isogenic

cross between
C57BL/6J and
129S1/SvImJ)

52
NASH with fibrosis
Histological scoring:

NASH CRN [10]

WD1 [30] Male Mouse:
C57BL/6N 12

NAFLD
No histological scoring.

Positive α-sma liver
stain and picrosirius red
indicative of activated

hepatic stellate cells and
fibrosis, respectively

WD2 [31] Male Mouse:
C57BL/6J 20 NAFLD.

No histological scoring
NAFLD: nonalcoholic fatty liver disease. NASH CRN: nonalcoholic steatohepatitis Clinical Research
Network [10].

2.7. Correlation Analysis of Gene Expression and Fibrosis Quantification

Genes potentially linked to advanced fibrosis stages were identified by correlating
the normalised rlog-transformed values [20] for each gene to the relative fibrosis area
of each animal (Supplementary Table S1, Additional File S1). We selected genes with a
Pearson correlation coefficient of ≥0.8 for both all animals (control and NASH) and NASH
animals alone. Additionally, the direction (negative or positive) of the Pearson correlation
coefficient had to be identical for both groups (NASH animals alone and all animals). Lastly,
only genes with log2 fold change >1 in the guinea pig dataset and a similar expression
pattern (up- or downregulated) in the human dataset (GSE49541) were selected. For the
regression analysis of each gene, see Additional File S2.

2.8. Statistical Analysis

Guinea pig and human dataset HNASH1 (GSE126848) were analysed by high-throughput
sequencing [28]. Raw counts from RNA sequencing analysis were used as input for
differential expression analysis performed with the DEseq2 package [20]. In contrast,
human dataset HNASH2 (GSE49541) [29] and murine datasets (WD1 [30], WD2 [31],
DIAMOND [32]) are array datasets, and the LIMMA package (version 3.42.2) [33] was
used instead to identify differentially expressed genes (DEGs). For all datasets, DEGs
were defined as genes with a Benjamini–Hochberg corrected p-value (q-value) < 0.05. For
selection of the top 20 or top 200 DEGs in any dataset, the criterion for inclusion was
q < 0.05, and genes were sorted by absolute log2 fold change. Gene set enrichment analysis
(GSEA) was performed on log2 fold change pre-ranked values using the fgsea (version
1.12.0) package in R [34]. Pathways used as input were obtained from the Molecular
Signature Database (MSigDB) [35–37]. Hallmark pathways [37] provided an overview
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when comparing animal and human datasets. For the analysis of a selected set of pathways,
the Reactome pathways were applied [38]. When identifying the top 50 enriched Reactome
pathways, the top 25 downregulated and the top 25 downregulated pathways were selected
on the basis of their absolute normalised enrichment score and q < 0.1. The full analysis
of Hallmark gene sets and leading edge genes defined as the genes accounting for most
of the enrichment signal are shown in Supplementary Table S3, Additional File S1 [36].
Principal-component analysis was performed on normalised transformed values that had
been obtained using Deseq2 [20] (GP, HNASH1) or LIMMA [33] (DIAMOND, WD1, WD2)
packages. All genes were included unless otherwise stated. For correlation analysis,
Pearson’s correlation was used and p values < 0.05 were considered statistically significant.

3. Results
3.1. Guinea Pig NASH Development and Disease Stage

High-fat-fed guinea pigs developed NASH with advanced bridging fibrosis (F3) as
previously reported (Figure 1) [6]. Steatosis (p < 0.01), inflammation (p < 0.01), hepatocyte
ballooning (p < 0.05), and fibrosis (p < 0.01) were evident in all NASH animals compared to
healthy controls (Table 2) as previously reported [6]. In accordance with advanced fibrosis
(F3) stage, the relative fibrosis area was significantly increased in NASH animals compared
to in the controls (p < 0.001).

Biomedicines 2021, 9, x FOR PEER REVIEW 5 of 22 
 

Guinea pig and human dataset HNASH1 (GSE126848) were analysed by high-
throughput sequencing [28]. Raw counts from RNA sequencing analysis were used as in-
put for differential expression analysis performed with the DEseq2 package [20]. In con-
trast, human dataset HNASH2 (GSE49541) [29] and murine datasets (WD1 [30], WD2 [31], 
DIAMOND [32]) are array datasets, and the LIMMA package (version 3.42.2) [33] was 
used instead to identify differentially expressed genes (DEGs). For all datasets, DEGs were 
defined as genes with a Benjamini–Hochberg corrected p-value (q-value) < 0.05. For selec-
tion of the top 20 or top 200 DEGs in any dataset, the criterion for inclusion was q < 0.05, 
and genes were sorted by absolute log2 fold change. Gene set enrichment analysis (GSEA) 
was performed on log2 fold change pre-ranked values using the fgsea (version 1.12.0) 
package in R [34]. Pathways used as input were obtained from the Molecular Signature 
Database (MSigDB) [35–37]. Hallmark pathways [37] provided an overview when com-
paring animal and human datasets. For the analysis of a selected set of pathways, the 
Reactome pathways were applied [38]. When identifying the top 50 enriched Reactome 
pathways, the top 25 downregulated and the top 25 downregulated pathways were se-
lected on the basis of their absolute normalised enrichment score and q < 0.1. The full 
analysis of Hallmark gene sets and leading edge genes defined as the genes accounting 
for most of the enrichment signal are shown in Supplementary Table S3, Additional File 
S1 [36]. Principal-component analysis was performed on normalised transformed values 
that had been obtained using Deseq2 [20] (GP, HNASH1) or LIMMA [33] (DIAMOND, 
WD1, WD2) packages. All genes were included unless otherwise stated. For correlation 
analysis, Pearson’s correlation was used and p values < 0.05 were considered statistically 
significant. 

