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Abstract: Hyaluronic acid (HA) hydrogels display a wide variety of biomedical applications rang-
ing from tissue engineering to drug vehiculization and controlled release. To date, most of the
commercially available hyaluronic acid hydrogel formulations are produced under conditions that
are not compatible with physiological ones. This review compiles the currently used approaches
for the development of hyaluronic acid hydrogels under physiological/mild conditions. These
methods include dynamic covalent processes such as boronic ester and Schiff-base formation and
click chemistry mediated reactions such as thiol chemistry processes, azide-alkyne, or Diels Alder
cycloaddition. Thermoreversible gelation of HA hydrogels at physiological temperature is also
discussed. Finally, the most outstanding biomedical applications are indicated for each of the HA
hydrogel generation approaches.

Keywords: hyaluronic acid; cross-linking; physiological conditions

1. Introduction

Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan composed of repeating
units of the disaccharide β-1,4-D-glucuronic acid–β-1,3 N-acetyl-D-glucosamine. This
polysaccharide is naturally found in the human body, especially in connective tissues, skin,
and synovial joint fluids. Apart from its biocompatibility and bio-functionality, HA displays
physicochemical properties, such as high-water retention and viscoelastic properties, which
make it the candidate of choice for bio-applications in several fields of medicine. Hyaluronic
acid is employed as viscosupplement for the treatment of osteoarthritis, it constitutes a
treatment for dry eye disease, and it is employed as an ingredient in dermatological and
cosmetic formulations for skin care. Nevertheless, HA presents poor mechanical properties
and rapid degradation via oxidative species and enzymatic degradation which hinder its
use for some bio-applications. For example, for the use of hyaluronic acid as temporary
scaffolds for tissue engineering applications, it is necessary to adjust the rate of degradation
to the rate of formation of the new tissue. To overcome these drawbacks, the HA chains can
be cross-linked, either chemically or physically to form hydrogels. The physicochemical
properties, stability, and half-life of the native HA can be improved by modifying its
structure and forming a hydrogel. After the reaction, the HA hydrogels can maintain the
biocompatibility and biodegradability that characterize the unmodified material [1,2].

In a simple way, HA crosslinking can be carried out in two ways: by directly adding
a cross-linker and forming the three-dimensional (3D) network, or by pre-modifying
the HA chains with functional groups liable to be crosslinked. The latter leads to the
generation of active moieties that also add new functionalities to the hydrogel [3]. The
disaccharide units of HA possess three sites that may undergo chemical modification: the
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carboxyl group, hydroxyl group, and N-acetyl group [4,5]. HA is mainly modified through
its carboxyl group affording amide formation using coupling reagents such as 4-(4,6-
dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) or carbodiimide
derivatives, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) [6] along
with activating groups as N-hydroxybenzotriazole (HOBt) [7], N-hydroxysuccinimide
(NHS) [8], or N-hydroxysulfosuccinimide (sulfo-NHS) [9]. On the other hand, the hydroxyl
group can undergo different reactions such as oxidation by sodium periodate (NaIO4) [10];
hemiacetal formation; ether formation through reagents as 1,4-butanediol diglycidyl ether
(BDDE) [11,12] or divinyl sulfone (DVS) [13]; and esterification [14]. Finally, N-acetyl
groups may react through deacetylation and amidation.

Over the last ten years, research interests in the development of hyaluronic acid
hydrogels have increased exponentially as seen in Figure 1, which represents the number
of papers with the words “Hyaluronic” and ”hydrogel” found in SCOPUS.
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Divinyl sulfone (DVS) represents one of the most extended crosslinkers for the forma-
tion of hyaluronic acid hydrogels since the crosslinking process is simple, reproducible,
and safe as it does not employ any organic solvents [15]. In a recent publication, some
of us reported on the preparation and characterization of injectable hyaluronic hydrogels
crosslinked with DVS at different HA: DVS weight ratios. The reaction between the hy-
droxyl groups present in the HA and DVS gives rise to ether formation and occurs at high
pH values (0.25 M NaOH) and room temperature. An additional purification step was
performed after the reaction (elimination of unreacted DVS) to obtain the final hydrogels.
The hydrogels obtained at low HA:DVS weight ratios were non-cytotoxic and showed
an excellent capacity to load antibiotics and anti-inflammatory agents [13]. In order to
reach industrial production of hydrogels, a quality by design approach (QbD) must be
adopted that predefines the properties of the targeted hydrogel. Such an approach is
implemented by biomedical companies for the development of hyaluronic acid hydrogels
that have reached the market in the form of injectable products [16]. Apart from DVS,
glutaraldehyde, 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide, or BDDE among others
are traditionally employed for HA cross-linking. However, there might be biocompatibility
issues with the resulting hydrogels. This is because some of them may possess in their
structure unreacted cross-linkers which are known to be cytotoxic and can diffuse out of
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the hydrogel. In addition, the experimental conditions employed for the HA crosslinking
reactions are often not compatible with cell culture conditions (pH 7.0–7.6, 37 ◦C) [17].

