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Abstract: There is growing evidence that myeloid-derived suppressor cells (MDSCs) are directly
involved in all stages leading to metastasis. Many mechanisms for this effect have been proposed,
but mechanisms of coregulation between tumor cells and MDSCs remain poorly understood. In
this study, we demonstrate that MDSCs are a source of milk fat globule-epidermal growth factor
(EGF) factor 8 (MFGE8), which is known to be involved in tumor metastasis. Interestingly, TGF-β, an
abundant cytokine in the tumor microenvironment (TME), increased MFGE8 production by MDSCs.
In addition, co-culturing MDSCs with B16F10 melanoma cells increased B16F10 cell migration, while
MFGE8 neutralization decreased their migration. Taken together, these findings suggest that MFGE8
is an important effector molecule through which MDSCs promote tumor metastasis, and the TME
positively regulates MFGE8 production by MDSCs through TGF-β.

Keywords: myeloid-derived suppressor cells; tumor; metastasis; TGF-β; MFGE8

1. Introduction

Myeloid-derived suppressor cells (MDSCs) were first identified as immune-suppressive
myeloid cells in the 1970s [1]. Since then, MDSCs have been studied as important immune
regulators with pro-metastatic [2–5] and anti-inflammatory properties [6,7]. MDSCs are
a significant component of the tumor microenvironment (TME) [2,8] and are considered
a biomarker of tumor progression [9]. Previous studies have demonstrated a positive
correlation between various tumors and MDSCs [8,10,11]. For example, tumor-derived
factors affect MDSCs accumulation as well as their activation [12–14]. In turn, MDSCs
secrete cytokines to suppress immune cells such as CD8+ T cells, which are involved in
anti-tumor immune responses [15,16].

Metastasis is a complex process through which tumor cells spread to other organs. It
progresses through several steps, including epithelial-mesenchymal transition (EMT), local
invasion, neovascularization, and pre-metastatic niche formation [17–20]. MDSCs have
been studied as an important regulator of tumor metastasis. For example, MDSCs promote
tumor growth by remodeling the TME to facilitate angiogenesis [21,22]. MDSCs are also
known to establish a pre-metastatic niche and induce EMT [19,20]. These data highlight
that elucidating the mechanisms through which MDSCs communicate with tumor cells is
important for understanding tumor progression and for the development of anti-tumor
therapies.

Previously, we demonstrated the importance of TGF-β in the immunosuppressive
function of MDSCs during inflammation [7]. However, TGF-β is also an important com-
ponent of the TME and a mediator of tumor progression and immune modulation in
cancer [23–25]. Thus, we considered the possibility that TGF-β-induced MDSCs activation
could also affect the tumor-related response. Microarray analysis identified several poten-
tial targets, including milk fat globule-epidermal growth factor (EGF) factor 8 (MFGE8).
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As its name suggests, MFGE8 was first discovered as a component of milk fat globules
and was known as an apoptosis mediator [26]. However, growing evidence suggested
its role in tumor progression, EMT, chemoresistance, cancer stem cell activation [27–30],
and anti-inflammation [31,32]. Given these properties, MFGE8 has been studied as an
inducer of tumor metastasis, and tumor cells and myeloid cells such as tumor-associated
macrophages (TAMs) are thought to be the main source of MFGE8 [27–29,33].

In this study, we identify MDSCs as a source of MFGE8, reinforcing the relationship
between MDSCs and the TME. Furthermore, we hypothesized that MFGE8 could be an
important effector molecule used by MDSCs to promote the metastasis of B16F10 melanoma.
Our results show that MFGE8 is upregulated in MDSCs in response to TGF-β treatment.
We also identified an interaction between MDSCs and B16F10 melanoma that increased
EMT and melanoma cell invasion, showing that B16F10 metastasis was affected by MDSC-
derived MFGE8. Together, these findings suggest that MDSC-derived MFGE8 could be a
valuable target for cancer therapies.

