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Abstract: Colorectal cancer (CRC) is one of the most common tumours in developed countries.
Although its incidence and mortality rates have decreased, its prognosis has not changed, and a high
percentage of patients with CRC develop relapse (metachronous metastasis, MM, or local recurrence,
LR) during their disease. The identification of these patients is very important for their correct
management, but the lack of prognostic markers makes it difficult. Given the connection between
circadian disruption and cancer development and progression, we aimed to analyse the prognostic
significance of core circadian proteins in CRC. We measured the expression of PER1-3, CRY1-2,
BMAL1 and NR1D2 in a cohort of CRC patients by immunohistochemistry (IHC) and analysed
their prognostic potential in this disease. A low expression of PER2 and BMAL1 was significantly
associated with metastasis at the moment of disease diagnosis, whereas a high expression of CRY1
appeared as an independent prognostic factor of MM development. A high expression of NR1D2
appeared as an independent prognostic factor of LR development after disease diagnosis. Moreover,
patients with a low expression of BMAL1 and a high expression of CRY1 showed lower OS and DFS
at five years. Although these markers need to be validated in larger and different ethnic cohorts, the
simplicity of IHC makes these proteins candidates for personalizing CRC treatment.

Keywords: colorectal cancer; core circadian clock; metachronous metastasis; local recurrence; overall
survival; disease free survival

1. Introduction

Colorectal cancer (CRC) is one of the most common tumours in developed countries
and one of the leading causes of death in the world. There are gender differences in the
incidence rates, with CRC being the third most common cancer in men, after lung and
prostate cancer and the second most common in women, after breast cancer [1]. CRC
incidence and mortality rates have decreased over the last two decades due to recent
advances in prevention and detection [2]. However, the prognosis of CRC has currently not
changed, and a high percentage of patients with CRC will have a relapse after treatment [3].
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In fact, more than 50% of patients will develop liver metastases during the course of their
disease (metachronous metastasis, MM), which represent the main cause of morbidity
and mortality [4]. Local recurrence (LR) at the first site of disease, is much less common,
constituting 10% to 20% of all recurrences [5].

A great effort has been done in order to identify patients with unfavourable prognosis
that may benefit from adjuvant therapy. From the classical TNM staging system [6], several
attempts to improve cancer classification have been proposed [7–10]. However, these
methods have mainly focused on ‘omics’ and massive approaches that mask intra-tumour
and inter-patient heterogeneity and involve high costs, avoiding large-scale clinical applica-
tion [11]. Promising strategies centred their attention on the tumour microenvironment [12]
or the central hallmarks of cancer [13], which are present in almost all tumours regardless
of the underlying molecular changes. Cancer cells possess uncontrolled proliferation result-
ing from the aberrant activity of various cell cycle proteins [14]. Since the circadian clock
and the cell cycle systems are robustly phase-coupled in a bidirectional manner [15], the
molecular components of the circadian clock could be considered as prognostic markers.

Circadian rhythms are a class of endogenous biological rhythms with a period of about
24 h [16], synchronized by the suprachiasmatic nucleus (SCN) with the light/dark cycle
of the environment [17]. Other existing peripheral clocks (heart, skin or colon) generate
fluctuations regardless of the SCN, although all are coordinated by it [18,19]. In molecu-
lar terms, circadian rhythms are generated by transcription–translation feedback (TTFL)
loops in which CLOCK and BMAL1 dimers act as transcription factors that modulate the
expression of PER1/2/3, CRY1/2 and other genes. An additional loop formed by ROR and
NR1D1/2 regulates the main cycle [18,20]. In addition, a machinery of post-translational
modifications is involved in the regulation of the correct ticking of the clock, including
phosphorylation, acetylation/deacetylation, SUMOylation or methylation [21].

Many studies have demonstrated the interplay between circadian rhythms dysregu-
lation and the initiation and progression of cancer [22]. In addition, the effectiveness of
treatments in various types of cancer depends on the circadian clock [23]. Therefore, the
integration of circadian biology into cancer research offers new options for the prevention,
diagnosis and treatment of this disease [21,24,25].

