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Abstract: Nucleic acids, including DNA and RNA, have received prodigious attention as potential
biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and
instability in body fluids, precise and sensitive detection is highly important. Taking advantage
of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy
transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for
accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent
strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors
for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are
also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review
will provide valuable information for the sensitive detection of nucleic acids and early diagnosis
of cancers.

Keywords: fluorescence resonance energy transfer; metal-enhanced fluorescence; nucleic acid; can-
cer; nanoparticle

1. Introduction

Cancer is one of the dominant and highly influential diseases in human life. Even
though the five-year survival rates have gradually increased, the death rate is still above
0.1%, and the cancer incidence is approximately 0.4% [1,2]. In addition, cancer has become
more frequent due to the increasing lifespan. For effective treatment, and to increase
the cure rate of cancers, it is crucial to diagnose the exact types and stages precisely and
sensitively. For example, some anticancer drugs are effective only against a certain type of
cancer [3]. However, early diagnosis of cancers makes a recovery easier than late diagnosis
due to the severe progression and metastasis of cancers [4,5]. Therefore, it is essential to
develop a precise and sensitive diagnostic strategy that can detect and identify cancer
tissue at the early stage and analyze its characteristics for the appropriate therapy.

As cancer develops, several biological changes, such as cellular levels of DNA, RNA,
protein, and other small molecules, occur in body fluids [6–9]. Thus, quantitation of these
molecules can be used as an essential parameter for cancer diagnosis. Among them, nucleic
acids have been used as potential biomarkers due to their differential levels between cancer
patients and healthy individuals [10,11]. Compared with other biomarkers, nucleic acids
have the benefit and potential of serving as relatively stable biomarkers in body fluids for
cancer diagnosis. However, nucleic acids have some limitations as potential biomarkers. A
major challenge of using them is the low concentration of target sequences in the presence
of high noise factors, such as non-target biomolecules and serum [12–15]. Therefore, several
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precise and sensitive detection methods have been developed to overcome these conditions.
Among these detection methods, a fluorescent signal is an excellent and widely used
technique for recognizing nucleic acids [16–19].

The fluorescence-based analytical methods provide precise, sensitive, and repro-
ducible quantification of cancer-related biomarkers as well as nucleic acids. In addition,
changes in the fluorescent signals by the biological event, such as DNA hybridization, can
be easily observed. Based on these advantages, fluorescence-based detection methods have
been widely utilized in typical biological experiments, including immunostaining and
polymerase chain reaction (PCR). Over the past decades, fluorescence-based systems have
been improved by integrating several nanomaterials, which translate the recognition of the
interaction into the changes in fluorescence wavelength and intensity, such as fluorescence
resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF) effects, making
these systems excellent platforms for nucleic acid–sensing for cancer diagnosis [19–23]. In
this review, we describe the current state-of-the-art developments in nanomaterial-based
fluorescent biosensors, with a focus on FRET and MEF, for quantification of diverse nucleic
acids, including DNA and RNA, to diagnose cancers precisely and sensitively. We believe
that the topics described and discussed in this review can provide practical information and
a brief insight into the current status and prospect of developing a nanotechnology-based
fluorescent nucleic acid–sensing system for biomedical applications.

2. Nucleic Acid Targets
2.1. Genomic DNA (gDNA)

gDNA refers to the cellular DNA component that houses the biological information
of the cell and can be passed on to the next generation. The genomic analysis provides
information about the structural and molecular changes in DNA as well as the changes
in gene expression. Analysis of the epigenetic changes in DNA can help identify new
drug targets for cancer diagnosis and treatment [24]. Among the reported drug targets,
5-hydroxymethylcytosine (5-hmc) is downregulated in several types of cancer cells. This
observation indicates that changes in the cellular level of 5-hmC can be used for cancer diag-
nosis. Therefore, high-performance liquid chromatography (HPLC) [25], fluorescence [26],
electrochemistry [27,28], and electrochemiluminescence (ECL) [29] methods have been
developed for cancer diagnosis.

2.2. Other DNAs

Cell-free DNA (cfDNA) refers to any DNA outside a cell. DNA methylation is an
important epigenetic modification strongly implicated in the physiological regulation of
gene expression. The DNA methylation patterns in cancer tissues differ from those in
healthy tissues, irrespective of the tissue origin of cancer cells. This difference enables
distinguishing cancer tissues from healthy tissues. In addition, DNA methylation patterns
can be utilized for early cancer diagnosis, cancer-specific genetic testing, and cancer treat-
ment [30–32]. The cfDNA in the bloodstream is in part caused by tumor-specific mutations,
and this cfDNA sub-population is called circulating tumor DNA (ctDNA). Because ctDNA
is present in the bloodstream, it is a potentially important biomarker for the early detection
of cancer. However, the concentration of ctDNA in the bloodstream of a cancer patient is
incredibly low, hampering a quick and accurate diagnosis of cancer. Therefore, studies on
fast-responsive and ultrasensitive biosensors have been undertaken [33,34].