3. Results 
3.1. Guinea Pig NASH Development and Disease Stage 

High-fat-fed guinea pigs developed NASH with advanced bridging fibrosis (F3) as 
previously reported (Figure 1) [6]. Steatosis (p < 0.01), inflammation (p < 0.01), hepatocyte 
ballooning (p < 0.05), and fibrosis (p < 0.01) were evident in all NASH animals compared 
to healthy controls (Table 2) as previously reported [6]. In accordance with advanced fi-
brosis (F3) stage, the relative fibrosis area was significantly increased in NASH animals 
compared to in the controls (p < 0.001). 

 
Figure 1. Representative pictures of the distribution of hepatic fibrotic tissue in control and NASH (stage F3) guinea pigs 
in Picro Sirius red stained sections. (A) In control animals, fibrous tissue (red) surrounds the central veins and portal areas, 
but does not expand into the hepatic parenchyma. An isolated small area of fibroplasia (arrowhead) can be seen as a 
normal occasional finding. (B) Bridging fibrosis (arrows) (F3 grade) is clearly evident in animals with NASH after 25 weeks 
on a high-fat diet. 

  

Figure 1. Representative pictures of the distribution of hepatic fibrotic tissue in control and NASH (stage F3) guinea pigs in
Picro Sirius red stained sections. (A) In control animals, fibrous tissue (red) surrounds the central veins and portal areas, but
does not expand into the hepatic parenchyma. An isolated small area of fibroplasia (arrowhead) can be seen as a normal
occasional finding. (B) Bridging fibrosis (arrows) (F3 grade) is clearly evident in animals with NASH after 25 weeks on a
high-fat diet.

Table 2. Histological scoring of control and NASH guinea pigs.

Group Control (n = 6) NASH (n = 6)

Steatosis 1 0 3 **
Ballooning 1 0 2 (1–2) *

Inflammation 1 0 (0–1) 3 **
Fibrosis 1 0 3 **

Relative fibrosis area 2 1.39 ± 0.24 7.48 ± 1.81 ***
Steatosis, Ballooning, inflammation, and fibrosis: medians with range (if applicable). Relative fibrosis area: means
with standard deviations. Histopathological scoring data (steatosis, ballooning, inflammation, and fibrosis) is
previously published [6]. 1 Analysed using Mann–Whitney U test. 2 Analysed by unpaired t-test with Welch’s
correction. * p < 0.05, ** p < 0.01 and *** p < 0.001.

3.2. The Hepatic Transcriptome Clearly Distinguishes Guinea Pigs with NASH from Controls

A total of 6683 DEGs were identified between guinea pigs with NASH and controls
(q < 0.05). Principal-component analysis (Figure 2A) showed a clear separation of the
two groups, corroborating distinct transcriptomic differences between NASH and control
animals. The top 20 DEGs include genes involved in immune cell signalling (ADAMDEC1,
CCL7, TNFSF18), cell-to-cell contact (SPTA1, PAK6, DSG4), cholesterol metabolism (STAR),
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and liver regeneration (ECT2) (Table 3). This is also reflected in the GSEA (Figure 2B),
where the top 50 enriched pathways include extracellular-matrix organisation, MHC Class
II antigen presentation, and cell-cycle mitosis. Among the downregulated pathways
were cholesterol biosynthesis, bile acid and bile salt metabolism, the citric acid cycle and
respiratory electron transport and fatty acid metabolism.

Biomedicines 2021, 9, x FOR PEER REVIEW 7 of 22 
 

 
Figure 2. Principal-component analysis and top 50 dysregulated pathways in guinea pigs with NASH (A) Principal-com-
ponent analysis plot of guinea pig samples. NASH and control animals clearly separated on the basis of all genes by PC1 
explaining 64.03% of the total data variance. (B) Top 50 reactome pathways obtained from GSEA in guinea pigs with 
NASH vs. healthy controls. Top 50 pathways included the 25 most upregulated and the 25 most downregulated pathways. 
All pathways were selected on the basis of corrected Benjamini–Hochberg p-values and normalised enrichment score. PC: 
principal component, NASH: non-alcoholic steatohepatitis, NES: normalised enrichment score. 