Specifically, the connection between circadian disruption and CRC development,
progression, incidence and resistance to treatments has been extensively studied [26–28].
However, these results have not yet been transferred to the clinic, since this relationship
is in some cases controversial [22]. In this context, we aimed to identify the expression
patterns of circadian clock proteins by immunohistochemistry, particularly PER1/2/3,
CRY1/2, BMAL1 and NR1D2 in a cohort of patients with CRC and examine their role in
the progression of the disease and outcome of patients. We found that CRY1 could be a
potential marker of MM, while NR1D2 was associated with LR, which could be translated
to the clinic to improve the management of these patients.

2. Materials and Methods
2.1. Patients and Samples

The study has been approved by the Research Ethic Committee of Granada (Andalusia,
Spain) (PI-0677-2013) and has been carried out in compliance with the guidelines of the
Declaration of Helsinki. All patients gave informed consent to participate in the study. The
tumour tissues were obtained in the surgical intervention of the primary tumour between
9.00 a.m. and 1.00 p.m. and provided by the Andalusian Public Health System Biobank.

The following clinic-pathologic data were collected for each patient: age, gender, general
location (rectal or colonic), specific location (ascending-colon, hepatic flexure, transverse
colon, splenic flexure, descending colon, sigmoid colon and rectum), number of nodes re-
moved/number of nodes with metastasis, date and type of treatment (surgery, chemotherapy
and/or radiotherapy), evaluation of response to treatment (relapse or metastasis) and, finally,
data relative to overall survival (OS) and disease free survival (DFS) were recorded at the end
of the study. Tumour samples were classified according to the degree of differentiation based
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on the criteria of the World Health Organization [29]. The stage was determined according to
the American Joint Committee on Cancer Staging System [30].

Patients were recruited between 2004 and 2014 and followed until November 2018
(maximum 14.2 years). Patients treated with neoadjuvant therapies, diagnosed with hered-
itary cancer or a previous cancer, treated or not, were discarded. Under these excluding
criteria, 258 cases of embedded paraffin tissue samples of colorectal cancer (carcinoma
and adenocarcinoma) and 66 cases of normal colon tissue used as control samples were
considered for the study. Tumour recurrence at nonregional sites, such as liver or lung,
was recorded as metachronous metastasis (MM) and only in stage II and III patients. Local
recurrence (LR) was recorded regardless of the presence of metastatic disease [31]. The
clinicopathological characteristics of tumour samples are described in Table 1.

Table 1. Characteristics of patients included in the study.

Frequency (N) Percentage (%)

Gender
Man 154 59.7

Woman 114 40.3

Age a ≤71 144 55.8
>71 114 44.2

Organ Colon 215 83.3
Recto 43 16.7

Grade of
differentiation

Well differentiated 88 34.0
Moderately differentiated 140 54.3

Poorly differentiated 29 11.7

T stage

T1 4 1.6
T2 29 11.2
T3 183 70.9
T4 42 16.3

N (TNM
classification)

N0 135 52.3
N1 77 29.8
N2 44 17.9

M (TNM
classification)

M0 209 81.0
M1 45 17.4
Mx 4 1.6

Stage

Stage I 26 11.7
Stage II (IIA-IIB) 97 36.0

Stage III (IIIA-IIIB-IIIC) 87 33.7
Stage IV 45 18.6

Metachronous
metastasis

No 170 75.5
Yes 56 25.5

Local recurrence
No 190 75.2
Yes 27 24.8

Radiotherapy No 221 88.4
Yes 29 11.6

Chemotherapy No 101 41.9
Yes 140 58.1

a Age was dichotomized by the median.