2.3. Messenger RNA (mRNA)

mRNA is a single-stranded molecule of RNA that is complementary to the genetic
sequence of a gene and has been commonly used as a biomarker for early detection and
treatment of cancer due to its humoral stability and biological regulatory function. It is
usually quantitatively detected using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR) [35–37]. Although qRT-PCR is a very sensitive method, it is time-
consuming and requires heavy instruments for the associated thermocycling reactions.



Biomedicines 2021, 9, 928 3 of 19

Therefore, isothermal gene amplification [36,38], ECL [39], fluorescence [40,41], electro-
chemistry [42,43], and surface plasmon resonance (SPR) [44] have been developed as an
alternative to PCR for mRNA detection.

2.4. Non-Coding RNA (ncRNA)

An ncRNA is a functional RNA molecule that is not translated into a protein. These
RNAs can be classified as small RNAs (sRNAs) (19–31 nucleotides) or long ncRNAs (>200
nucleotides) [45]. MicroRNAs (miRNAs) of the sRNA families are known to be directly
involved in gene expression. The expression of various miRNAs is dysregulated in hu-
man cancers through a variety of mechanisms [46,47]. Among such miRNAs, miRNA-21
is upregulated in colorectal cancer and induces cellular invasion, apoptosis, and drug
resistance [48]. In addition, miRNA-203 has been observed to promote the carcinogenic
transformation of cells and cancer cell proliferation. This miRNA is upregulated in breast
cancer [49], whereas miRNA-330 is downregulated in prostate cancer and lung cancer
cells [50]. Various miRNA detection platforms based on fluorescence [51], electrochem-
istry [52], ECL [53], or SPR [54] have been developed.

3. FRET-Based Nucleic Acid Biosensors for Cancer Diagnosis
3.1. FRET

FRET is a distance-dependent energy transfer process between two fluorophores,
one of which acts as an energy donor fluorophore and the other as an acceptor. Thus,
FRET can be used to measure the nanoscale distance between two interacting biomolecules
(Figure 1a) [55–58]. The proximity between the donor and acceptor should be <10 nm,
and for such a single fluorophore pair, the efficiency of FRET is inversely proportional
to the sixth power of the distance between the donor and acceptor, so FRET changes the
distance between donor and acceptor. This highly sensitive technique has been widely
used as a powerful tool to study the intermolecular distance between fluorophores and
molecular conformational changes [59–61]. Based on this principle, FRET is used for the
detection and quantification of nucleic acids and proteins extracted from blood. However,
because the concentrations of nucleic acids, including RNA and DNA, in the blood of cancer
patients are extremely low, an ultrasensitive and accurate detection method is required.
The integration of nanomaterials for ultrasensitivity and high specificity has improved
FRET performance in the detection of DNA and RNA molecules. There are many studies
on FRET-based nanobiosensors for nucleic acid detection (Table 1).
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Figure 1. The simple mechanism of the (a) FRET and (b) MEF phenomena. FRET is induced when the distance between 
donor and acceptor is <10 nm. In the case of MEF, metal NPs can enhance the fluorescence intensity of fluorophore when 
the distance is around 7~8 nm. 
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Figure 1. The simple mechanism of the (a) FRET and (b) MEF phenomena. FRET is induced when the distance between
donor and acceptor is <10 nm. In the case of MEF, metal NPs can enhance the fluorescence intensity of fluorophore when
the distance is around 7~8 nm.

Table 1. Comparison of FRET-based nanobiosensors for nucleic acid detection.

Feature Donor/Acceptor Wavelengths
(Ex,Em) Target Required

Time
Detection

Limit Ref

FAM-labeled DNA probe
adsorption on AuNPs via

thiol-modified probes; When
hybridizing with target DNA,

fluorescence occurrence due to
reduced interaction and increased

distance.

AuNPs/FAM-
labeled DNA

probe

Ex: 545 nm
Em: 580 nm

methylated
DNA >2 h 2.2 pM [62]

Aggregation-induced release (AIE)
molecules and cDNA adsorption on

GO via π-π stacking; Increased
distance by reduced interaction

when hybridizing with target DNA
eliminates quenching effect

GO/AIE
labeled DNA

probe

Ex: 370 nm
Em: 465 nm DNA 3 min 3.1 pM [63]

FAM-labeled DNA adsorption on
GO via π-π stacking; FAM-labeled

ssDNA desorption and fluorescence
recovery from GO through addition

of target DNA

GO/FAM-
labeled DNA

probe

Ex: 488 nm
Em: 520 nm

Exon 10
(EGFR gene) 10 min 35 fmol/µL [64]

FAM-labeled DNA adsorption on
Ti3C2 NSs via π-π stacking;

Detection of PCR-amplified HPV-18
DNA from cervical scrape samples

Ti3C2
NSs/FAM-

DNA
probe

Ex: 495 nm
Em: 520 nm HPV-18 5 min 100 pM [65]
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Table 1. Cont.