Another method of crosslinking for hyaluronic acid is ultraviolet (UV) photoiniti-
ated crosslinking. Such an approach is often employed for the coupling of thiol groups,
previously introduced within the HA backbone, to alkenes through a radical-mediated
process. Thiol-ene photopolymerizations occur with any olefin bond, however, most of
the HA hydrogels obtained in this way are produced through thiol- acrylate reactions.
Hydrogels formed through thiol-acrylate photopolymerization display tunable mechanical
properties by controlling factors that affect reaction kinetics (e.g., photopolymerization,
light intensity, molecular weight, stoichiometry, and functionalities of monomers, tem-
perature, chemical properties and concentration of initiators, and solvent choice) [18–20].
Although hydrogels formed by thiol-acrylate photopolymerization have found widespread
applications in tissue engineering and regenerative medicine, photoinitiated crosslinking
is also considered risky for some bio-applications as long irradiation periods required to
improve the hydrogel mechanical properties might compromise cell viability [21].

This review is intended to provide an overview of different strategies to obtain
hyaluronic acid-based hydrogels under physiological conditions and their biomedical
applications. The review affords a brief outline of different chemical routes to crosslink
HA at physiological pH and temperature, many of them involving click chemistry and the
formation of dynamic (reversible) covalent bonds. A summary of the biomedical applica-
tions found in the literature is also provided. Different approaches for the preparation of
thermoreversible hyaluronic hydrogels at physiological temperature including grafting
or combination with thermoresponsive synthetic polymers (poly-N isopropylamide or
pluronics) and natural polymers (gelatin or dextran among others) are reviewed as well.

2. Overview of HA Crosslinking Reactions Carried out at Physiological Conditions

The design of crosslinking strategies for hyaluronic acid hydrogel formation at phys-
iological pH and T conditions, expands the range of biomedical applications for these
materials, especially for those in which the gel formation occurs in the presence of living
cells, proteins, or drugs. In recent years click chemistry, characterized by its high reactivity,
selectivity, and yield, appears as the most promising strategy for the development of hy-
drogel under mild conditions. In addition, its unique bioorthogonality allows for gentle
and efficient encapsulation of several bioactives onto the formed hydrogels [22–24].

Many of the current strategies for the formation of HA hydrogels at physiological
conditions involve the formation of dynamic bonds which can break down and then reform
with or without an external stimulus. The nature of the reversible bonds can be based on
covalent or noncovalent (physical) interactions. Among non-covalent bonds, guest–host
interactions are extensively employed in the formation of hyaluronic acid-based hydrogels
under mild conditions [25–27]. However, these networks may have poor properties or
low stability. To overcome these drawbacks and obtain the advantages that covalent
crosslinking bond offers, hydrogels can incorporate two types of crosslinks: a prior physical
crosslinking with fast gelation and self-healing capacity, and then a covalent crosslinking
that provides stability and improves mechanical properties in the network [28,29].

Dynamic bonds endow the material with adaptability, self-healing capacity, stress
relaxation, or shear thinning properties. Such features allow the material to flow and to
be printed or injected under the shear forces and then, recover its macroscopic properties
once the force/deformation has stopped. Nowadays, dynamic hydrogels attract a lot of
attention due to their applications as injectable biomaterials, that allow the filling of irregu-
larly shaped lesion sites with minimally invasive intervention [30–32]. The macroscopic
properties of dynamic hydrogels are dependent on the network strand size and on the
kinematic exchange of the dynamic bonds. A schematic representation of the experimental
setup employed to measure the viscoelastic properties of hydrogels employing shear rheol-
ogy is shown in Figure 2a. Figure 2b exemplifies the rheological behavior of a hydrogel
in response to oscillatory frequency sweeps. In solution, in absence of crosslinker, the
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loss modulus, G”, is higher than the elastic modulus, G′ and they are both dependent on
frequency. A fast-relaxing system shows viscoelastic behavior (G′ and G” crossover within
frequency ranges tested), whereas a slowly relaxing system shows a gel-like behavior
(G′ > G”, within all frequency ranges tested). The determination of rheological properties
for polymer hydrogels lies within the base for the development of their advanced applica-
tions. Specifically, for dynamic covalent hydrogels used in tissue engineering applications,
the tuning of the viscoelastic properties of scaffolding hydrogels is employed as a strategy
to control cell behavior in vitro [33,34].
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In this section, the most used chemical routes employed to obtain hyaluronic acid
hydrogels under physiological conditions are reviewed along with the biomedical applica-
tions from the resulting HA hydrogels.

2.1. Boronic-Ester Formation

Reversible boronic ester bonds can be formed by condensation reaction between
boronic acids and cis-1, 2 or cis-1, 3 diols under mild conditions (Figure 3). These materials
have gained importance due to their reversibility behavior under mild conditions as a
function of the pH, which confers the network with self-healing capacity allowing their
injectability [35,36]. Some key factors for the formation of the boronic ester bonds include
the binding affinity of the boronic acid derivate towards the diol (Ka), their pKa, and the
pH of the medium. The optimal pH for the formation of the ester bond can be found
between the pKa values of boronic acid and the diol [37–40]. The estimation was proposed
by “the charge rule”: “sum of the charges of the free esterifying species is equal to the
charge of the ester” [41].
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In this regard, dynamic hydrogels based in HA modified with phenylboronic acid
(PBAs, pKa 8.8) groups and HA modified with maltose groups and gluconamide moieties
(HA-GLU) were obtained under physiological conditions [42,43]. The gelation capability
of HA-PBA was attributed to the interaction of negatively charged HA chains (carboxyl
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groups) with PBA lowering its pKa. The hydrogels showed self-healing ability and re-
versibility tailored by pH changes or by the addition of free glucose to the system [44].
Introducing an electron-withdrawing group or modifying the structure of the substituents
in PBA may vary and reduce its pKa, enabling the reaction with hydroxyl groups at lower
pH (including physiological conditions). It has been found that changes to the chemical
structure of the boronic acid species (i.e., differences in the ortho-substitution in the PBA
structure) result in differences in the reaction conditions for the formation of the gel which,
in turn, influences the viscoelastic properties of the resulting hydrogels [45,46].