2.2. IHC Analysis

Paraffin-embedded tissues were sectioned continuously at a thickness of 3 µm and
heated for 1 h at 60 ◦C. The sections were then deparaffinized using xylene at 37 ◦C for
20 min and rehydrated with a series of graded alcohol and distilled water. The tissue
slides were then treated with 3% hydrogen peroxide in methanol for 20 min at 37 ◦C
to block endogenous peroxidase activity. The sections were subsequently immersed in
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10 mM citrate buffer (pH 6.0), microwaved for antigenic retrieval and allowed to cool
to room temperature. This treatment was followed by incubation with a primary anti-
body, Anti-PER3 (Q-16; 1:50 dilution) and Anti-PER2 (19-J6; 1:50 dilution) by Santa Cruz
Biotechnology (Dallas, TX, USA), Anti-PER1 (ab3443; 1:100 dilution), Anti-CRY1 (ab54649;
1:100 dilution), Anti-CRY2 (ab38872; 1:50 dilution) and Anti- NR1D2 (NR1D2) (ab41940;
1:25 dilution) by Abcam (Cambridge, UK), and Anti-BMAL1 (1C11; 1:50 dilution) by Novus
Biologicals (Centennial, CO, USA) in a humidified container at 4 ◦C. The specific conditions
for each antibody are included in Table S1. The tissue slides were washed three times
with PBS, incubated with the corresponding secondary anti-bodies, either an anti-rabbit
(1:200 dilution) or anti-mouse (1:200 dilution) by Roche (Basel, Switzerland), at 37 ◦C for
30 min, and then thoroughly washed three times with PBS. The sections were developed
with diaminobenzidine tetrahydrochloride (DAB), counterstained with haematoxylin and
mounted with permanent medium (DPX). Negative second-layer controls were included
in each assay, omitting the primary antibody, to rule out false positives due to nonspecific
reactions of the secondary antibody with the tissue. Once the optimal protocol for each
antibody was determined, the immunohistochemical staining was carried out using the
ROCHE “Discovery Ultra Benchmark” automatic immunotec (Basel, Switzerland).

2.3. Evaluation of Staining

The intensity and the percentage of expression for each marker were semi-quantitatively
and independently evaluated by two independent researchers who were blinded to the
patient data. All cases where inter-observer disagreement occurred were discussed to-
gether with a third observer until agreement was reached on the final expression score. The
results were informed according to the percentage of cells stained as: 0 < 5%, 1 = 6–25%,
2 = 26–50%, 3 = 51–75%, 4 > 75% of cells stained. Similarly, the intensity of staining was
scored as: 0 = no staining, 1 = weak, 2: moderate and 3 = strong staining. The two scales
were multiplied to obtain the final immunoreactive (IRS) score scale from 0 to 12, as de-
scribed previously [32,33]. The staining scores of the tissue controls in each microarray
slide were pre-evaluated as a quality control.

2.4. Statistical Analysis

Low and high IRS values for each protein were stablished by receiver operator charac-
teristic (ROC) analysis [34] for DFS at 3 and 5 years after disease diagnosis (Table 2). All
proteins studied showed the same optimal cut point (OCP) value at those times. In some
samples, it was not possible to evaluate all proteins.

To establish the relationship between the proteins studied and the clinicopathological
features of patients, they were dichotomized as follows: T stage (early (T1 + T2) or late
(T3 + T4)), N stage (N0 (no lymph node involvement) or >N0 (any lymph node involve-
ment)), M stage (M0 (no metastasis presence) or M1 (any presence of metastasis)), TNM
stage (early (I + II) or advanced (III + IV)) and survival (death due to CRC or censored (lost
to follow-up, alive or death from other causes)).

Table 2. OCP obtained for the core circadian clock proteins analysed.

OCP Low High

PER1 3 0–3 4–12
PER2 5 0–5 6–12
PER3 1 0–1 2–12
CRY1 3 0–3 4–12
CRY2 2 0–2 3–12

BMAL1 6 0–6 7–12
NR1D2 1 0–1 2–12
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A bivariate analysis was performed using the χ2 and the Fisher’s exact tests. The
Kaplan–Meier method was used to determine the cumulative probability of OS and DFS,
and the differences were evaluated using Log-rank tests. Prognostic factors were evaluated
using multivariate analysis (Logistic regression or Cox proportional hazards regression
model). The tests were carried out with 95% confidence, considering significant those
with a p value below 0.05. All statistical analyses were performed using SPSS software
version 18.0 (SPSS Inc., Chicago, IL, USA) and according to REMARK criteria [35]. The
mosaic plots were done using Orange software version 3.29.3 [36]. The Mosaic plot is used
for visualizing data from two or more qualitative variables. It provides the user with the
means to recognize relationships between different variables more efficiently [37,38].

3. Results
3.1. Expression of Core Circadian Clock Proteins in Tissues from Healty Subjects and CRC Patients

We analysed the expression of PER1/2/3, CRY1/2, BMAL1 and NR1D2 in normal
colonic tissues from control donors and in CRC samples obtained from patients by IHC
(Figure 1).