2. Materials and Methods
2.1. Mice and Cell Culture

The mouse melanoma cell line B16F10 was purchased from the Korean Cell Line Bank
(KCLB, Seoul, Korea). B16F10 cells were cultured in Dulbecco’s modified Eagle medium
(DMEM; Hyclone, Marlborough, MA, USA) supplemented with 10% (v/v) fetal bovine
serum (FBS; Hyclone), 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco). In some
experiments, cells were treated with 10 ng/mL of recombinant mouse MFGE8 protein
(short isoform, Novus, Centennial, CO, USA).

Mouse bone marrow was harvested from the femurs and tibias of 6–10-week-old
female C57BL/6 mice. For in vitro differentiation, bone marrow cells were cultured in
Rosewell Park Memorial Institute (RPMI) 1640 medium (Hyclone) supplemented with
10% fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin, recombinant
murine IL-4 (10 ng/mL, Peprotech, Cranbury, NJ, USA), recombinant murine GM-CSF
(10 ng/mL, Peprotech), 2-mercaptoethanol (50 µM, Sigma-Aldrich, St. Louis, MO, USA),
and recombinant mouse TGF-β1 (1 ng/mL, R&D Systems, Minneapolis, MN, USA). All ex-
periments using mice were approved by the Institutional Animal Care and Use Committee
of Gwangju Institute of Science and Technology (GIST-2020-086, approved on 26 August
2020).

2.2. FACS and Antibodies

In vitro-differentiated MDSCs were sorted using a BD FACSAria III (BD Bioscience,
San Jose, CA, USA). Cells were stained with monoclonal antibodies against CD11b (M1/70,
ebioscience, San Diego, CA, USA), Ly6G/Ly6C (RB6/8C5, ebioscience), Ly6G (1A8, BD
Pharmingen, San Diego, CA, USA), and Ly6C (HK1.4, ebioscience). CD11b+Gr-1+Ly6GhighLy6Clow

cells were sorted as granulocytic MDSCs (Gr-MDSCs), and CD11b+Gr-1+Ly6GlowLy6Chigh

cells were sorted as monocytic MDSCs (Mo-MDSCs).

2.3. Retroviral Overexpression

To overexpress Mfge8, retrovirus was generated from Phoenix Eco cells by transient
transfection with a retroviral pMigR1_GFP vector. Bone marrow cells were seeded for
24 h, then proliferating bone marrow cells were treated with viral supernatant containing
polybrene (hexadimethrine bromide; Sigma-Aldrich) and centrifuged. GFP-positive cells
were sorted by flow cytometry.

2.4. RNA Extraction and Quantitative RT-PCR

Total RNA from Mo- and Gr-MDSCs was isolated using the RNeasy Micro Kit (Qiagen,
Hilden, Germany) and total RNA from B16F10 cells was isolated using TRI Reagent
(Molecular Research Center, Cincinnati, OH, USA). Using the extracted RNA, cDNA was
synthesized with TOPscript RT DryMIX (enzynomics, Daejeon, Korea), and relative mRNA
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levels were determined by quantitative PCR using TOPreal qPCR 2X PreMix (enzynomics)
and the CFX Connect Real-Time System (Bio-Rad, Hercules, CA, USA). The following
primer pairs were used: GAPDH (Forward, 5′-GCC TTC TCC ATG GTG GTG AA; Reverse,
5′-GCA CAG TCA AGG CCG AGA AT), Mfge8 (Forward, 5′-CAA GGA ATG GCT GCA
GGT TGA C; Reverse, 5′-AAG TTG CCC TGG AAG ACC TTG C), Arginase1 (Forward,
5′-TCC ACC CTG ACC TAT GTG TCA TTT; Reverse, 5′-CGT CTC GCA AGC CAA TGT
ACA); iNOS (Forward, 5′-TTC ACC CAG TTG TGC ATC GAC CTA; Reverse, 5′-TCC
ATG GTC ACC TCC AAC ACA AGA), IL-10 (Forward, 5′-GCA CTG CTA TGC TGC CTG
CTC TTA CTG A; Reverse, 5′-AGC TTC TCA CCC AGG GAA TTC AAA TGC T), TGF-β
(Forward, 5′-CTC CCG TGG CTT CTA GTG C; Reverse, 5′-GCC TTA GTT TGG ACA GGA
TCT G); E-cadherin (Forward, 5′-ACA CGT TCA TGG ATC AGA AGA TCA C; Reverse,
5′-ACA GGA CCA GGA GAA GAG TGC C), Vimentin (Forward, 5′-CCG CTT TGC CAA
CTA CAT; Reverse, 5′-GGA TTC CAC TTT CCG TTC); Twist1 (Forward, 5′-AGC GGG TCA
TGG CTA ACG; Reverse, 5′-GGA CCT GGT ACA GGA AGT CGA); and MMP13 (Forward,
5′-GTG ACT GGC AAA CTT GAT GA; Reverse, 5′-TCA CAT CAG ACC AGA CCT TG).
The relative mRNA expression was calculated by the ∆∆CT method, with normalization to
the expression of GAPDH.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