Besides the formation of hyaluronic-based macrogels, the generation of hyaluronic
acid nanogels based in boronic-ester systems has been recently reported [47]. The nanogels
were prepared by reaction between HA-PBA and dextran (Dex) modified with fructose
(Fru) or maltose (Mal) moieties. It was found that nanogels prepared from HA-PBA/Dex-
Mal presented quicker instability than HA-PBA/Dex-Fru, which was attributed to a faster
cinematic exchange in the boronate-ester bond. The nanogels also showed pH responsive-
ness: particle formation at pH above 7 and dissolution at lower pH, being this change
reversible at pH above 7 (the nanoparticles re-form again).

Boronic-ester-based hydrogels are biocompatible, display self-healing properties and
thus possess a wide range of purposes in the biomedical field. They have been used as
injectable materials with H2O2/Reactive Oxygen Species (ROS) responsive properties.
Moreover, these systems display applications in tissue engineering due to their ability to
encapsulate different cell lines, such as neural progenitor cells (NPCs) and mouse embry-
onic fibroblasts (MEFs), and to behave as bio-inks for 3D printing and bioprinting [36,45].
Finally, hyaluronic acid hydrogels cross-linked with boronic acid derivatives can be em-
ployed as drug delivery systems for the release of active substances such as dihydrocaffeic
acid (DHCA), which prevents the photoaging of the skin [43].

2.2. Schiff-Base Formation

Imine bonds, hydrazone bonds, acylhydrazone bonds, and oxime bonds can be formed
by Schiff-base reaction between an active carbonyl group and various nucleophilic amine
groups, reaction schemes are shown in Figure 4. These bonds can present dynamic behavior
under mild conditions, endowing the material with reversibility and self-healing properties
which allow their injectability [48,49].
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A common way to functionalize HA with active carbonyl groups is through the
oxidation of vicinal hydroxyl groups with sodium metaperiodate (NaIO4). The oxidation
reaction breaks the C-C bond and produces two aldehyde groups at the oxidized carbons
(two vicinal aldehyde groups). Then, the oxidized HA (OHA) can be crosslinked by
Schiff-base reactions between aldehyde and amine groups [50], see Figure 4a. Chitosan
(CS), a natural polysaccharide containing amine groups with good biocompatibility and
biodegradability, is an excellent candidate to be employed along with OHA in hydrogel
formation under physiological conditions. Carboxyethyl–chitosan (CEC) biopolymer reacts
with OHA to form dynamic hydrogels under physiological conditions. The hydrogels
presented self-healing properties allowing for complete healing within 3 min giving the
injectable capacity to the system. In addition, swelling dependence with pH was found in
the hydrogels which enabled their employment as matrixes for controlled drug delivery.
At acidic pH, the hydrogels showed lower swelling increasing the drug delivery but also at
these acidic conditions the protonation of amino groups broke the dynamic bond improving
the interconnectivity of the network. The hydrogels showed excellent biocompatibility
and biodegradability [51,52]. Injectable hydrogels have also been obtained through the
reaction between OHA and Glycol Chitosan (GC) under mild conditions [53]. The authors
studied the influence of the degree of oxidation of HA, the mixing ratio of OHA/GC, and
the final polymer concentration on the mechanical properties of the hydrogels. Recently,
Graphene oxide (GO) was added to OHA/GC hydrogels to improve their osteogenic
functionalities [54].

In addition, the introduction of adipic acid dihydrazide (ADH) to the OHA/GC
hydrogel system at physiological conditions affords acylhydrazone bonds from the reaction
between OHA and ADH [55] (Figure 4b). This way, the exchange kinetics of the dynamic
bonds is altered, the stiffness of the hydrogel is reduced, and as a consequence self-healing
properties are generated into the network. Hydrogels based on HA-ADH/OHA were
also obtained with good cytocompatibility and hemocompatibility [56,57]. Hyaluronic
acid hydrogels formed from OHA, through oxidation and breakage of the sugar ring,
show less stability due to the tendency of the ring-opened structure to hydrolyze [58].
Hence, an alternative strategy to functionalize HA with active carbonyl groups proceeds
via pre-modification and subsequent oxidation of HA. Thus, HA was pre-modified with -3-
amino-1,2-propanediol followed by oxidation to yield a mono-aldehyde HA (HA-mCOH).
The aldehyde groups were then coupled with gelatin containing a hydrazide group under
mild conditions. The stability of hydrogels formed from HA-mCOH was higher when
compared to that exhibited by hydrogels formed from hyaluronic acid oxidized through
breakage of the sugar ring [59].