As shown in Table 3, all clock-related proteins were significantly more expressed in
normal mucosa than in tumour tissues, except for BMAL1.
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Figure 1. IHC staining of PER1 (a–c), PER2 (d–f), PER3 (g–i), CRY1 (j–l) CRY2 (m–o), BMAL1 (p–r) and NR1D2 (s–u) in
normal colonic mucosa (a,d,g,j,m,p,s) and primary tumours of CRC with high (b,e,h,k,n,q,t) and low (c,f,i,l,o,r,u) staining.
Magnification: 200×.

Table 3. Expression of circadian clock-related proteins in normal and tumour colorectal samples.

Normal a

(N = 66)
Tumour a

(N = 258) p

PER1 8.0 (7.0–10.0) 3.0 (2.0–4.0) <0.001
PER2 12.0 (12.0–12.0) 5.3 (4.0–7.9) <0.001
PER3 4.5 (3.4–7.0) 0.0 (0.0–0.0) <0.001
CRY1 8.0 (6.0–8.0) 4.0 (2.0–5.0) <0.001
CRY2 9.0 (8.0–11.0) 5.3 (4.0–7.5) <0.001

BMAL1 8.0 (5.0–12.0) 8.0 (6.7–10.7) 0.663
NR1D2 6.0 (4.0–8.0) 0.3 (0.0–2.0) <0.001

a Data are represented as median ± interquartile range.

3.2. Association of the Core Circadian Clock Proteins with Clinico-Pathological Characteristics of
CRC Patients

Low and high IRS values for each protein were stablished trough OCP data obtained as
described in the Materials and Methods section, and were used to analyse the relationship
between their expression and the clinicopathological characteristics of the patients with
CRC included in the study. As shown in Tables 4 and 5, men presented a higher expression
of PER2 (p = 0.016) than women. Interestingly, well differentiated tumours correlated
significantly with a high expression of PER2 (p = 0.009), which gradually decreased with
the differentiated state of tumours. The propagation (metastasis) to distant sites (M) at the
moment of the disease diagnosis appeared in tumours with low levels of BMAL1 (p = 0.004)
and PER2 (p = 0.037). Tumour progression (TNM stage) correlated with PER1 (p = 0.020),
and early-stage tumours (stage I + stage II) showed a higher expression of such proteins
than those of advanced stage (stage III + stage IV).
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Table 4. Relationship between expression levels of circadian proteins and clinicopathologic features of the individuals
included in the study.

PER1 PER2 PER3

Low High p a Low High p a Low High p a

Age ≤71 63 (44.1) 80 (55.8) ns 59 (41.1) 84 (58.9) ns 132 (91.8) 12 (8.2) ns
>71 46 (40.0) 69 (60.0) 43 (38.7) 72 (61.3) 108 (93.3) 7 (6.7)

Gender
Men 61 (39.2) 95 (60.8) ns 52 (33.1) 103 (66.9) 0.016 142 (91.3) 14 (8.7) ns

Women 48 (46.7) 54 (53.3) 50 (48.1) 53 (50.9) 98 (94.4) 6 (5.6)

GD b
WD 41 (36.4) 47 (63.6) ns 23 (27.3) 64 (62.7) 0.005 80 (90.9) 8 (9.1) ns
MD 56 (34.3) 84 (65.7) 62 (45.1) 78 (54.9) 131 (91.5) 10 (8.5)
PD 11 (42.9) 17 (57.1) 16 (53.3) 13 (47.7) 27 (86.2) 2 (13.8)

T Stage T1-T2 11 (45.5) 22 (54.5) ns 11 (36.4) 22 (63.6) ns 32 (97.0) 1 (3.0) ns
T3-T4 97 (63.4) 126 (36.6) 90 (54.9) 134 (45.1) 207 (88.5) 19 (11.5)

N Stage N0 50 (31.1) 85 (68.9) ns 48 (34.4) 88 (65.6) ns 125 (91.9) 11 (8.1) ns
N1-N2 58 (43.4) 63 (56.6) 53 (44.9) 68 (55.1) 110 (89.4) 13 (10.6)

M Stage M0 81 (39.3) 125 (60.7) ns 77 (35.3) 132 (64.7) 0.040 193 (91.5) 17 (9.5) ns
M1 24 (57.4) 22 (42.6) 24 (52.2) 21 (47.8) 42 (93.5) 3 (6.5)

TNM
I-II 42 (34.4) 81 (65.6) 0.015 43 (34.7) 81 (85.3) ns 115 (92.7) 10 (7.3) ns

III-IV 65 (48.9) 67 (51.1) 57 (43.8) 73 (56.2) 121 (96.3) 10 (3.7)
a χ2 or Fisher’s exact tests; b Grade of differentiation. WD: well differentiated, MD: moderately differentiated, PD: poorly differentiated.
ns: non significant.