Figure 2. Principal-component analysis and top 50 dysregulated pathways in guinea pigs with NASH (A) Principal-
component analysis plot of guinea pig samples. NASH and control animals clearly separated on the basis of all genes by
PC1 explaining 64.03% of the total data variance. (B) Top 50 reactome pathways obtained from GSEA in guinea pigs with
NASH vs. healthy controls. Top 50 pathways included the 25 most upregulated and the 25 most downregulated pathways.
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Table 3. Top 20 differentially expressed genes in guinea pigs.

Gene Name (Full Name) Log2 Fold Change Adjusted p-Value Function

ADAMDEC1 (ADAM like
decysin 1) 8.01 4.94 ×10−60 Secreted protein invovled in dendritic

cell maturation.
ADGRG3 (adhesion G

protein-coupled receptor 3) 7.66 3.79 × 10−40 GPCR possibly invovled
tumor angiogenesis.

KRT23 (keratin 23) 10.97 1.53 × 10−35
Member of keratin family of intermediate

filaments responsible for structural
integrity of epithelial cells.

ATP6V0A4 (ATPase H +
transporting V0 subunit a4) 9.02 3.01 × 10−32

Vacuolar ATPase mediating acidification
of intracellular compartments necessary
for protein sorting, zymogen activation,

receptor-mediated endocytosis and
synaptic vesicle protein

gradient generation.
TMEM213 (transmembrane

protein 213) 10.12 1.28 × 10−29 No listed function.

CIB4 (calcium and integrin
binding family member 4) −9.70 1.82 × 10−26 No listed function.

PAK6 (p21 (RAC1) activated
kinase 6) 9.38 5.69 × 10−26

p21 stimulated serine/threonine kinase
involved in cytoskeleton rearrangement,

apoptosis and MAP kinase
signalling pathway.

TMC1 (transmembrane
channel like 1) 9.27 1.82 × 10−25 No listed function.

CCL7 (C–C motif chemokine
ligand 7) 9.09 2.30 × 10−25

Encodes MCP3-a secreted chemokine
recruiting macrophages during

inflammation, and also a
substrate of MMP2.

PTPRN (protein tyrosine
phosphatase receptor type N) 9.23 2.58 × 10−24

Signalling molecule regulating processes
such as cell growth, differentiation,

mitotic cycle, and
oncogenic transformation.

VSIG1 (V-set and
immunoglobulin domain

containing 1)
8.26 1.06 × 10−22 Encodes a member of the junctional

adhesion molecule (JAM) family.

SLC34A2 (solute carrier family
34 member 2) 8.49 1.13 × 10−20 pH-sensitive sodium-dependent

phosphate transporter

DSG4 (desmoglein 4) 8.15 2.78 × 10−19
Desmosomal cadherin possibly playing a

role in cell–cell adhesion in
epithelial cells.

TNFSF18 (TNF super family
member 18) 7.74 1.92 × 10−17

Cytokine belonging to the TNF ligand
family that plays a role in T-lymphocyte

survival and the interaction between
endothelial cells and T lymphocytes.

MTHFD2
(methylenetetrahydrofolate

dehydrogenase
(NADP + dependent) 2,

methenyltetrahydrofolate
cyclohydrolase)

7.63 6.53 × 10−17

Nuclear encoded mitochondrial
bifunctional enzyme with
methylenetetrahydrofolate

dehydrogenase and
methenyltetrahydrofolate
cyclohydrolase activities.

SPOCK1 (SPARC
(osteonectin), cwcv and

kazal-like domains
proteoglycan 1)

7.72 8.38 × 10−17 Seminal plasma proteoglycan containing
chondroitin and heperan sulfate chains.

ECT2 (epithelial cell
transforming 2) 8.43 5.94 × 10−16

Guanine nucleotide exchange factor,
expressed at high levels in mitotic cells in

the regenerating liver.
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Table 3. Cont.

Gene Name (Full Name) Log2 Fold Change Adjusted p-Value Function

SPTA1 (spectrin alpha,
erythrocytic 1) 7.99 7.35 × 10−15

Molecular scaffold protein that links the
plasma membrane to the actin

cytoskeleton and determines the
cell shape.

STAR (steroidogenic acute
regulatory protein) 8.36 2.48 × 10−14

Involved in the acute regulation of
steroid hormone synthesis by enhancing

the conversion of cholesterol
into pregnolone.

KEL (Kell
metalloendopeptidase (Kell

blood group))
7.66 1.34 × 10−12

Encodes a type II transmembrane
glycoprotein of the Kell blood

group antigen.

List of top 20 differentially expressed genes in the guinea pig dataset based on log2 fold change and Benjamini–Hochberg adjusted p-value.
GPCR: G protein-coupled receptor, MAP: mitogen-activated protein, MCP: monocyte chemotactic protein, MMP: matrix metalloproteinase,
TNF: tumour necrosis factor.