Feature Donor/Acceptor Wavelengths
(Ex,Em) Target Required

Time
Detection

Limit Ref

Target DNA detection by Rho 110
and 6G-PMMA using a smartphone

RGB camera using a two-color
fluorescence microscope; Prevention

dye self-quenching of polymer
nanoparticles encapsulating green

fluorescent donor (Rho 110 and 6G)
and hydrophobic counterions

(ATTO647N) as acceptors

Rho 110/6G-
PMMA/

ATTO647N

Ex: 488 nm
Em: 662 nm DNA 3 h 10 fM [66]

Covalent binding of
TAMRA-labeled MUC1 aptamer

and TAMRA-labeled miR-21 to the
surface of chimeric

DNA-functionalized Ti3C2; Red and
green fluorescence recovery by
nanoprobe and target MUC1,

miR-21 hybridization.

Functionalized
Ti3C2/TAMRA-

miR-21,
TAMRA-MUC1

Ex: 488 nm
Em: 525 nm

miR-21
MUC1 2 h 0.8 nM [67]

Isolation and green fluorescence
recovery of dye-labeled ssDNA on

the surface of MoS2 nanosheets due
to hybridization between the probe

and the target miR.

MoS2/FAM-
miR 21
probe

Ex: 488 nm
Em: 520 nm miR-21 > 2 h 10–50 nM [68]

Detection of UV-vis and gel
electrophoresis from 1-aptamers

attached to the probe surface using
high surface area MOFs.

La (III)
MOFs/AgNPs

Ex: 220 nm
Em: 430 nm miR-155 45 min 5.5 fM [69]

FAM-labeled DNA adsorption on
GO via π-π stacking; Collection and
detection of DNA-miR complexes

after the target miRNA
hybridization with the probe and

detaches from the reaction channel.

GO/FAM-
labeled DNA

probes

Ex: 488 nm
Em: 520 nm

miR-125,
miR-126,
miR-191,
miR-155,
miR-21,

35 min 0.146 aM [70]

3.2. FRET-Based Biosensors for Detection of DNA Targets

DNA detection at single-molecule sensitivity is the ultimate goal in biosensing and
cancer diagnosis. Among the many techniques proposed for DNA detection, nanotech-
nology has shown great potential. Two dimensional (2D) nanomaterials with outstand-
ing electronic and optical properties, such as broad absorbance, large surface area, and
easily functionalized surface sites, can be utilized as acceptors or quenchers in FRET
sensors [62,71,72]. To date, various nanomaterials, such as Au nanoparticles (NPs) [62],
MoS2 [73], graphene oxide (GO) [63,64], and MXenes [66], have been developed for the
fluorescence detection of DNA for cancer diagnoses. Eftekhari-Sis et al. developed a
nanobiosensor based on graphene oxide (GO) and 5-carboxy fluorescein (FAM)-labeled
DNA for the detection of a deletion mutation in exon 19 of the EGFR gene (Figure 2a) [65].
This system can detect a target DNA in a small amount of sample solution in 10 min with a
very low detection limit of 25 fmol/µL. Dhenadhayalan et al. reported an ultrasensitive
system based on molybdenum series (MoO3, MoS2, and MoSe2) of 2D nanosheets (NSs)
for the detection of a prostate-specific antigen (PSA) as a diagnostic biomarker of prostate
cancer [63]. The detection was achieved with 13 pM of MoO3 NSs, whereas MoS2 and
MoSe2 NSs showed detection limits of 72 and 157 pM, respectively, among which the MoO3
sensor system showed a fast fluorescence response within 2 min. Severi et al. developed
a FRET-based DNA nanoprobe for detecting DNA by using a smartphone camera [66].
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The green-emitting NPs are based on rhodamine 110, and the 6G dye is paired with a
massive hydrophobic counterion, which is a DNA cancer marker targeting polymer NPs
functionalized with red-emitting oligonucleotides and the FRET receptor ATTO647N (sur-
vivin) (Figure 2b,c). Using a smartphone, survivin detection can easily detect nanoprobe
responses at the 10 pM detection limits.
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mutation in exon 19 of the EFGR gene on a graphene oxide surface [68]. (b) Schematic diagram of the FRET-based RGB
detection of DNA as a cancer biomarker by using a smartphone. This figure is reproduced from [64] (© 2016 Elsevier B.V.);
Green emission from the nanoprobe (NP) surface transfers some of the excitation energy to the FRET receptor on the NP
surface and, thereby, causes the NP to fluoresce in yellow–orange. (c) Smartphone-based data analysis. Green and red RGB
images are taken, and intensity ratios between the channels are evaluated. This figure is reproduced from [66] (© 2020
Elsevier B.V.).