Table 5. Relationship between expression levels of circadian proteins CRY1-2, BMAL1 and NR1D2 and clinicopathologic
features of the individuals included in the study.

CRY1 CRY2 BMAL1 NR1D2

Low High p a Low High p a Low High p a Low High p a

Age ≤71 44 (30.8) 100 (69.2) ns 11 (7.5) 133 (92.5) ns 30 (21.4) 113 (78.6) ns 86 (60.3) 57 (39.7) ns
>71 28 (26.1) 87 (73.9) 5 (5.0) 111 (95.0) 17 (12.4) 97 (88.6) 63 (53.3) 53 (47.7)

Gender
Men 40 (32.2) 116 (76.8) ns 6 (3.8) 150 (96.3) ns 23 (18.3) 130 (87.1) ns 88 (84.5) 67 (15.5) ns

Women 32 (30.1) 71 (69.9) 10 (10.3) 94 (89.7) 24 (29.1) 80 (70.9) 61 (81.6) 43 (18.4)

GD b
WD 25 (37.5) 63 (62.5) ns 3 (12.5) 85 (87.5) ns 15 (46.5) 71 (53.5) ns 44 (52.3) 44 (47.7) ns
MD 37 (40.0) 103 (60.0) 11 (16.3) 130 (83.7) 23 (51.1) 118 (48.9) 87 (63.8) 54 (36.2)
PD 11 (48.3) 18 (51.7) 2 (6.9) 27 (93.1) 8 (82.1) 20 (17.9) 17 (67.9) 11 (32.1)

T
Stage

T1-T2 11 (54.5) 22 (45.5) ns 1 (9.1) 32 (90.9) ns 3 (12.1) 30 (87.9) ns 17 (42.4) 18 (57.6) ns
T3-T4 61 (75.1) 164 (24.9) 15 (14.6) 211 (85.4) 43 (25.6) 180 (74.4) 131 (50.7) 94 (49.3)

N
Stage

N0 127 (36.3) 10 (63.7) ns 5 (3.3) 131 (96.7) ns 20 (13.3) 115 (86.7) ns 80 (61.0) 57 (39.0) ns
N1-N2 112 (45.5) 10 (54.5) 11 (6.9) 112 (93.1) 26 (16.9) 95 (83.1) 68 (57.4) 53 (42.6)

M
Stage

M0 60(35.6) 149 (64.4) ns 14 (6.2) 196 (93.8) ns 31 (15.1) 176 (85.9) 0.005 121 (58.2) 87 (41.8) ns
M1 11 (47.8) 34 (52.2) 2 (4.1) 43 (95.9) 15 (30.4) 30 (69.6) 26 (56.5) 20 (43.5)

TNM
I-II 33 (26.6) 91 (63.4) ns 4 (3.2) 120 (96.8) ns 17 (13.8) 106 (86.2) ns 74 (59.7) 50 (40.3) ns

III-IV 38 (29.0) 93 (71.0) 12 (9.1) 121 (90.9) 29 (22.3) 101 (77.7) 73 (55.7) 58 (44.3)
a χ2 or Fisher’s exact tests; b Grade of differentiation. WD: well differentiated, MD: moderately differentiated, PD: poorly differentiated.
ns: non significant.

3.3. CRY1 as a Prognostic Factor of MM in CRC

A very important issue in the management of patients with CRC is the possibility of the
development of MM after disease diagnosis. Therefore, we have analysed the relationship
of the core circadian clock proteins expression with this variable. The appearance of MM
correlated significantly with a high expression of CRY1 in all cases (p = 0.003), when it
appears at 3 years after disease diagnosis (p = 0.017) and also if it appears at 5 years after
disease diagnosis (p = 0.008) (Table 6). None of the other proteins analysed were related to
the appearance of MM (Table S2).
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Table 6. Relationship between expression levels of circadian proteins and development of MM after
disease diagnosis of individuals included in the study.