3.3. The Guinea Pig NASH Transcriptome Is Similar to That of Humans with Early-Stage NASH

The translational value of the guinea pig DEGs was assessed by comparing these to
the 100 human genes most strongly associated with NASH, as annotated in the DISEASE
database [22,23]. This comparison revealed that 60% of the human genes were differentially
expressed in guinea pigs, whereas 40% were not, and is visualised as a protein–protein
association network in Figure 3. To further substantiate the translational findings, RNA
sequencing results were also compared to a human dataset with early-stage NASH patients
and healthy controls (HNASH1, GSE126848) [28]. Similar to the number of DEGs identified
in guinea pigs, a total of 5964 DEGs (q < 0.05) were identified in the human dataset, and
of these, 2697 (45.2%) genes were identical to the DEGs in the guinea pigs (Figure 4A).
Moreover, the top 200 DEGs from the guinea pig dataset were sufficient to distinguish
patients with early-stage NASH from healthy controls by using principal-component
analysis (Figure 4B).

To benchmark these results in relation to other preclinical models of NAFLD/NASH
(WD1, WD2, DIAMOND), the similarity of the animal models to the human dataset
(GSE126848) was compared by investigating the comparability of enriched pathways.
Figure 4C shows a heatmap based on normalised enrichment scores of all 50 hallmark
pathways in the different animal and human datasets (GSE126848). The three murine
models group together more closely compared to the guinea pig, and all four rodent models
are more similar to each other than to the human dataset. Importantly, the GSE126848
dataset is derived from patients with early NASH as opposed to the more severe NASH
in the guinea pigs, which may reduce comparability between groups. In contrast to the
animal models, 14 pathways were uniquely downregulated in the human dataset. These
14 pathways include inflammatory signalling (e.g., inflammatory response (q < 0.01),
complement (q < 0.05), and IL2 STAT5 signalling (q < 0.1)). Leading edge genes specifically
revealed CD44 and CCL20 (C–C motif chemokine ligand 20) to be differentially regulated
in human and guinea pig datasets (Supplementary Table S3, Additional File S1). The
downregulation of adipogenesis (q < 0.05) and fatty acid metabolism (q < 0.01) was only
found in guinea pigs.

3.4. Guinea Pig NASH Transcriptome Resembles Human Advanced NASH

The translatability of the guinea pig transcriptome was also assessed in relation to
patients with advanced disease. In contrast to the HNASH1 dataset, where most patients
had ≤1 grade fibrosis (1 of 16 patients had grade 2 fibrosis), and all patients had ≤1 grade
inflammation, the HNASH2 dataset compares NAFLD patients with either mild (grade 0–1)
or severe (grade 3–4) fibrosis [28,29]. The top 200 DEGs from these patients distinguished
guinea pigs and WD1 with NAFLD/NASH from the controls (Figure 5A,C). DIAMOND
and WD2 animals could also be separated by these DEGs (Figure 5B,D), but their fraction
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of variance explained by first principal component PC1 was lower than that of guinea pigs
and WD1.
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In the GSEA, murine (WD1, WD2 and DIAMOND) models clustered, while guinea
pigs and the HNASH2 dataset formed a separate cluster (Figure 5E). To explore this rela-
tionship, the top 50 enriched Reactome pathways in the HNASH2 dataset were compared
to the top 50 enriched Reactome pathways in each of the preclinical models. Guinea pig
and HNASH2 datasets share 17/50 (34%) enriched pathways, whereas the WD2, WD1,
DIAMOND mice and HNASH2 datasets share 17/50 (34%), 7/50 (14%), and 9/50 (18%), re-
spectively (see Supplementary Table S2, Additional File S1 for a list of matching pathways).
The 17 pathways shared between guinea pigs and the patients with advanced fibrosis were
all regulated in the same direction with 12 downregulated and 5 upregulated pathways
(Figure 5F). Consistent with advanced fibrosis in both guinea pigs and patients, the upreg-
ulated pathways (extracellular metabolism, ECM proteoglycans, elastic-fibre formation,
molecules associated with elastic fibres) were linked to fibrosis. Downregulated pathways
included mitochondrial processes such as the citric acid cycle and respiratory electron trans-
port, peroxisomal protein import, mitochondrial translation, and fatty acid metabolism.
Further evaluation of fatty acid metabolism leading edge genes revealed thyroid hormone
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responsive (THRSP) to be differentially regulated in HNASH2 and guinea pig datasets,
whereas it was upregulated in HNASH1 (Supplementary Table S4, Additional File S1).

Biomedicines 2021, 9, x FOR PEER REVIEW 12 of 22 
 

 

Figure 4. Comparison of preclinical models and patients with early-stage NASH. (A) Venn diagram of differentially ex-
pressed genes from HNASH1 (patients with mild disease vs. healthy controls) and guinea pig datasets, and their overlap-
ping genes. Both datasets were analysed by DEseq2, and differentially expressed genes were selected on the basis of q < 
0.05. (B) Principal-component analysis using top 200 differentially expressed genes in guinea pigs clearly separated pa-
tients with NASH from healthy controls in the HNASH1 dataset. Top 200 differentially expressed genes were selected on 
the basis of q < 0.05 and highest absolute log2 fold-change values. (C) Heatmap demonstrating overlap in expression pat-
terns of Hallmark pathways. The heatmap is based on normalised enrichment scores from gene set enrichment analysis 
of Hallmark pathways from each dataset, i.e., HNASH1, guinea pig, and the included murine datasets (WD1, WD2, and 
DIAMOND). Dendrogram depicts hierarchical clustering of groups according to normalised enrichment scores. Colour 
bar indicates normalised enrichment scores, blue indicates a downregulated gene set, and red indicates an upregulated 
gene set. WD1 refers to GSE52748, WD2 refers to GSE38141, HNASH1 refers to GSE126848, DIAMOND refers to 
GSE67680. GP: guinea pig, DEG: differentially expressed gene, PC: principal component, NASH: nonalcoholic steatohep-
atitis. 