HA hydrogels crosslinked through oxime bonds can be formed by reaction between
aldehyde or ketone groups with oxyamine groups (Figure 4d). The kinetics of the reaction at
physiological conditions can be modified and accelerated through the addition of different
salts, which can be considered as bio-friendly and non-toxic catalysts [60]. Injectable HA
hydrogels based on oxime chemistry were recently obtained through the reaction between
a polyethylene glycol (PEG) functionalized with oxyamine groups and a HA modified with
aldehyde and ketone groups. The hydrogels showed tunable gelation times ranging from
15 min to 0,4 min by increasing aldehyde concentration, which enabled their injectability.
The hydrogels showed cytocompatibility with retinal cells and a controlled swelling being
able to maintain the ocular pressure in vivo (rabbit assays) over 56 days maintaining a
healthy functional retina [61].

Hyaluronic acid hydrogels produced by Schiff-base reactions do have a broad scope
of uses in biomedicine due to their biocompatibility and self-healing capabilities. These
systems display applications in tissue engineering because of their ability to encapsulate
various cell lines, such as chondrocytes and ATDC5 cells that promote cartilage regener-
ation [53,55]. Schiff-base grounded hyaluronic acid hydrogels also induce angiogenesis
processes [59], enhance the osteogenic functionalities and mechanical properties of bone
tissue [54], and may be used as bioinks for fabricating cell-laden structures using a 3D
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printer [55] and as vitreous substitutes for ophthalmological applications [61]. These types
of hydrogels have been employed as drug delivery systems for pH-mediated release of the
anticancer drug Doxorubicin (Dox) [51]. Most of these materials are injectable [51,53–55,59]
which facilitates the dispensing of the hydrogel and thus the final application of the hydro-
gel (delivery of active substances or scaffolds for tissue engineering among others).

2.3. Thiol Chemistry

Polymers displaying naturally occurring amino and thiols groups are of great interest
because in the presence of biological components, are able to achieve chemo-selectivity
towards them and to induce crosslinking reactions. Compared to the amino group, the
thiol group (S-H) occurs at a lower abundance in naturally existing molecules. Moreover,
at the physiological pH, the nucleophilicity of thiol is 1000 times stronger than the ionized
amino group and therefore bears relatively higher chemoselectivity [18,19]. The thiol group
can undergo several reactions; in the present work, we focus our efforts on those that can
be carried out in physiological conditions and that require no catalysis to occur: disulfide
formation/exchange reactions, Michael addition type reactions, and thiol–yne addition
reactions. Reaction schemes are collected in Figure 5.
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The thiol group can react through disulfide formation/exchange reactions. The
S-H group participates in the formation of disulfide bonds (S–S) that are essential to the
tertiary structures of proteins. This functionality is also present in the active sites of many
enzymes. Moreover, disulfide formation can be employed to form HA hydrogels under
physiological conditions. The oxidation reaction involves the thiol deprotonation and
subsequent reaction with oxygen, so the reaction kinetics is highly influenced by the pKa of
the thiol and their deprotonation degree under physiological conditions [62–64] (Figure 5a).
Introducing an electron-withdrawing group (EWG) in the thiol group can modify and lower
the pKa, increasing its reactivity [65]. Disulfide-based hyaluronic acid can be promoted
using different oxidants, such as dimethyl sulfoxide (DMSO) [66] or iodine [67]. Parallel to
disulfide formation, the thiol group can also undergo a disulfide exchange reaction, which
endows the system with self-healing capacity. Disulfide exchange occurs between a de-
protonated thiol (nucleophile) that reacts with a disulfide under basic conditions (pH 7–9)
and the system could deactivate by oxidation of thiol groups (O2) or protonation (acid
conditions) [68,69] (Figure 5b). Furthermore, some assays have evaluated the induction
of disulfide exchange reactions into a disulfide system with glutathione (GSH, a small
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molecule produced by cells). A reduction in the storage modulus was found after the
incorporation of GSH into the network, and after incubation in PBS the modulus showed
partial recovery, proving the reversibility of the system, i.e., breakage and reforming of the
disulfide bonds [70].

A second reaction for the formation of HA hydrogels involving thiol groups is the
addition of thiol groups to alkenes via Michael addition. The reaction is a nucleophilic
addition of a thiol group (Michael donor) to an olefine with an EWG (Michael acceptor)
under basic conditions, with the thiol group in the anion form (Figure 5c). Moreover, due
to the inherent electron density of the S atom, thiol-Michael addition could co-exist in
mild aqueous conditions with photopolymerization, which has been utilized to design
step cross-linkable hydrogels. When the light intensity is low and photopolymerization
occurs in an alkaline solution, the rates for photopolymerization and thiol-Michael addi-
tion are comparable [71]. Polyethylene glycol (PEG) containing diacrylate/methacrylate
(PEGDA/PEGDMA) groups are traditionally employed to crosslink thiolated HA for
the formation of hydrogels through Michael addition under physiological conditions
(pH 7,4) [72,73]. In this type of hydrogel formation, a rapid Michael addition reaction
(rapid gelation) co-exists with the slow disulfide formation through the oxidation of the
thiol group (prolonged crosslinking). To minimize the disulfide formation, a molecule
with a mono-functionality can be added to the system for thiol end-capping and avoid
oxidation [74–76]. For thiolated HA-based hydrogels obtained through the employment of
PEGDA as a crosslinker, gelation times of 9 min were obtained [77].