CRY1

Low High p a

All patients No 52 (33.3) 104 (66.7) 0.003
Yes 4 (9.8) 37 (90.2)

3 years after disease diagnosis No 51 (31.3) 112 (68.7) 0.017
Yes 3 (10.0) 27 (90.0)

5 years after disease diagnosis No 49 (32.9) 100 (67.1) 0.008
Yes 4 (10.8) 33 (89.2)

a χ2 or Fisher’s exact tests.

The logistic regression analysis showed CRY1 and adjuvant therapy as independent
prognostic factors for MM development after 3 and 5 years of disease diagnosis (Table 7).

Table 7. Results of logistic regression for metastasis development within 3 and 5 years after dis-
ease diagnosis.

3 Years after Disease Diagnosis

Independent Variables OR a [95% CI b] p Value

Intercept < 0.0001
Age (>71 vs ≤71) 1.12 [0.44, 2.90] 0.811

Gender (man vs. woman) 2.013 [0.78, 5.19] 0.148
T stage (T3 + T4 vs. T1 + T2) 1.69 [0.34, 8.34] 0.520
N stage (N1 + N2 N0 vs) 1.14 [0.49, 2.80] 0.780

Adjuvant Therapy (Yes vs. No) 4.30 [1.29, 14.29] 0.017
CRY1 (High vs. Low) 3.81 [1.07, 13.57] 0.039

5 years after disease diagnosis

Independent variables OR [95% CI] pvalue

Intercept <0.0001
Age (>71 vs ≤71) 1.37 [0.57, 3.27] 0.479

Gender (man vs. woman) 1.43 [0.63, 3.26] 0.395
T stage (T3 + T4 vs. T1 + T2) 0.97 [0.28, 3.39] 0.965
N stage (N1 + N2 N0 vs) 1.19 [0.51, 2.80] 0.683

Adjuvant Therapy (Yes vs. No) 3.72 [1.31, 10.60] 0.014
CRY1 (High vs. Low) 3.87 [1.26, 11.88] 0.018

a Odd Ratio; b Confidence Intervals.

In addition, mosaic plots confirm an increase in the number of patients developing
MM at 3 and 5 years when they received therapy (radiotherapy and/or chemotherapy)
and had high CRY1 expression in tumours (Figure 2).
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Figure 2. Mosaic plots showing the number of patients who have developed MM at 3 (a) and 5 (b) years after the diagnosis
of CRC.

3.4. Proteins of the Core Circadian Clock as Prognostic Factors of LR in CRC

Although LR after disease diagnosis is less frequent in CCR than MM, it is also very
important to know the possibility of its development to apply personalized medicine in
these patients. The appearance of LR correlated significantly with a high expression of
NR1D2 in all cases (p = 0.031), when it appears at 3 years after disease diagnosis (p = 0.015)
and also at 5 years after disease diagnosis (p = 0.042) (Table 8). None of the other proteins
analysed were related to the appearance of LR (Table S3).

Table 8. Relationship between expression levels of circadian proteins and development of LR after
disease diagnosis of patients included in the study.

NR1D2

Low High p a

All patients No 115 (60.8) 74 (39.2) 0.031
Yes 11 (39.3) 17 (60.7)

3 years after disease diagnosis No 117 (60.9) 75 (39.1) 0.015
Yes 7 (33.3) 14 (66.7)

5 years after disease diagnosis No 107 (61.5) 67 (38.5) 0.042
Yes 11 (40.7) 16 (59.3)

a χ2 or Fisher’s exact tests.

Logistic regression analysis showed NR1D2 as an independent prognostic factor for
LR after 3 and 5 years of disease diagnosis (Table 9).

Table 9. Results of logistic regression for LR within 3 and 5 years after disease diagnosis.

3 Years after Disease Diagnosis

Independent Variables OR a [95% CI b] p

Intercept <0.001
Age (>71 vs ≤71) 1.48 [0.48, 4.59] 0.500

Gender (man vs. woman) 1.64 [0.58, 4.60] 0.349
T stage (3 + 4 vs. 1 + 2) 3.21 [0.38, 27.42] 0.286
N stage (1 + 2 vs. 0) 1.29 [0.45, 3.71] 0.632

Adjuvant Therapy (Yes vs. No) 3.59 [0.85, 15.01] 0.081
NR1D2 (High vs. Low) 3.04 [1.13, 8.15] 0.021
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Table 9. Conts.