3.4. Guinea Pig NASH Transcriptome Resembles Human Advanced NASH 
The translatability of the guinea pig transcriptome was also assessed in relation to 

patients with advanced disease. In contrast to the HNASH1 dataset, where most patients 
had ≤1 grade fibrosis (1 of 16 patients had grade 2 fibrosis), and all patients had ≤1 grade 
inflammation, the HNASH2 dataset compares NAFLD patients with either mild (grade 
0–1) or severe (grade 3–4) fibrosis [28,29]. The top 200 DEGs from these patients distin-
guished guinea pigs and WD1 with NAFLD/NASH from the controls (Figure 5A,C). DI-
AMOND and WD2 animals could also be separated by these DEGs (Figure 5B,D), but 
their fraction of variance explained by first principal component PC1 was lower than that 
of guinea pigs and WD1. 

In the GSEA, murine (WD1, WD2 and DIAMOND) models clustered, while guinea 
pigs and the HNASH2 dataset formed a separate cluster (Figure 5E). To explore this rela-
tionship, the top 50 enriched Reactome pathways in the HNASH2 dataset were compared 

Figure 4. Comparison of preclinical models and patients with early-stage NASH. (A) Venn diagram of differentially
expressed genes from HNASH1 (patients with mild disease vs. healthy controls) and guinea pig datasets, and their
overlapping genes. Both datasets were analysed by DEseq2, and differentially expressed genes were selected on the basis of
q < 0.05. (B) Principal-component analysis using top 200 differentially expressed genes in guinea pigs clearly separated
patients with NASH from healthy controls in the HNASH1 dataset. Top 200 differentially expressed genes were selected
on the basis of q < 0.05 and highest absolute log2 fold-change values. (C) Heatmap demonstrating overlap in expression
patterns of Hallmark pathways. The heatmap is based on normalised enrichment scores from gene set enrichment analysis
of Hallmark pathways from each dataset, i.e., HNASH1, guinea pig, and the included murine datasets (WD1, WD2, and
DIAMOND). Dendrogram depicts hierarchical clustering of groups according to normalised enrichment scores. Colour bar
indicates normalised enrichment scores, blue indicates a downregulated gene set, and red indicates an upregulated gene
set. WD1 refers to GSE52748, WD2 refers to GSE38141, HNASH1 refers to GSE126848, DIAMOND refers to GSE67680. GP:
guinea pig, DEG: differentially expressed gene, PC: principal component, NASH: nonalcoholic steatohepatitis.
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Figure 5. Comparison of preclinical models and patients with advanced NASH. (A–D) Principal-component analysis using
top 200 differentially expressed genes from HNASH2 (NASH patients with advanced vs. mild fibrosis) could separate
NASH/NAFLD from healthy controls in all included preclinical models. Differentially expressed genes from HNASH2
dataset selected on the basis of q < 0.05 and highest absolute log2 fold change. Principal-component analysis plots depict
normalised and transformed values for the 200 genes in each of the animal datasets. (E) Heatmap demonstrating overlap
in expression patterns of Hallmark pathways. Heatmap is based on normalised enrichment scores from the gene set
enrichment analysis of Hallmark pathways from each dataset. Dendrogram depicts hierarchical clustering of groups
according to normalised enrichment scores. Colour bar indicates normalised enrichment scores for each gene set. Blue
indicates a downregulated gene set, whereas red indicates an upregulated gene set. (F) Overview of normalised enrichment
scores of the 17 pathways in common between HNASH2 and guinea pigs. Top 50 pathways of the HNASH2 dataset were
compared with the top 50 enriched pathways in guinea pigs. Top 50 pathways included the top 25 most upregulated and the
top 25 most downregulated pathways. All pathways were selected on the basis of corrected Benjamini–Hochberg p-values
and normalised enrichment scores. WD1 refers to GSE52748, WD2 refers to GSE38141, DIAMOND refers to GSE67680,
HNASH2 refers to GSE49451. GP: guinea pig, PC: principal component, NAFLD: nonalcoholic fatty liver disease, NASH:
nonalcoholic steatohepatitis.



Biomedicines 2021, 9, 1198 12 of 18

3.5. Identification of Potential New Biomarkers of Fibrosis Deposition

To identify genes directly related to the amount of fibrosis in our NASH guinea
pigs, the relative fibrosis amount was correlated to the expression of the 11,896 identified
genes. Only genes with a correlation coefficient of ≥0.8 and a log2 fold change of ≥1 were
included. Each gene was compared to the two human datasets HNASH1 and HNASH2,
which consisted of NASH patients with mild disease and NASH patients with advanced
fibrosis (grade 3–4), respectively. The final list comprises nine genes: ACKR3, BIRC3,
CHST11, EMP3, FZD7, RGS14, RHBDF1, SERPINB9, and VWF (Table 4; for regression
analysis, see Additional File S2).