3.3. FRET-Based Biosensors for Detection of RNA Targets

To realize low-level RNA detection in early cancer diagnosis and biological research,
ultrasensitive, highly accurate, and fast RNA detection platforms have been developed.
Among them, the use of a nanomaterial as a fluorescence quencher that effectively quenches
the fluorescence of a fluorophore-conjugated probe via FRET is a widely used strategy.
This technique offers advantages due to its large surface area and unique optical properties.
Wang et al. reported the use of Ti3C2 nanosheets, a representative MXene, as biosensors
for miRNA-21 detection [67]. Poly (acrylic acid) (PAA) decoration not only stabilized and
increased the dispersion of the Ti3C2 nanosheets but also increased the number of covalent
bonding sites for the subsequent surface DFNA functionalization. The detection limit
of this strategy is 0.8 nM. Oudeng et al. developed Folic acid (FA)-functionalized MoS2
nanosheets immobilized with a fluorescently labeled single-stranded DNA probe (ssDNA–
MoS2–PEG–FA) to detect miRNA-21, which is highly expressed in lung and pancreatic
cancers [68]. In this system, the FA part, conjugated via an LA-PEG linker, protects the
ssDNA probe and thus improves the cancer cell targeting and internalization processes. A
higher binding force between the target miRNA-21 and the ssDNA probe was enhanced
through the improved internalization process due to the hybridization of the endogenous
miRNA and FA-functionalized MoS2 nanosheets (FAM)-ssDNA, and a fast fluorescence
signal was confirmed due to the separation of the dye-labeled ssDNA probe from the MoS2
nanosheets. Afzalinia et al. used an La (III) metal–organic framework (MOF) and silver
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NPs (AgNPs) as the energy donor–acceptor pair in fluorescence quenching to detect the
atypically expressed miRNA-155 in patients with breast or lung cancer [69]. The use of
MOFs with large surface area significantly improved the miRNA detection performance by
increasing the number of aptamers attached to the probe surface. This system can detect
as low as 0.04 ppb (ng/mL) or 5.5 fM miRNA-155 (Figure 3a). Chu et al. developed a
microfluidic biochip–based system that has an extremely low detection limit (0.146 aM) and
the capacity to simultaneously detect up to 20 miRNAs in 35 min from an exceedingly small
amount of sample solution [70]. In this system, glass substrates are locally assembled with
GO and PLL in the reaction and detection chambers, respectively. The GO immobilizes
a FAM-labeled DNA probe, and fluorescence is extinguished when the DNA probe is
immobilized on the GO. PLL adsorbs both ssDNA and DNA–miRNA complexes without
fluorescence quenching and collects the DNA–miRNA complexes after the target miRNA
reacts with the DNA probe (Figure 3b).
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4. MEF-Based Nucleic Acid Biosensors for Cancer Diagnosis
4.1. MEF

MEF has attracted much interest in both fundamental studies and sensing applica-
tions. Fluorescent intensities of fluorophores and fluorescent NPs could be expressively
amplified due to their interactions with NPs based on noble metals, such as Au, Ag, Cu,
and Pt [74–76]. The electromagnetic effect on the surface of the noble metal provides a
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significantly enhanced electric field, which enhances the excitation efficiency and increases
the radiative decay rates of the fluorescent materials placed at the gap region. Conse-
quently, the fluorescent intensities are increased. This MEF effect originates from the
plasmon-coupling between the noble metal and fluorophores (Figure 1b). This fluorescence
enhancement depends on the morphology and composition of the metal NPs, the distance
between the metal NPs and fluorophores, and the absorption/emission spectral overlap
between the metal NPs and fluorophores. Therefore, it is very important to design noble
NPs with appropriated plasmonic properties to induce significant fluorescent enhance-
ment. For the MEF effect, most of the fluorescent materials, including organic fluorophores,
quantum dots, carbon dots, and upconversion NP, can be utilized coupled with noble
NPs [77–80]. In addition, the MEF process simultaneously enhances the photostability
and sensitivity as well as the intensities. Recently, MEF-based nanobiosensors have been
developed to improve the detection sensitivity for target biomarkers, including nucleic
acids and proteins, to the level of ultra-low concentrations [74,81,82]. The presence of
fluorescent materials near the noble metal NPs increases the rate of excitation and emission
by inducing the fluorophores to assume additional electron configurations. Based on this
phenomenon, the MEF-based nanobiosensor consists of an optical transducer (fluorescent
materials), and a signal amplifier (noble NPs) enables the construction of sensors simpler
than those based on conventional fluorescence, which necessitates complicated steps to
increase the detection sensitivity. In this regard, MEF is a promising tool for generating
effective biosensors. Nucleic acid biomarkers have been known as excellent targets to
diagnose several diseases, including cancer, due to the specific recognition of the com-
plementary sequences. In addition, capture materials can be easily functionalized using
various fluorophores and noble metal NPs. In this section, we discussed the currently
developed MEF-based nanobiosensors for the detection of genetic materials to diagnose
cancer. There are many studies on MEF-based nanobiosensors for nucleic acid detection
(Table 2).

Table 2. Comparison of MEF-based nanobiosensors for nucleic acid detection.