5 years after disease diagnosis

Independent variables OR [95% CI] p

Intercept <0.005
Age (>71 vs ≤ 71) 1.44 [0.52, 3.98] 0.477

Gender (man vs. woman) 1.12 [0.47, 2.69] 0.794
T stage (3 + 4 vs. 1 + 2) 4.16 [0.50, 34.36] 0.186
N stage (1 + 2 vs. 0) 1.01 [0.39, 2.64] 0.980

Adjuvant Therapy (Yes vs. No) 2.48 [0.45, 8.27] 0.139
NR1D2 (High vs. Low) 2.45 [1.03, 5.85] 0.044

a Odd Ratio; b Confidence Intervals.

3.5. Proteins of the Core Circadian Clock as Prognostic Factors of Survival in CRC

We compared the effect of circadian core proteins’ expression on 5-year overall survival
(OS) and disease-free survival (DFS) in our cohort of CRC patients. As shown in Figure 3,
high PER2 and BMAL1 expression was associated with a significantly better OS (χ2 = 5.888,
p = 0.015 and χ2 = 8.875, p = 0.003, respectively) and DFS (χ2 = 9.051, p = 0.016 and
χ2 = 9.051, p = 0.003, respectively) (Figure 3a,b,d,e). On the contrary, high CRY1 expression
was associated with a significantly worse OS and DFS in our cohort of patients (χ2 = 8.820,
p = 0.003 and χ2 = 9.551, p = 0.002, respectively) (Figure 3c,f).

Further, the multivariate Cox regression for survival analysis showed CRY1 and
BMAL1 expression as independent prognostic factors for OS and DFS in patients with CRC
(Table 10).
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Table 10. Multivariate Cox regression analysis of CRY1 and BMAL1 expression and clinicopathologic
variables predicting survival in our cohort of CRC.

OS DFS

Independent Variable HR [95% CI] p a HR [95% CI] p a

Age (>71 vs ≤71) 1.023 [0.99, 1.06] 0.174 1.019 [0.99, 1,05] 0.248
Gender (man vs. woman) 1.93 [1.02, 3.67] 0.044 1.793 [0.95, 3.93] 0.073

TNM stage (III + IV vs. I + II) 2.35 [1.09, 5.07] 0.029 2.30 [1.07, 4.97] 0.033
Adjuvant Therapy (Yes vs. No) 2.42 [0.94, 6.17] 0.066 2.56 [1.00, 6.58] 0.050

CRY1 (High vs. Low) 3.15 [1.15, 6.45] 0.023 2.90 [1.22, 6.85] 0.015
BMAL1 (High vs. Low) 0.52 [0.20, 0.97] 0.039 0.54 [0.26, 0.99] 0.048

a Multivariate Cox regression analysis including age, gender, TNM stage, adjuvant therapy, CRY1 and BMAL1
proteins expression status.

4. Discussion

One of the most challenging problems in oncology is the decision-making process in
relation to the treatment of the patients, as the survival outcomes vary even in patients with
similar clinical or pathologic features. A very important factor determining survival in CRC
is the development of MM during the 3–5 years after disease diagnosis, that can affect as
much as one half of patients. In this sense, the discovery of new prognostic biomarkers may
enable personalized cancer therapies. In this study, we found that low expressions of PER2
and BMAL1 were significantly associated with the presence of metastasis at the moment
of disease diagnosis, whereas a high expression of CRY1 was significantly associated with
the development of MM after 3 and 5 years of disease diagnosis. More importantly, CRY1
appeared as an independent prognostic factor of MM development, having received adjuvant
therapy (chemo and/or radiotherapy) in CRC patients. Although LR is less important in CRC,
we found that a high expression NR1D2 appeared as an independent prognostic factor of LR
development after disease diagnosis. Moreover, patients with a low expression of BMAL1
and a high expression of CRY1 showed lower OS and DFS at five years, and these proteins
are independent prognostic factors for survival in our cohort of patients.

In our study cohort, we found a significant underexpression of PER1/2/3, CRY1/2
and NR1D1 proteins in CRC versus normal tissue, indicating an important role of these
genes in colorectal carcinogenesis. This aspect has been extensively reported in a wide
range of cancers, including CRC [22,39–41]. Polymorphic variants of these circadian genes
might contribute to an individual’s risk of developing cancer [42–46]. The interactions
between colon cancer cells and tumour-associated fibroblasts can also be responsible for
the molecular clockwork disruption, which enhances malignant phenotypes on cancer
cells [47]. Other findings showed a feed-back loop between the circadian clock and epige-
netic machinery in cancer [25,48,49].