After sorting of MDSCs, 1.25 × 105 cells were seeded in 96-well plates for 24 h. Super-
natant was harvested and used for measurement of MFGE8 by ELISA. The Mouse Milk Fat
Globule 1 ELISA kit (Abcam, Cambridge, UK) was used according to the manufacturer’s
protocol. The TGF-β ELISA was conducted using the Human/Mouse TGF β1 Uncoated
ELISA kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol with
supernatant from B16F10 cells after 24 h of culture.

2.6. Water-Soluble Tetrazolium Salts (WST) Assay

1 × 104 B16F10 cells were seeded in 96-well plates. After overnight culture, cells were
treated with 10 ng/mL MFGE8. On Days 0, 1, 2, and 3, the optical density at 450 nm
(OD450) was measured after 1 h of incubation with EZ Cytox (DoGenBio, Seoul, Korea).

2.7. Migration and Invasion Assays

For migration assays, 5 × 105 B16F10 cells suspended in serum-free DMEM were
loaded in the upper chamber of a Falcon Permeable Support for 24-well Plate with 8.0 µm
Transparent PET Membrane. The lower part of the chamber was filled with DMEM
containing 10% FBS and MFGE8 (10 ng/mL). After 24 h, non-migrating cells were removed
with a cotton swab and migrating cells were fixed with 70% ethanol and stained with 0.5%
crystal violet solution (BD Bioscience).

For invasion assays, transwell inserts were coated with 50 µL Matrigel Matrix (Corning,
NY, USA) mixed with DMEM (1:4 ratio). 5 × 105 B16F10 cells were loaded in the upper
chamber and MFGE8 (10 ng/mL) was added to the lower well. After 48 h, non-invading
cells were removed with a cotton swab and invading cells were fixed with 70% ethanol
and stained with 0.5% crystal violet solution.

For co-culture experiments, 3 × 105 B16F10 cells stained with CellTrace Violet (Invitro-
gen) were loaded in the upper chamber, while 3 × 105 CD11b+Gr-1+ MDSCs were loaded
in the lower chamber. MFGE8-neutralizing antibody (720 ng/mL; 2422, MBL) or control
hamster IgG (ebioscience) was treated for MFGE8 neutralization. Images were captured
with an Eclipse Ti inverted microscope (Nikon, Tokyo, Japan).

2.8. Microarray and Data Analysis

Mo-MDSCs and Gr-MDSCs were treated with TGF-β during in vitro differentiation.
After sorting, Mo- and Gr-MDSCs were lysed with TRI Reagent and extracted mRNA
was analyzed on a GeneChip Mouse Gene 2.0 ST array (Affymetrix, Santa Clara, CA,
USA). Three independent microarray experiments were performed. The resulting data was
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analyzed by Gene Set Enrichment Analysis (GSEA; https://www.gsea-msigdb.org/gsea/
index.jsp, accessed on 9 March 2020) [34] and heat maps were generated using Multiple
Experiment Viewer (MeV).