Table 4. Genes related to fibrosis quantification.

Gene Pearson’s ρ p Value GPLog2FC HLog2FC Function 1 Secreted Role in
NASH

Cell-Specific
Expression 2

ACKR3 All: 0.91
NASH: 0.87

All: 4.54 × 10−5

NASH: 0.025
1.36 HNASH1: ND

HNASH2: 0.69

GPCR,
orphan
receptor

NO ? Endothelial cells

BIRC3 All: 0.88
NASH: 0.82

All: 1.77 × 10−4

NASH: 0.045
1.1 HNASH1: 1.9

HNASH2: 0.7
Inhibits

apoptosis NO
YES

(hypoxia
induced) [39]

Immune cells,
cholangiocytes,

endothelial cells,
and hepatocytes

CHST11 All: 0.95
NASH: 0.87

All: 1.42 × 10−6

NASH: 0.023
1.16 HNASH1: −0.35

HNASH2: 0.19

Promotes
synthesis of
chondroitin

(ECM)

NO ? Immune cells

EMP3 All: 0.93
NASH: 0.81

All: 9.41 × 10−6

NASH: 0.049
1.5 HNASH1: 0.98

HNASH2: 0.19

Membrane
protein, cell
proliferation

NO ? Immune cells

FZD7 All: 0.87
NASH: 0.83

All: 2.22 × 10−4

NASH: 0.041
1.2 HNASH1: ND

HNASH2: 0.6
Wnt

signalling NO YES in HCC
[40]

Cholangiocytes,
HSC

RGS14
All: −0.83

NASH:
−0.80

All: 8.26 × 10−4

NASH: 0.053
−1.58 HNASH1: −0.3

HNASH2: −0.2

Regulates
GPCR

(increases
microtubule
assembly)

NO ? Immune cells

RHBDF1 All: 0.96
NASH: 0.92

All: 4.11 × 10−7

NASH: 0.010
1.17 HNASH1: 0.6

HNASH2: 0.03

Regulates
ADAM17

and release
of TNF-α

NO ? Cholangiocytes

SERPINB9 All: 0.9
NASH: 0.84

All: 6.19 × 10−5

NASH: 0.037
1.4 HNASH1: −0.7

HNASH2: 0.5

Inhibits
activity of

granzyme B
YES YES [41]

Immune cells,
endothelial cells,
stellate cells, and
myofibroblasts,
macrovascular

endothelial cells

VWF All: 0.97
NASH: 0.86

All: 7.52 × 10−8

NASH: 0.027
1.46 HNASH1: −0.03

HNASH2: 0.5
Platelet

aggregation YES YES [42,43] Macrovascular
endothelial cells

Genes listed in alphabetical order. In Pearson’s ρ column: All, correlation calculated using both control and NASH animals; NASH,
correlation calculated using only NASH animals. 1 Description of function based on [44]. 2 Based on liver cell atlas [45,46]. ECM:
extracellular matrix, GPCR: G-protein coupled receptor, GPLog2FC: guinea pig log2 fold change, HCC: hepatocellular carcinoma, HLog2FC:
human log2 fold change, HSC: hepatic stellate cell, HNASH1: NASH patients with mild fibrosis vs. healthy controls. HNASH2: NASH
patients with advanced fibrosis vs. NASH patients with no or mild fibrosis.