Like other core circadian clock proteins, there are discrepancies in the literature
regarding the expression of CRY1 in tumour tissue versus normal mucosa. Previous studies
have shown a decrease in CRY1 in tumours compared to normal mucosa [41], which would
agree with our results. However, other authors have found the opposite [50]. It is very
important to note that the expression of CRY1 changes throughout the colonic tract [41,48]
and is also related to gender [49]. Therefore, the expression of CRY1 is conditioned by these
two aspects and would explain the differences found between reports.

Paradoxically, we found that patients with a higher expression of CRY1 in their
tumours showed lower OS and DFS, probably because these patients also showed an
increased risk of developing MM at 3 and 5 years after diagnosis of the disease, which could
be used as an advantage for the management of these patients. Cry1 mRNA overexpression
has been previously associated with poor OS in CRC [50,51], mainly in elderly subjects,
female patients and cancers located at the transverse colon [51]. At the molecular level,
mutations of the Cry1 gene in mice cause a low expression of CRY1 protein and the down-
regulation of c-MYC [52], which is essential for colorectal tumourigenesis [53]. Other
studies evidenced that CRY1 modulates the ATR-mediated DNA damage repair, increasing
the survival of cells [54].
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LR has been classically associated with viable tumour cells that remain in situ after
tumour resection. This may be due to a poor operative technique or to a more aggressive
biology of tumours where viable cells have escaped the limits of resectability [31,55]. More
recently, tumour factors such as locally aggressive disease, obstruction or multiple positive
lymph nodes have been related with high rates of LR, rather than the adherence to oncologic
surgical principles in colon cancer resection [31]. We identified a high expression of NR1D2
in the tumour as an independent prognostic factor for LR development. Similarly to CRY1,
although the expression of NR1D2 was reduced in tumour tissue compared to normal
mucosa, patients with a higher expression of this protein also had an increased risk of
developing LR. NR1D2 is a variant of NR1D1 and both proteins have described redundant
functions in regulating circadian rhythm, metabolism and inflammatory response [25].
However, whereas NR1D2 is the major variant in various human cancer cells, NR1D1 is
more abundant in normal tissues [56]. NR1D2 regulates glioblastoma cell proliferation and
motility [57] and accelerates hepatocellular carcinoma progression by driving the epithelial-
to-mesenchymal transition [58]. Recently, it has also been implicated in the mechanisms of
treatment resistance in prostate cancer [59].

It is interesting that in our study patients who have received treatment (chemo and/or
radiotherapy) have a higher risk of developing MM than those patients who have not
received it. Resistance to anticancer drugs may occur prior to treatment, involving pre-
existing resistance factors in tumour cells, or it may be acquired during the treatment of
tumours due to the induction of adaptive responses. In addition, due to the high degree of
tumour heterogeneity, drug resistance may also result from the therapy-induced selection of
a drug-resistant tumour subpopulation, such as cancer stem cells (CSCs) [60]. Indeed, this
tumour subpopulation is responsible for tumour initiation and development, metastasis,
and the mentioned resistance to antitumour treatment [61,62]. Cellular plasticity and
the microenvironment, among other factors, seem to protect CSCs, thus compromising
therapeutic efficacy [61].

Taken together, we found that a low expression of BMAL1 and a high expression of
CRY1 are markers of survival in CRC. Furthermore, CRY1 and NR1D2 overexpression can
be used as biomarkers for MM and LR, respectively, in this disease. Although these markers
need to be validated in larger and different ethnic cohorts and prospective studies are
warranted before using them in the clinic, the simplicity of immunostaining and assessment
by IRS makes these proteins interesting candidates for personalizing CRC treatment.

Supplementary Materials: https://www.mdpi.com/article/10.3390/biomedicines9080967/s1,
Table S1: IHC staining conditions for each core circadian protein analysed, Table S2: Relation-
ship between expression levels of circadian proteins and development of MM after disease diagnosis
of individuals included in the study, Table S3: Relationship between expression levels of circadian
proteins and development of LR after disease diagnosis of patients included in the study.
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