For the gene expression analysis of Mfge8 in tumor-infiltrated MDSCs, the Gene Ex-
pression Omnibus (GEO) datasets GSE110772 and GSE21927 were retrieved and analyzed.

2.9. Statistical Analysis

The bar graphs show the means of 2–3 independent experiments and the error bars
represent the standard deviation (SD). p-values were calculated using two-tailed Student’s
t-tests, and p-values of <0.05 were considered statistically significant.

3. Results
3.1. TGF-β Is an Important Regulator of MDSCs Immunosuppressive Function

Previously, we have shown that TGF-β is an important factor for the regulation of
MDSCs’ immune suppressive function [7]. Therefore, in this study, to identify the differen-
tially expressed genes related to the functional enhancement of MDSCs by TGF-β, MDSCs
were treated with TGF-β and gene expression changes were analyzed by microarray. In
this analysis, we confirmed that treatment with TGF-β increased the Mo-MDSC population
and decreased the Gr-MDSC population, as shown in our previous report (Figure 1A).
In addition, the MDSC effector molecules arginase1, iNOS, and IL-10 were up-regulated
at the mRNA level by TGF-β treatment of MDSCs (Figure 1B,C). We also analyzed dif-
ferential gene expression by GSEA and confirmed that TGF-β signaling pathway-related
molecules were significantly enriched in both Mo-MDSCs and Gr-MDSCs treated with TGF-
β (Figure 1D,E), indicating that the immunosuppressive function of MDSCs is increased
by TGF-β.

3.2. TGF-β Induces Gene Expression Changes including Pro-Metastatic Genes Such as Mfge8

To analyze the TGF-β-induced differential gene expression in MDSCs, we created a
two-dimensional plot of the microarray data (Figure 2A). The X-axis represents the Fold
Change (‘Fold’), a sum of the gene expression changes in TGF-β-treated Mo-MDSCs and
Gr-MDSCs on a log2 scale. The Y-axis represents the Influence Factor (‘IF’), the product
of the ‘Fold’ and the difference between the fold changes in Mo-MDSCs and Gr-MDSCs
on a log2 scale. Thus, the ‘IF’ represents whether TGF-β affected the expression of a given
gene more strongly in Mo-MDSCs or Gr-MDSCs. ‘Distance’ is the distance from the origin
of the plot; thus the ‘Distance’ is dependent on both the ‘Fold’ and the ‘IF’. From the
microarray data analysis, 227 genes with a ‘Fold’ value greater than 2.5 were selected and
displayed on a heat map (Figure 2B). The two-dimensional plot of the microarray data
showed the differential gene expression profiles of Mo-MDSCs and Gr-MDSCs after TGF-β
treatment (Figure 2C). The 227 genes were divided into six groups according to the ‘IF’
value, representing the differential impact of TGF-β on each subset of MDSCs. Genes with
an ‘IF’ value greater than 1 (the impact of TGF-β on the expression of the gene was greater
in Mo-MDSCs) were assigned to the ‘Mo-Up’ or ‘Mo-Down’ group. Genes with an ‘IF’
value lower than −1 (the impact of TGF-β on the expression of the gene was greater in
Gr-MDSCs) were assigned to the ‘Gr-Up’ or ‘Gr-Down’ group. Genes with an ‘IF’ value
greater than −1 and lower than 1 were assigned to the ‘Up’ or ‘Down’ group. Finally, the
three genes with the largest ‘Distance’ in six groups were selected, and the TGF-β-induced
differential mRNA expression was confirmed by qPCR (Figure 2D).