Besides the employment of acrylate and methacrylate groups as Michael acceptor
groups, Michael addition reactions may also involve thiol and maleimide groups. HA-
based hydrogels were obtained through a dual crosslinking mechanism. As a first step, HA
was modified either with maleimide or thiol groups. Then, after mixing the modified HA
fractions, a rapid Michael addition between both groups occurred by adjusting the pH to
physiological conditions. After the initial gelification, a disulfide formation between the
thiol groups happened [78,79]. Michael addition may also proceed under physiological
conditions between a vinyl sulfone and a thiol group. This way, HA hydrogels have been
produced through the reaction of thiolated HA and PEG-vinyl sulfone under physiological
conditions with gelation times ranging from 14 min to less than 1 min [80,81].

A third strategy for HA crosslinking involving thiol groups is the thiol–yne addition
reaction. Thiol-yne coupling can occur through radical or nucleophile pathways. In this
review, we focus on the nucleophilic mediated thiol-yne addition reaction, highly suitable
for hydrogel synthesis because of its efficiency and rapid nature [82] (Figure 5d). HA-SH
may react with PEG-yne derivatives displaying different architectures to afford hydrogels
in a few minutes. It provides a straightforward and suitable approach, with few synthetic
steps, to prepare robust HA click-hydrogels, which intrinsically possess cell adhesion
capability and display a superior mechanical performance [83].

Thiol chemistry-mediated hyaluronic acid hydrogels are biocompatible [62,63,72,77,79,83–85]
and show self-healing and bio-adhesive properties [85]. They have been employed as injectable
materials [77,78,83,84] which facilitate the application in the human body for tissue engineering
purposes These types of hyaluronic acid hydrogels are able to encapsulate cells such as L-929
murine fibroblasts that remained viable and proliferated in vitro [62]. S. Bian et al. encapsulated
chondrocytes and L929 cells in hydrogels that were able to proliferate and aggregate forming an
extracellular matrix (ECM) [63]. Cartilage-derived progenitor cells (CPCs) were encapsulated to
overcome cell delivery drawbacks [84]. Encapsulated CPCs retained a high level of cell viability
and proliferation capabilities. Moreover, encapsulated CPCs remained functional as extracellular
matrix (ECM) secretion was enhanced under chondrogenic conditions, and the inflammation gene
expression was downregulated which indicated the anti-inflammatory ability of encapsulated
CPCs. Human mesenchymal stem cells (hMSC) as Y201 hTERT-immortalized human clonal
MSCs57 [83] and Passage 3 human MSCs [79] were also encapsulated in hydrogel networks
for chondrogenic applications. T31 tracheal scar fibroblasts were encapsulated in hydrogels
and implanted subcutaneously in the flanks of nude mice. Immunohistochemistry indicated
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that the encapsulated cells retained the fibroblast phenotype and secreted extracellular matrix
in vivo [77]. Many of these encapsulation systems have been used as 3D scaffolds for tissue engi-
neering [63,83]. Other applications in tissue engineering include the generation of biocompatible
and biodegradable substrates for in vitro cell culture [64], the production of hydrogel matrixes for
wound healing [72], and hemostatic applications [85].

2.4. Cycloaddition Reactions
2.4.1. Azide-Alkyne Cycloaddition Reaction

Traditionally, azide–alkyne cycloaddition “click” reaction has been catalyzed with
copper (I) to form a triazole ring. The reaction is characterized by its high selectivity, rate,
yield, and can proceed under ambient conditions. However, the use of metals in the reaction
limits the employment of these reactions for the development of materials for biomedical
applications [86,87]. In the present decade, strain-promoted azide–alkyne cycloaddition
(SPAAC) “click” reaction has gained importance due to its metal-free click chemistry
development needing no catalyst at physiological conditions [88]. This reaction can be
applied for “in situ” hydrogel formation using an alkyne functional group oxanorbonadiene
or cyclooctyne structures [89–91], see Figure 6.
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Figure 6. Strain-promoted azide–alkyne cycloaddition (SPAAC) reaction between azide and
(a) oxanorbonadiene and (b) cyclooctune groups.

Azide-modified HA (HA-AA) reacted with oxanorbonadiene-modified CS (CS-OB) to
afford HA hydrogels after 23 min (ratio AA:OB = 1:1, 2 wt%). The hydrogel showed cell
encapsulation capability and biocompatibility. In addition, in vivo assays showed the via-
bility of this material for in situ gelation when injected in mice [89]. The modification of HA
with cyclooctyne groups has also been employed as a strategy for crosslinking of HA-based
hydrogels at physiological conditions [90]. Cyclooctyne–HA reacted with azide–PEG with
gelation times of 5 min (ratio azide/cyclooctyne 2:1, 5 wt%). The hydrogels showed low
toxicity and good biocompatibility. Encapsulation of cells within the HA-based hydrogels
increased gelation time to 10 min. Cell proliferation was not affected in encapsulated cells
as compared with non-encapsulated cells employed as control experiments.

Hyaluronic acid hydrogels generated by azide-alkyne cycloaddition reaction are bio-
compatible and show a wide range of purposes in tissue engineering. These materials are
able to encapsulate in vitro human adipose-derived stem cells (ASCs) [89], COS-7 fibroblast-
like cell lines derived from monkey kidney tissue [90], and chondrocytes [91] which demon-
strate their potential as cell scaffolds for 3D cell culture. Furthermore, these hydrogels
are injectable, which simplifies their application in vivo for adipose tissue scaffolding [89],
regeneration of cartilaginous tissue [91], and dermal filling in plastic surgery [90].