4. Discussion

This paper shows the first comparison of human and guinea pig NASH transcriptomes,
and reveals the high translational potential of this model compared to the included murine
models. DEGs clearly separated guinea pigs with NASH from healthy controls, and GSEA
revealed an over-representation of fibrosis-related signalling, while energy-generating pro-
cesses were downregulated. Importantly, guinea pigs with NASH and advanced fibrosis
(F3) recapitulate the transcriptional profile of NASH patients with advanced (F3–F4) fibro-
sis, emphasising that the guinea pig NASH model possesses high translational potential,
which can be used in drug and biomarker discovery.
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A comparison of the guinea pig transcriptome to the human dataset (GSE126848
(HNASH1)) demonstrated that the top 200 DEGs in NASH guinea pigs were able to
separate patients with NASH from healthy individuals [28]. This similarity was further
substantiated by the 60% overlap in guinea pig NASH DEGs and human genes from the
DISEASE database [23], and a separate grouping of guinea pigs and patients from the
HNASH2 dataset in the GSEA compared to the murine models. However, some pathways
displayed altered regulation in guinea pigs compared to the HNASH2 dataset, including
heme metabolism, cholesterol homeostasis, and the reactive-oxygen-species pathway.
In this aspect, differences in pathways associated with cholesterol homeostasis are not
surprising, as the guinea pig HF diet contains an excess (0.35%) of cholesterol. Differences
in the content and composition of dietary fatty acids may also induce alterations in hepatic
metabolism and associated pathways that may influence end points and limit comparisons
between studies, underlining controlled dietary regimes as a central point of attention
when modelling this disease [47]. Similar to humans with advanced NASH (HNASH2),
adipogenesis and fatty acid metabolism gene sets were downregulated in the guinea pig,
in contrast to humans with mild disease (HNASH1) and the murine datasets (WD1, WD2
and DIAMOND). Fatty acid metabolism was also among the 17 shared pathways between
HNASH2 and guinea pigs, supporting effects on hepatic lipid turnover as a factor in
disease development. To delineate specific genes for advanced disease, leading edge genes
for each dataset were reviewed (Supplementary Table S4, Additional File S1). THRSP was
highly downregulated in the guinea pig and HNASH2 datasets compared to HNASH1,
indicating a specific role for THRSP in advanced disease. Decreased THRSP serum levels
is reported in patients with metabolic syndrome (increased BMI, HbA1c, triglycerides,
alanine-transaminase, and lower HDL-C) compared to healthy individuals, supporting
a differential regulation of THRSP when (lipid) metabolism is altered; however, hepatic
histopathological status was not recorded, preventing cross-referencing to NASH [48].
Thus, increased expression in the HNASH1 dataset and decreased expression in HNASH2
and guinea pigs, and lower serum THRSP levels in patients with metabolic syndrome
could indicate that THRSP varies with disease state and stimuli, and might be upregulated
in mild disease, but downregulated in advanced disease. Accordingly, THRSP could be
a marker of advanced NASH and would be interesting to assess as a serum marker in
patients with advanced NASH. Genes involved in, e.g., steatosis-promoting pathways may
be overlooked in the HNASH2 dataset, as both patient groups displayed similar degrees of
hepatic steatosis. Furthermore, both patients groups were obese (BMI > 30), whereas the
guinea pigs analysed in this study did not differ in body weight, also differing from the
murine models, in which all Western diet-fed groups had significantly higher body weight
compared to that of the controls. Regarding data analysis, only this study considered
human orthologues for gene annotation of the animal model, which might also account for
some of the similarity between guinea pig and human datasets.

Mitochondrial β-oxidation is central for hepatic lipid metabolism, and mitochondrial
dysfunction is considered to be a symptom of advanced NASH [49,50]. Accordingly,
complex 1 biogenesis and respiratory electron transport were downregulated in humans
(HNASH2), guinea pigs and DIAMOND mice that also have advanced disease, indicating
an overlap in late-stage pathogenesis between these models and humans [29,32]. The
protein–protein association network demonstrated either the down- or no regulation of key
genes involved in mitochondrial β-oxidation, including CPT1A, PPARA, and ACOX1 in
guinea pigs with NASH. Compared to HNASH1 patients, the advanced NASH guinea pig
showed downregulation of other mitochondrial processes, i.e., peroxisome and oxidative
phosphorylation. Increased mitochondrial activity was reported in patients with mild
disease, similar to in the HNASH1 dataset [51]. This could be a compensatory mechanism to
mitigate hepatic lipid overload by increasing fatty acid oxidation, which, over time, results
in increased levels of oxidative stress and ultimately reduces mitochondrial oxidative
capacity, as reported in patients with advanced disease [49]. Thus, the different stages of



Biomedicines 2021, 9, 1198 14 of 18

disease (mild vs. advanced) are likely to account for differences between HNASH1 and
guinea pig expression patterns.

Within the group of inflammatory response genes HNASH2, guinea pig and murine
models showed upregulated expression patterns. Closer inspection of the genes in leading
edge analysis (Supplementary Table S3, Additional File S1 (highlighted in yellow)) revealed
that CCL20 and CD44 were upregulated in HNASH2 and guinea pigs, but not in HNASH1.
CCL20 is a strong chemoattractant for lymphocytes and the main ligand of the chemokine
receptor CCR6, and is expressed by cholangiocytes, Kupffer cells, hepatocytes, and hepatic
stellate cells [52,53]. Differential expression analysis in healthy individuals and NASH
patients with lobular inflammation showed CCL20 to be among the top 20 genes with the
highest fold-change levels [54]. Furthermore, increased serum levels of CCL20 were found
in NASH patients with severe fibrosis compared to those of healthy individuals [52]. In
addition, the serum levels of soluble CD44 were increased in patients with NASH (n = 39)
vs. non-NASH (n = 25) [55]. CD44 plays a major role in hepatic leukocyte recruitment
and infiltration [56]. CD44 null mice showed markedly decreased hepatic macrophage
and neutrophil infiltration compared to wild types in response to a methionine–choline-
deficient diet, and were partially protected from inflammation compared to wild types in
response to a lithogenic diet [55,57]. Thus, the increased expression of CCL20 and CD44
appears to be linked to inflammation in NASH. As both factors can be readily measured in
serum, these proteins may be interesting as biomarker candidates.