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Figure 1. TGF-β increases the immunosuppressive function of MDSCs. (A) Representative FACS plots of MDSCs subpopu-
lations [Mo-MDSCs (Ly6GlowLy6Chigh) and Gr-MDSCs (Ly6GhighLy6Clow)] and bar graphs showing the percentages of
each subpopulation. (B) The level of arginase1 mRNA in Mo-MDSCs and Gr-MDSCs after TGF-β treatment. (C) iNOS and
IL-10 mRNA levels in Mo-MDSCs after TGF-β treatment under lipopolysaccharide (LPS) stimulation condition. (D) GSEA
analysis of microarray data from Mo-MDSCs treated with TGF-β. (E) GSEA analysis of microarray data from Gr-MDSCs
treated with TGF-β. Data are expressed as the mean ± SD. ND, not detected. * p < 0.05, ** p < 0.01, and *** p < 0.001 by
two-tailed t-test.

TGF-β is a cytokine with various functions, including immune suppression [6,7] and
tumor progression [23,24,35]. Therefore, we hypothesized that genes with differential
expression by TGF-β treatment may have similar function with TGF-β and the 18 genes
that were selected from the differential expression analysis described above were analyzed
for their roles in inflammation or tumor progression (Table 1). Among the 18 genes, six
genes (Nt5e, Elovl3, Mfge8, Tshr, Gbp5, and Havcr2) have been previously described to have
roles in cancer progression or immune regulation. Mfge8 was selected as a target gene of
interest because Mfge8 had the largest ‘Distance’ value when recalculated with the qPCR
results (Table A1), and because Mfge8 has an anti-inflammatory function [32,36] as well as
a role in promoting tumor metastasis [28,30].
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Table 1. Known functions of the 18 genes selected from the microarray data. The top three genes in each of the six groups were
selected for further analysis. The function of some genes has not been well-studied, and these genes are denoted as ‘unknown’.

Group Gene Name Function

Up
Nt5e Promote tumor migration [37,38]

Elovl3 Fatty acid chain elongation [39]
Mfge8 Anti-inflammatory [40,41], Tumor metastasis [27,30]

Down
Gbp2 * Better prognosis in breast cancer [42], Glioblastoma invasion [43]
Ifi204 * Negatively regulate type 1 interferon response [44]

Gm12250 * Unknown

Gr-Up
Orm1* Therapeutic response predictor in NK/T lymphoma [45]

Tshr Inhibit metastasis of thyroid cancer [46]
Awat1 * Unknown

Gr-Down
Gbp4 * Inflammasome activation [47]
Gbp5 Inflammasome assembly [48], Stimulation of NF-κB signaling pathway [49]

Prss34 * Unknown

Mo-Up
Fcnb * Maintain immunosuppressive function of Gr-MDSCs [50]

Pmepa1 * Prostate cancer metastasis regulator [51]
Havcr2 T cell exhaustion and tolerance [52]

Mo-Down
Gm4951 * Unknown

Gbp8 * Unknown
Iigp1 * Unknown

* Few studies done, or results are controversial.
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Figure 2. Gene expression profile in response to TGF-β treatment. (A) Graphical scheme and calculation scheme used in the
two-dimensional plot. (B) Heat map of genes with a ‘Fold’ value > 2.5 in three independent microarray experiments. (C)
Two-dimensional plot of genes from the microarray data. The X-axis represents ‘Fold’ and the Y-axis represents ‘IF’. (D)
The top three genes in each of the groups were confirmed by qPCR. The changes in the mRNA levels upon TGF-β treatment
by microarray or qPCR are shown. Data are expressed as the mean ± SD.
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3.3. MFGE8 Does Not Promote the Immunosuppressive Function of MDSCs