2.4.2. Diels–Alder Formation

Covalent crosslinked hyaluronic acid hydrogels can be obtained through Diels–Alder
(DA) [4 + 2] cycloaddition between an electron-deficient dienophile and an electron-rich
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conjugated diene (Figure 7a). DA cycloaddition can occur under mild conditions and
exhibits a dynamic temperature behavior [92,93]. An example of HA hydrogels obtained
through the DA reaction is those formed between furan-modified HA which acts as a diene
and PEG-maleimide which acts as a dienophile (Figure 7b). The hydrogels formation is
performed under acidic pH conditions in MES buffer (pH 5.5) [94–96]. To accelerate the DA
reaction at physiological conditions, a more electron-rich furan can be achieved through
the introduction of a methyl group in its structure [97].
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HA hydrogels are also formed by inverse electron demand Diels–Alder (IEDDA)
cycloaddition reaction using tetrazine groups as the diene to react with alkenes or alkynes
under physiological conditions (see Figure 8). The material formulations can be “in situ”
injected into the area to be treated and rapidly form the crosslinked network, due to the
“click” properties of the reaction and do not require an external reagent [98–102]. HA-
tetrazine (Tet) can react with PEG-norbornene to form DA hydrogels. The gelation time was
found to be dependent on the modification degree of HA-tetrazine, the temperature, and
the concentration of the precursors reaching gelation times lower than 1 min. In addition,
the hydrogel showed protein encapsulation capacity and a subsequent release for several
weeks [101].
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Dual-crosslinked hydrogels can be produced by mixing two mechanisms of reaction
independently activated which allows the system to fulfill complex needs and opens
new applications. As an example, the combination of DA cycloaddition and condensation
reactions results in robust hydrogels for potential cartilage regeneration [103]. As a first step,
a quick dynamic condensation reaction between phenylboronic acid (PBA) and dopamine
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groups introduced onto the HA backbone gives rise to hydrogels with shear-thinning
properties, able to be injected. Then, a second slower DA reaction occurs endowing the
material with higher mechanical properties.

Diels–Alder-based hyaluronic acid hydrogels do have an extensive sort of use in
biomedicine due to their biocompatibility and injectability [98–100,103]. These systems
have been applied in tissue engineering due to their ability to encapsulate cells. Breast
cancer cell lines (BT474, MCF7, and T47D) and glioma neural stem cell lines (G523, G411)
were successfully encapsulated for 3D cell culturing [97]. Encapsulated chondrogenic
ATDC-5 cells successfully proliferated in a hydrogel environment which proves the poten-
tial applications in the field of cartilage regeneration [103]. Diels–Alder-based hydrogels
not only supported cell encapsulation but were also able to vehiculize active substances for
combined tissue engineering and drug delivery applications. In this regard, methotrexate-
loaded hydrogels increased cartilage thickness, chondrocyte generation, and induced
new bone formation in rheumatoid arthritis-affected body regions [99]. Dexamethasone
(Dexa)-loaded microspheres mixed with cross-linked hyaluronic acid hydrogel displayed a
retarded release of the Dexa in vitro and in vivo and represent a suitable method for the
treatment of inflammatory and autoimmune disorders, such as rheumatoid arthritis [98].
Finally, bone morphogenetic protein-2 (BMP-2) mimetic peptide (BP) was loaded and re-
leased from an injectable hyaluronic acid hydrogel obtained through a Diels–Alder reaction
between modified HA-tetrazine and HA- trans-cyclooctene (TCO). This system induced
the osteogenic differentiation of hDPSCs which supports the use of this material for bone
tissue engineering applications (Figure 9) [100].
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Table 1 summarizes the crosslinking reactions in this review with an indication of the
functional groups involved in the crosslinking, the properties of the resulting hydrogels,
and their biomedical applications.

Table 1. Crosslinking reactions at physiological conditions.

Cross-Linking Complementary Groups HA Chemical Modification Biomedical Applications

Boronic–ester
formation

Boronic acid + amine/hydroxyl
[36,42,43,45,47] Amidation [36,42,43,45,47];

Injectable [36,45]; biomaterial inks [36]; tissue
engineering [36]: bone; ROS-responsive
properties [36]; drug release [43]

Schiff base
formation

Amine + Aldehyde [51,53–55,59]
Oxidation [51,53–55];
Amidation [59,61];

Injectable [51,53–55,59,61]; tissue engineering
[59]: bone [54], cartilage [53,55];
Bioprinting [55]; pH responsive property [51];
drug release [51]; vitreous substitute [61]

Dihydrazide + Aldehyde + [56,59]

Oxyamine + aldehyde/Ketone [61]
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Table 1. Cont.