With regards to hepatic fibrosis, 4/17 of the overlapping pathways between guinea
pigs and advanced NASH patients (HNASH2) are exclusively related to fibrosis. None of
the pathways overlapping between DIAMOND and advanced NASH patients are involved
in fibrotic processes, whereas WD1 and WD2 showed 3/7 and 12/17 of overlapping
pathways, respectively. In the principal-component analysis, guinea pigs and WD1 were
clearly separated by the DEGs from patients with advanced vs. mild disease (HNASH2),
whereas the WD2 and DIAMOND datasets did not separate as clearly. This analysis could
well be confounded by factors within the individual experiments; however, these results
may collectively indicate that the fibrotic signalling network in the DIAMOND model
is different from the human network, or less regulated than that in guinea pigs or WD
mice. Extracellular-matrix organisation is also upregulated in DIAMOND mice, though
not included in the 50, as is the case for the human and guinea pig dataset. With regards
to oxidative capacity and fibrosis signalling, the guinea pig model seems to mirror the
human NASH transcriptome to a higher degree than the other included preclinical models.
The two human datasets include either patients with mild disease (HNASH1) or more
severe NASH (HNASH2), but no healthy controls. Thus, to confirm if these findings are
consistent in more progressive NASH with increased fibrosis, a comparison is warranted
between the guinea pig transcriptome and an advanced NASH patient group compared
to a matched healthy control. In line with the ability to display several of the human
histopathological hallmarks of NASH (including fibrosis), the current findings demonstrate
a clear advantage of the guinea pig model. A relatively novel preclinical model of this
disease, the currently disclosed transcriptome supports a high degree of translational
validity, putatively enforcing increased predictability of findings between guinea pig
NASH and human patients. In this aspect, potential challenges with applying the guinea
pig model (e.g., different species preferences and requirements compared to mice and
rats) are outweighed. We recently reported an impact of breeder-associated variation on
guinea pig NASH development [58]. Consequently, there could be differences in the NASH
transcriptome between animals from different breeders, rendering the presented findings
limited to guinea pigs bred at Charles River (Lyon, France).

The above findings show high similarity between guinea pig and human fibrotic gene
expression, prompting further investigation of specific targets, with high clinical potential.
This yielded a list of nine fibrosis-related genes, of which two secreted factors, von Wille-
brand factor (VWF) and serpin family B member 9 (SERPINB9), showed high correlation
with the relative fibrosis area. vWF is secreted from endothelial cells, and circulating levels
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of vWF predicted mortality and risk of decompensation in patients with cirrhosis [59–61].
Furthermore, vWF increases with fibrosis stage in hepatitis C and NASH patients, support-
ing this as a potential marker of advancing hepatic fibrosis [42,62]. Increased SERPINB9
expression was also reported in patients with hepatocellular carcinoma [63]. SERPINB9
could be a circulating biomarker for cytomegalovirus infection, and immunostainings
confirmed the hepatocyte expression of SERPINB9 in cirrhotic hepatitis C patients [64,65].
Several of the other identified genes encode proteins that indirectly regulate the release
of soluble factors to the bloodstream. This includes rhomboid 5 homolog 1 (RHBDF1),
which has the highest overall correlation coefficient and regulates the activity of ADAM
metallopeptidase domain 17 (ADAM17), which in turn regulates the release of tumour
necrosis factor-α (TNF-α) [66]. Thus, RHBDF1 indirectly mediates the detachment of
surface molecules, including TNF-α, known to contribute NASH progression, which was
also among the 60 genes in common between guinea pigs and NASH patients identified
from the DISEASE database [66–68]. Only four of the nine genes correlating with relative
fibrosis area have been investigated, to the best of our knowledge, in relation to NASH.
Consequently, the remaining five genes sharing a high correlation to hepatic fibrosis area
and a similar expression pattern in patients with advanced NASH may serve as putative
biomarkers worthy of future investigation.

5. Conclusions

This study showed significant overlap between the transcriptomes of the guinea pig
NASH model and NASH patients with advanced fibrosis on a pathway and single-gene
level. In addition to similarities in liver histopathology, this further establishes the guinea
pig as a model of fibrotic NASH with high translational validity. Moreover, several genes
correlating with the amount of hepatic fibrosis in guinea pigs displayed a similar expression
pattern in NASH patients, supporting the clinical potential of using the guinea pig as a
model in the search for biomarkers of NASH and NASH-associated fibrosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biomedicines9091198/s1. Additional File S1: Word document docx. Supplementary Table S1. Ta-
ble of relative fibrosis area based on Picro Sirius red staining for each animal. Supplementary Table S2.
List of top 50 overlapping pathways between the preclinical murine models and HNASH2 dataset.
Supplementary Table S3. List of all Hallmark gene sets for the guinea pig dataset, including leading
edge genes. Supplementary Table S4. List of Reactome pathway gene set: fatty acid metabolism for
HNASH1, HNASH2, and guinea pig. Additional File S2: PDF of linear regression on the normalised
(normalised by DeSeq2 size factor) and rlog-transformed values, and the fibrosis fraction for each
animal, for each of the nine genes identified in correlation analysis. R2 and the linear equation are
reported for each gene.
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