Detection Strategy Fluorescent
Dye/Enhancer

Wavelengths
(Ex, Em) Target Required

Time
Detection

Limit Ref

Detection of DNA by using
engineered substrates to increase
the emissivity of the fluorophore
(proximity of surface plasmons

(<100 Å))

Cy3, Cy5/Ag-
nanostructure

Ex: 549 nm, 646
nm

Em: 562 nm,
663 nm

DNA <3 h - [83]

By applying neutravidin-coated
fluorescent nanospheres to

biotinylated Au-nanorods, the
signal enhancement under the

fluorescence microscope using Ag
zigzag nanorods (ZNR) arrays

Alexa 488/Ag
zigzag nanorod

Ex: 488 nm
Em: 525 nm DNA <3 h 0.01 pM [84]

Induction of localized surface
plasmon resonance effect (LSPR)

of highly ordered monolayer
Au-nanorods; Distance-dependent
MEF effect between extinction and

enhancement

Quasar670/Au-
nanorod

Ex: 664 nm
Em: 670 nm ssDNA <20 min 10 pM [85]

Detection of DNA by using Ag
vertical nanorod (VNR) arrays

fabricated via the glancing angle
deposition (GLAD) method

Cy5/Ag
vertical

nanorods

Ex: 635 nm
Em: 670 nm

Kallikrein
(KLK7) >12 h - [86]
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Table 2. Cont.

Detection Strategy Fluorescent
Dye/Enhancer

Wavelengths
(Ex, Em) Target Required

Time
Detection

Limit Ref

Bimetallic structures (containing
Au and Ag 2 nm and 50 nm thick)

are used to maximize the MEF
effect; Detection of amplified

target DNA using polymerase
chain reaction (PCR).

SYBR Green
I/Au-Ag

Ex: 470 nm
Em: 535 nm dsDNA - 400 fg/µL [87]

Fix with capture DNA of magnetic
nanoparticles implanted with

silver nanoparticles; After
introduction of target DNA,

sandwich structure formation by
hybridization reaction and

isolation of barcode DNA from
silver nanoparticles and

fluorescence enhancement

FAM/NMP-
AgNP

Ex: 495 nm
Em: 518 nm DNA >10 min 1 pM [88]

Increase the signal-to-background
ratio by using the high quenching

efficiency of AuNPs;
Distance-dependent MEF effect

and high specificity of target
fluorescein isothiocyanate-tagged

DNA-HMNC and target DNA
hybridization

FITC/Magnetic
NP/nanogold

clusters

Ex: 488 nm
Em: 520 nm DNA >2 h 0.01 µM [89]

Amine-functionalized Fe3O4
nanoparticles bind with

amine-gold bonding reaction and
form magnetic Au-nanoclusters;

After binding of target DNA,
distance-dependent MEF effect

between AuNP and FITC

Flu, Rho 6G,
Cy5/MOF-

based
nanoprobes

Ex: 494, 525,
and 646 nm
Em: 513 nm,

553 nm, 664 nm

DNA <30 min 20 fM [90]

Quenching of AuNPconjugated
Cy5 by AuNP, complementary

binding of target DNA with
capture DNA on AuNP and other
DNA on Au-nanorod, AuNP or
Au@AgNP, and enhancement of

fluorescence signal.

Au-NP-
conjugated

Cy5/Au@AgNP

Ex: 410 nm
Em: 660 nm DNA >12 h 3.1 pM [91]

Length optimization of dsDNA
and attachment of

Au-nanoparticles (AuNPs) to the
surface; Activation of

CRISPR-Cas12a complex by target
cfDNA, degradation of AuNP and

fluorophore ssDNA, and
generation of red-violet

fluorescence

FITC/DNA-
functionalized

AuNP

Ex: 490 nm
Em: 520 nm

breast
cancer
gene-1

(BRCA-1)

<30 min 0.34 fM [92]

Annealing of target RNA and
DNA anchor probes tagged with

silver nanoparticles and
fluorophores on a solid surface

and enhancement of fluorescence
signal

TAMRA/AgNP Ex: 532 nm
Em: 585 nm

β-globin
mRNA 30–60 min 25 fM [93]
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Table 2. Cont.

Detection Strategy Fluorescent
Dye/Enhancer

Wavelengths
(Ex, Em) Target Required

Time
Detection

Limit Ref

Fabrication of sandwich structure
using 484-mer RNA and 15-mer

complementary RNA attached to
Flower-like silver film; Enhanced

fluorescence emission of
TAMRA-tagged 15-mer RNA;

Shortening the spacing distance
between N-CD and CeO2 and

significantly quenching the
fluorescence of N-CD;

Fluorescence recovery of
quenched probes in the presence

of target miRNAs

(DNA1-
NCDs)/Flower-

like
Ag

Ex: 390 nm
Em: 462 nm

miR-210,
miR-21 15 min 0.03 fM,

0.06 fM [94]

FAM-MB formed a hairpin
structure and the fluorescence

reduction of 6-FAM and AgNPs;
Upon target miRNA

hybridization, increasing the
distance between 6-FAM and

AgNPs and Fluorescence
enhancement

FAM-tagged
MB/AgNRs

Ex: 488 nm
Em: 520 nm miR-21 60 min 1 pM [95]

Fluorescent dye (FAM) tagging of
chemically synthesized gold

triangular nanoprisms (Au TNPs);
When the target miRNA

hybridizes with the molecular
beacon, the distance between the
FAM and AgNP increases and the
fluorescence intensity of the FAM

increases.