Cross-Linking Complementary Groups HA Chemical Modification Biomedical Applications

Thiol Chemistry

Disulfide
formation/exchange Thiol-thiol [62–64,74,75] Amidation [62–64,74] Tissue engineering [62–64]

Michael addition

Thiol + (metha)/acrylate [72–77,84]
Amidation
[72,74,77–79,81,85]; ether
formation [80]

Injectable [77,78,81,84]; tissue engineering
[72,73,77,84]: cartilage [79,81]; cell
encapsulation [84]; wound healing [72];
hemostasis [85]

Thiol + Melaimide [78,79]

Thiol + Vinyl-sulfone [80,81]

Thiol + Catechol [85]

Thiol-yne coupling Thiol/yne [83] Amidation [83] Injectable [83]; cell encapsulation [83]; tissue
engineering: cartilage [83]

Cycloaddition reaction

Azide–alkyne
cycloaddition

reaction

Azide + Oxanorbornadiene [89] Amidation [89–91] Injectable [89–91]; tissue engineering [89]; cell
encapsulation [90,91]Azide + Cyclooctyne [90,91]

Diels–Alder
formation

Furan + Maleimide [97,103]
Amidation [97–103]

Injectable [98–100,103]; tissue engineering
[99,103]: bone [100]; rheumatoid arthritis [99];
cell encapsulation [97]; protein encapsulation
[101]; drug release [98,99]

Tetrazine + Trans-cyclooctene [98–100]

Tetrazine + norbornene [101,102]

3. Thermoreversible Gelation of HA Hydrogels at Physiological Temperature

Thermo-sensitive hydrogels, which undergo in situ sol-gel transition at physiological
temperature, without chemical or enzymatic modification, are widely studied as bioma-
terials to be employed in tissue engineering and long-term controlled drug release [104]
Among them, physical thermoreversible hydrogels obtained through noncovalent inter-
actions (hydrogen bonding, ion crosslinking, or hydrophobic interactions, among others)
have attracted considerable attention over the years because of the mild conditions required
for the formation of crosslinking points [105].

Poly(N-isopropylacrylamide) (PNIPAm) is one of the most investigated thermosensi-
tive polymers. It shows a reversible sol-gel phase transition induced by a hydrophobically
induced reorganization/aggregation that occurs at its low critical solution temperature
(LCST) at ~32 ◦C. Such LCST can be modulated to get closer to physiological tempera-
ture. Thermosensitive hyaluronic hydrogels can be obtained through the incorporation
of PNIPAm into the backbone of hyaluronic acid (i.e., grafting). For that, PNIPAm was
end-capped with a carboxylic acid group or amine groups and then grafted to HA car-
boxylic acid groups through carbodiimide coupling chemistry. It is generally found that
grafted hyaluronic acid with PNiPAAm showed a similar LCST to PNiPAAm. In ad-
dition, as the amount of PNiPAAm grafted to HA increased the copolymers solutions
showed a narrower temperature range for LCST transition. Such materials have been
investigated as drug delivery materials [106,107]. Another approach to provide HA with
thermoresponsive properties is the formation of semi-interpenetrating polymer networks
constituted of PNiPAAm and hyaluronic acid through polymerization of the monomer
N-isopropylacrylamide (NIPA) in aqueous solutions of hyaluronic acid [108].

Other thermosensitive systems widely studied for biomedical applications are am-
phiphilic polyethylene glycol (PEG)-based copolymers such as Pluronics which is a PEG–
polyester-based triblock consisting of hydrophilic poly (ethylene oxide) (PEO) and hy-
drophobic poly (propylene oxide) (PPO) blocks arranged in a basic A-B-A tri-block struc-
ture. Physical mixing of high-molecular-weight HA with Pluronics results in thermosensi-
tive hydrogels with enhanced mechanical properties and sustained drug release behavior,
thus avoiding burst drug release reported for Pluronic copolymer hydrogels employed
as biomaterials for intra-articular injection [109]. Another approach consists of chemical
modification of HA and Pluronics with functional groups liable to in situ crosslinking.
Pluronics can be end-capped with thiol groups and then react with HA conjugated with
dopamine through a Michael-type addition. Interestingly, even if these HA-DN/Pluronics
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gels were chemically cross-linked, they exhibited thermally reversible sol-gel transition
which was found to appear at temperatures lower than the corresponding to Pluronics
hydrogels [110]. Grafting of Pluronics to HA results in copolymers being able to gelify
with temperature. The Pluronics grafting percent influences the sol-gel temperature, i.e.,
at the highest Pluronics grafting percent, (86.4%) the copolymer showed a slightly higher
gelation temperature compared to the unmodified Pluronics at all concentrations [111].

Combination with Natural Polymers

Hydrogels obtained through a combination of hyaluronic acid with other natural poly-
mers, mainly polysaccharides and proteins, exhibit intrinsic properties of biocompatibility
and biodegradability that are very useful in the biomedical field. Thermosensitive chitosan
gels were first reported by Chenite et al. and can be obtained through cross-linking with
β-sodium glycerophosphate, sol-gel transition occurring at physiological temperature and
pH [112]. The combination of chitosan/β-sodium glycerophosphate gels with polyvinyl
alcohol hydrophobically modified gives rise to hydrogels with enhanced mechanical prop-
erties [113]. The mixing of chitosan and hyaluronic acid followed by crosslinking with
β-sodium glycerophosphate (see Figure 10) has also been employed for the preparation of
injectable hydrogels that can be applied for the release of antitumoral drugs [114].
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Chitosan derivatives such as hydroxypropyl chitin (HPCH) have also been combined
with HA to obtain thermosensitive hydrogels. Hydroxypropyl chitin can form hydrogels
at 37 ◦C at low concentrations (~2 wt%). The mixing of HPCH with hyaluronic acid
gives rise to polymer hydrogels able to stabilize negatively charged compounds for drug
release applications [115]. A similar approach has been used for the development of
thermo-sensitive HA physical hydrogels with anti-adhesion properties as a strategy to
alleviate surgery-related adhesions. To that aim, methylcellulose has been mixed with HA.
Methylcellulose (MC) is a typical temperature-responsive water-soluble polymer that can
gel at 37 ◦C in the presence of salts [116].