FAM/Au TNPs Ex: 488 nm
Em: 520 nm

miR-10b,
miR-96 120 min 1.13 pM,

30 fM [96]

Fluorescence enhancement using
biotin-functionalized lanthanide
nanoparticles as signal enhancers
and capture of target miRNAs of

surface-modified molecular labels;
Detection of Biotin-NPs-probe

hybridized with miR in a
sandwich structure.

Biotin-
NPs/Ln3+-
nanoprobe

Ex: 340 nm
Em: 617 nm miR-21 >2 h 1.38 fM [97]

The miR-124 specific MB
(molecular beacon) attachment on

magnetic plasmonic nanorods;
Immunomagnetic isolation and
enrichment of exosomes in cell

culture medium collection,
non-destructive analysis of

exosome miR-124 expression.

FAM/plasmonic
AuNRs

Ex: 490 nm
Em: 520 nm miR-124 30 min 1 pM [98]

4.2. MEF-Based Biosensors for Detection of DNA Targets

Among the various DNA analytical methods, DNA microarray technologies have been
widely used for disease diagnosis and DNA re-sequencing. For the detection of a target
DNA, fluorescent materials are applied to translate the hybridization into a fluorescent
signal. However, the sensitivity of fluorescence imaging is relatively low because the short
half-lives of fluorescent probes restrict the photon intensity. Therefore, enhancement of the
fluorescent signal is essential to sensitively quantitate the DNA target for precise and early
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diagnosis. An Ag-nanostructure was one of the remarkable substrates used for inducing
MEF in a sensitive DNA microarray–based system [83]. The Ag-nanostructures on the
films provided a 28-time intense signal from the near-infrared dye Cy5, compared with that
obtained using glass substrates. In the case of DNA hybridization, its sensitivity increased
10-fold for Cy5 and 2.5-fold for Cy3. Ji et al. synthesized a zigzag-shaped Ag-nanorod to
improve the MEF effect and found the optimal folding number to be seven, whose scattering
intensity was maximized [84]. For the verification of the enhancement factor, neutravidin-
coated fluorescent nanospheres were applied onto the biotinylated Au-nanorods, whereby
a 14-fold increase in the emission intensity was obtained. This condition also enabled
highly sensitive detection of DNA, as low as 0.01 pM concentration. Mei et al. developed
a monolayered Au-nanorod in a highly ordered form for the induction of the localized
surface plasmon resonance effect (LSPR). This system involves hot spots generated between
the neighboring particle tips in the nanoarray [85]. Through this plasmonic effect, MEF
was found to be dependent on the excitation and emission wavelengths of the fluorophore,
greater than 600 nm. Using this phenomenon, a sensitive MEF-based biosensor was
developed by integrating the molecular beacon detection technique in a chip-based format
for ultrasensitive DNA analysis, as low as 1 pM. Badshah et al. achieved sensitive detection
of DNA by using Ag vertical nanorod (VNR) arrays fabricated via the glancing angle
deposition (GLAD) method (Figure 4a) [86]. A homogeneous VNR nanoarray generated
at a specific incident angle (θ = 85◦) with substrate rotation produced a better MEF effect
than slanted nanorods (SNRs). In the case of the size, a maximum enhancement factor of
approximately 200 times was attained on the NR substrate with a size of 500 nm, compared
with the commercially available amine slide. Tran et al. used a bimetallic structure to
maximize the MEF effect (Figure 4b) [87]. This bimetallic condition involved Au and Ag at
a thickness of 2 and 50 nm, respectively. Under these conditions, a better local field was
obtained, compared with that obtained using monometallic structures with an SYBR Green-
conjugated double-stranded DNA. Using this nanosubstrate, the target DNA, amplified
using polymerase chain reaction (PCR), was successfully quantitated at a concentration
as low as 400 fg/µL and with reduced photobleaching. The authors claimed that this
bimetallic nanosubstrate could provide a highly reproducible and sensitive platform for
fluorescent-based DNA detection from a small sample volume in multiplexed diagnosis.
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In addition to the microarray system, solution-based DNA analytical methods have
been widely developed using the nanomaterial-assisted MEF effect. Zhou et al. developed
an AgNP-mediated DNA-detection system by using the MEF effect on the fluorophore
(FAM) [88]. Because the AgNP modified two different DNAs, namely the capture DNA
and barcode DNA, with FAM, this system could detect the target DNA and enhance
the fluorescent signals simultaneously. The target DNA could induce the magnetic NP
and AgNP to assume a sandwich conformation due to the hybridization reaction. After
the magnetic separation method, DNA could be measured at a concentration as low as
1 pM and with high sensitivity and simplicity. Gu et al. utilized the hybrid magnetic
Au-nanoclusters to induce the MEF effect via the hybridization of the target DNA [89]. To
form a unique magnetic Au-nanocluster, amine-functionalized Fe3O4 NPs were applied to
the AuNP to couple with the amine–Au binding reaction. The fluorescein isothiocyanate
(FITC)-tagged capture DNA was functionalized on the AuNPs for the detection of the target
DNA, whereby a significant distance-dependent MEF effect between the AuNP and FITC
was obtained if the target DNA was bound to the capture DNA. In this study, the suitable
distance for the MEF effect was estimated at approximately 4 nm, and the enhancement
factor was approximately 10. Wu et al. developed a novel fluorescent nanoprobe consisting
of a metal–organic framework (MOF), which is a highly ordered nanoporous structure with
thermal stability [90]. The advantage of the MOF is a higher surface-to-volume ratio than
the typical NPs because of their high porosity. Thus, a high quantity of molecular beacon-
structured DNA could be attached from the core to the surface of the MOF. Additionally,
the target DNA induced a fluorescent enhancement effect by displacing the fluorescent dye
from the surface of the MOF. This MOF-based MEF system could quantitate a target DNA
with a detection limit of 20 fM and with high selectivity. Zhu et al. identified the optimal
size and shape of the metal NP for sensitive MEF-based DNA detection [91]. The AuNP-
conjugated Cyanine 5 (Cy5) was quenched by the energy transfer to the AuNP. After the
complementary binding of the target DNA with the capture DNA on the AuNP and another
DNA on the Au-nanorod, AuNP, or Au@AgNP, the fluorescent signals could be enhanced
by the MEF effect. Of the three different NPs, Au@AgNP showed the most enhanced
result, which was approximately 100 times that of the quenched state. Using this coupled