It is reported that aqueous solutions of gelatin, a natural polymer obtained from the
partial denaturation of collagen, are able to form physical hydrogels upon cooling below
room temperature [117]. However, the employment of gelatin hydrogels for biomedical
applications is limited since the melting temperature of gelatin hydrogels is ~32 ◦C and
thus, under physiological conditions, gelatin gels are unstable and present poor mechanical
properties. Very recently, an approach based on natural polyelectrolyte complexes coatings
has been developed in order to endow gelatin with dimensional stability at a physiological
temperature [118]. Blends of hyaluronic acid with gelatin give rise to reinforced hydrogels
that can act as biomimetic hydrogels formed by a protein and a polysaccharide being
similar to extracellular matrix structure [119].

A combination of hyaluronic acid with natural polymers can be also achieved by
crosslinking with genipin. Genipin is a naturally derived cross-linking agent with negligi-
ble cytotoxicity that has been extensively used for the formation of hydrogels from natural
polymers, most prominently for the crosslinking of chitosan [120]. Genipin cross-links
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polymers containing primary amine groups. In these regards, injectable hydrogels were
obtained through the combination of collagen, chitosan, and lysine-modified hyaluronic
acid crosslinked with genipin [121]. The mechanical properties of the resulting hydro-
gels were influenced by the degree of modification of the HA and the genipin concen-
tration. The hydrogels were biocompatible and presented antibacterial activity against
Escherichia coli. A similar approach was employed to form gelatin/HA crosslinked hy-
drogels involving genipin as the crosslinker [122]. Researchers also used HA to form
polyelectrolyte complexes (PECs) based on chitosan/alginate/hyaluronic acid or colla-
gen/chitosan/hyaluronic acid under mild conditions. The amine moieties present in
chitosan or collagen were crosslinked [123,124].

4. Conclusions

Research on hyaluronic acid hydrogels for the development of biomedical applications
currently attracts great interest due to the versatility of this biopolymer to be chemically
functionalized to meet the characteristics required for a wide range of biomedical applica-
tions from scaffolds for tissue engineering to matrixes for controlled drug release. Currently,
many of the hyaluronic acid hydrogel formulations, commercialized mostly as injectable
biomaterials, are obtained through reaction conditions that are not compatible with cell cul-
ture which hinders some of their bio-applications. Nowadays, click chemistry constitutes a
powerful toolkit for the development of novel formulations of hyaluronic-based hydrogels
through bioortoghonal reactions that are carried out at physiological pH and tempera-
ture as those reviewed in the current manuscript (Schiff-base formation, thiol chemistry,
azide-alkyne, or Diels–Alder cycloaddition). In addition, the setup of novel strategies to
obtain dynamic covalent hydrogels based on hyaluronic acid, of which the boronic–ester
formation is an example, opens new perspectives for emergent bio-applications. Dynamic
covalent crosslinked hydrogels present injectability, self-healing properties, and stimuli
responsiveness and maintain properties and the stability that characterize covalent systems.
Current trends in the development of hyaluronic acid hydrogels exploit the formation
of dual crosslinked networks having different crosslinking kinetics that allows tuning
their rheological properties for the envisaged application (i.e., tuning gelation time for
shear-thinning and gel formation in 3D printing or mimic of the rheological properties of
complex biological tissues).
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Abbreviations

Abbreviation Name
ADH Adipic acid dihydrazide
ASCs Adipose-derived stem cells
pKa Acid dissociation constant
HA-AA Azide-modified HA
BP BMP-2 mimicking peptide
CEC Carboxyethyl-chitosan
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CPCs Cartilage-derived progenitor cells
CS Chitosan
Dex Dextran
Dexa Dexamethasone
DA Diels-Alder
Dox Doxorubicin
DHCA Dihydrocaffeic acid
DVS Divinyl sulfone
ECM Extracellular matrix
EWG Electron withdrawing group
Fru Fructose
GP Glycerophosphate
GC Glycol Chitosan
GLU Gluconamide
HA Hyaluronic acid
HA-tet HA-tetrazine
HA-TCO HA- trans-cyclooctene
hMSC Human mesenchymal stem cells
BMP-2 Human bone morphogenetic protein 2
HPCH Hydroxypropyl chitin
IEDDA Inverse electron demand Diels-Alder
G“ Loss Modulus
LCST Low critical solution temperature
Mal Maltose
HA-mCOH Mono-aldehyde HA
NIPA N-isopropylacrylamide
CS-OB Oxanorbonadiene-modified CS
OHA Oxidized Hyaluronic acid
PBA Phenylboronic acid
PECs Polyelectrolyte complexes
PEG Polyethylene glycol
PEGDA Polyethylene glycol di-acrylate
PEGDMA Polyethylene glycol di-methacrylate
PEO Poly (ethylene oxide)
PNIPAm Poly (N-isopropylacrylamide)
PPO Poly (propylene oxide)
QbD Quality by design approach
ROS Reactive Oxygen Species
NaOH Sodium hydroxide
NaIO4 sodium periodate
T Temperature
SH Thiol group
3D Three-dimensional
G’ Storage Modulus
SPAAC Strain-promoted azide–alkyne cycloaddition
UV Ultraviolet
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