Biomedicines 2021, 9, 928 13 of 19

nanostructure, the target DNA could be detected at a concentration as low as 3.1 pM and
without the pulse-positive signal of the single-mismatched DNA. Our group has developed
a DNA-detection system by changing the quenched MEF state through the modulation of
the target DNA concentration (Figure 4c) [92]. The 20 nm and 60 nm AuNPs connected
by the double-stranded and single-stranded DNA. If the CRISPR-Cas12a was activated
by the target DNA, it randomly cleaved the ambient single-stranded DNA, and the 20 nm
AuNPs apart from another AuNP. This phenomenon induced the MEF effect between the
fluorophore and the 20 nm AuNP, and the target DNA was sensitively quantitated within
30 min at a concentration ranging from 1 fM to 100 pM. Thus, metal NPs can assist the
sensitive detection of DNA through the metal-based fluorescence enhancement effect in
both DNA microarrays and solution-based systems.

4.3. MEF-Based Biosensors for Detection of RNA Targets

As mentioned before, RNA molecules are also potential biomarkers for the diagnosis
of several diseases because of the potential pathophysiological roles of these molecules.
Therefore, there have been several attempts to quantitate specific RNAs by integrating
the nanomaterial-assisted MEF effect. The first attempt was approximately 15 years ago
and consisted of a silver-island film on a glass substrate [93]. In this system, a 484-mer
RNA is attached to the silver-island film via two 15-mer complementary RNAs as a
sandwich structure. A TAMRA-tagged 15-mer RNA emits enhanced fluorescence and can
successfully detect a low concentration of RNA (~25 fM). Recently, Liang et al. developed
the flower-like silver (FLS)-enhanced fluorescence biosensor for ultrasensitive detection of
multiple miRNAs (Figure 5a) [94]. To simplify the detection process, the authors applied
the multi-channel microfluidic paper-based analytical devices (µPADs) to the MEF-based
biosensing system. The carbon dot and nanoceria (CeO2) were conjugated to each other
before the binding of the target miRNA, and the fluorescent signal was quenched due to
the CeO2. After hybridization of the target miRNA to the carbon dot-modified capture
DNA, the signal emitted by the carbon dot was enhanced, and the target miRNA, at
the concentration of as low as 0.03 pM, could be quantitated. Simultaneously, CeO2
showed the catalytic activity on the H2O2, which was one of the reactive oxygen species.
This platform could provide the real-time monitoring of miRNAs and H2O2 with high
sensitivity and selectivity. Wang et al. have developed a microfluidic-based miRNA
detection platform, which consisted of surface-enhanced Raman scattering (SERS) and a
MEF-inducing nanosystem [95]. AgNPs were immobilized on a glass substrate, forming
SERS and MEF substrates simultaneously with a Raman and fluorescent dye (FAM)-tagged
molecular beacon. When the target miRNA hybridized with the molecular beacon, it
increased the distance between the FAM and AgNP, and the fluorescent intensity of the
FAM increased, whereas the SERS signal decreased. By combining the reverse changes,
the target miRNA, at a concentration of as low as 1 pM, could be detected with reduced
reaction duration and complexity. This dual analytical strategy can circumvent each
disadvantage and stand out for each advantage. Masterson et al. synthesized Au-based
triangular nanoprisms and applied them to a nanoplasmonic biosensing platform for
sensitive miRNA detection [96]. This triangular nanostructure facilitated the induction of
the plasmonic effect, thereby inducing both SERS and MEF effects. By using this system,
the oncogenic miRNAs (miR-10b and miR-96) in the serum of a patient were directly
quantitated with high sensitivity (at the sub-fg/µL level). Importantly, the dual-sensing
nature of this system prevents false positive and negative responses.
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Solution-based sensitive detection of RNA has also been studied using several detec-
tion strategies with metal NPs. Lu et al. developed miRNA biosensors via a fluorescence
enhancement strategy with biotin-functionalized lanthanide NPs as signal enhancers [97].
A surface-modified molecular beacon could capture the target miRNA, and the biotinylated
detection probe hybridized with the miRNA as a sandwich structure. The enhanced fluo-
rescent signal from the lanthanide NPs provides sensitive detection, ranging from 10 fM to
100 pM, with a detection limit as low as 1.38 fM, which is three orders of magnitude better
than the typical fluorescent probes. Our research group has detected exosomal miRNAs by
using MEF with a triblock nanorod, which consisted of Au-Ni-Au (Figure 5b) [98]. FAM-
tagged molecular beacon modified on the surface of Au with the quenched state. Once
the antibody on the Ni surface captures the exosomes, they are separated by the magnetic
force, and any ejected exosomal miRNA binds to the molecular beacon specifically. The
unfolded molecular beacon can emit an enhanced fluorescence signal due to the plasmonic
effect of the Au-nanorod. Using this particle-based MEF sensing system, miR-124, which is
closely related to neuronal differentiation, has been measured in a highly sensitive manner,
as low as 1 pM. This method could also characterize a heterogeneous population of neural
cells, including neurons and astrocytes, in an in vitro cell culture model and ex vivo rodent
model. We anticipate that this multi-segmented MEF-based exosomal miRNA biosensing
platform has a prodigious potential to diagnose several cancers and investigate intra- and
extracellular communications with high sensitivity.

5. Outlook and Conclusions

Nanomaterials can enhance the fluorescent signal via MEF, and ultrasensitive detection
of target genetic materials has been achieved for the early diagnosis of several diseases and
observation of cell–cell interactions. However, there is still room to improve for precise,
accurate, and early diagnosis. For a precise and accurate diagnosis, measurement of only
one nucleic acid biomarker is insufficient, even though the result of such detection shows
high reliability. To solve this problem, additional biomarkers should be identified. A
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multi-analyte detection system can provide a precise diagnosis. For example, quantitation
of a single miRNA cannot indicate the exact state of cancer. However, a multi-miRNA
analysis can provide more information about the cancers [99–101]. In this perspective,
nanomaterial-based fluorescent biosensors should be developed to quantitate multiple
nucleic acids simultaneously. Fluorescent nanomaterials, including upconversion NPs or
quantum dots, can be applied to the multi-detection platform by virtue of their specific
emission peaks and higher quantum yield than typical organic dyes. For early diagnosis,
a sensitive detection system should be developed to measure infinitesimal changes in
the amount of nucleic acid biomarkers. As mentioned previously, nanomaterials can
improve the sensitivity as well as selectivity and shorten the assay time. Furthermore,
fluorescent-based analytical methods as well as electrochemical, electrical, and other optical
methods have also been applied to quantitate nucleic acid biomarkers at a highly sensitive
level. Such nanomaterial-based biosensors should be integrated into user-friendly devices,
such as a disposable, wearable, or smartphone-based point-of-care testing system. These
integrated systems will enable the treatment of the disease quickly and with the proper
treatment methods and drugs.

In conclusion, we reviewed the recent progress in the use of nanotechnology-based
FRET and MEF biosensors for the detection of nucleic acid biomarkers. Compared with
conventional fluorescence biosensors, FRET and MEF exhibit superb performances, such as
intensive emission spectra for sensitive detection. As well as nucleic acid biomarkers, other
biomolecules, such as enzymes, have been measured using NP-assisted FRET and MEF.
In addition, these analytical methods can provide the intuitive result upon integration
to other platforms, such as disposable or smartphone-based systems. As a result, FRET
and MEF biosensing platforms for sensitive, selective, simple, and rapid detection will
be further developed using various nanotechnologies to improve the current detection
performances. The advanced fluorescence-based sensing platform with superior properties
of nanomaterials will provide personalized therapies with precise and detailed diagnostic
results to increase the recovery rate in several diseases, including cancers.
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