As there are two isoforms of MFGE8, the short isoform (S-MFGE8) and the long
isoform (L-MFGE8), we confirmed which isoform is expressed in MDSCs by qPCR before
investigating the role of MFGE8 in MDSCs (Figure 3A). S-MFGE8 mRNA was preferentially
expressed over L-MFGE8 in both Mo-MDSCs and Gr-MDSCs. Therefore, the following
experiments were performed with S-MFGE8.
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Figure 3. MFGE8 does not increase the immunosuppressive function of MDSCs. (A) Analysis of L-MFGE8 and S-MFGE8
mRNA levels in Mo-MDSCs and Gr-MDSCs by qPCR. (B) MFGE8 overexpression was confirmed by qPCR after sorting of
transduced cells. (C) The arginase1 mRNA level in MFGE8-overexpressing Mo-MDSCs and Gr-MDSCs. (D) mRNA levels
of MDSC effector molecules in MFGE8-overexpressing Mo-MDSCs under LPS stimulation condition. (E) The arginase1
mRNA level in MFGE8-treated Mo-MDSCs and Gr-MDSCs. (F) mRNA levels of MDSC effector molecules in MFGE8-treated
Mo-MDSCs under LPS stimulation condition. Data are expressed as the mean± SD. NS, not statistically significant (p > 0.05).
* p < 0.05, ** p < 0.01, and *** p < 0.001 by two-tailed t-test.

Next, we overexpressed S-MFGE8 in Mo-MDSCs and Gr-MDSCs using retroviral in-
fection to find out whether MFGE8 promotes the immunosuppressive function of MDSCs.
MFGE8 mRNA expression was increased in Mo-MDSCs and Gr-MDSCs upon infection
with the MFGE8-expressing retrovirus compared with cells infected with the vector con-
trol retrovirus (Figure 3B). Next, the expression of MDSC immunosuppressive effector
molecules was measured. Surprisingly, the arginase1 mRNA level decreased (Figure 3C)
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upon MFGE8 overexpression, and the levels of other effector molecules, including iNOS,
IL-10, and TGF-β, were unaffected (Figure 3D). Although MFGE8 is known to have anti-
inflammatory properties, it did not promote the expression of immunosuppressive effector
molecules in MDSCs. MFGE8 treatment showed similar results to MFGE8 overexpression
(Figure 3E,F). These results indicate that, in contrast to our expectations, MFGE8 did not
promote the immunosuppressive function of MDSCs.

3.4. MFGE8 Induces Metastasis of B16F10 Melanoma

Although MFGE8 did not increase the immunosuppressive function of MDSCs, it has
been previously reported that MFGE8 induces tumor metastasis in various models [27,30].
Therefore, we hypothesized that MFGE8, as an effector molecule of MDSCs, may promote
cancer metastasis in TGF-β-rich environments such as the TME. To confirm MFGE8 se-
cretion by MDSCs, we measured the MFGE8 concentration by ELISA (Figure 4A). Both
Mo-MDSCs and Gr-MDSCs secreted MFGE8, and TGF-β significantly increased its secre-
tion. Open-source microarray data showed that tumor-infiltrated MDSCs also express
higher levels of MFGE8 mRNA than splenic MDSCs (Figure A1). Furthermore, to confirm
B16F10 cells as a source of TGF-β, the concentration of TGF-β was measured by ELISA
(Figure 4B). Since B16F10 cells can also secrete MFGE8, the concentration of MFGE8 pro-
tein was also measured in B16F10 supernatants by ELISA and isoform expression levels
of MFGE8 in B16F10 were examined by qPCR (Figures 4C and A2). B16F10 melanoma
secreted MFGE8 (1.65± 0.04 ng/mL), which is similar amount of MFGE8 secreted by
Mo-MDSCs and Gr-MDSCs without TGF-β (1.06 ± 0.44 ng/mL and 1.91 ± 1.23 ng/mL,
respectively) where S-MFGE8 is preferentially expressed over L-MFGE8. However, both
Mo-MDSCs and Gr-MDSCs secreted substantially higher amounts of MFGE8 in response
to TGF-β treatment (3.86 ± 0.95 ng/mL and 7.10 ± 1.70 ng/mL, respectively). Therefore,
these ELISA results indicate that MDSCs are the main source of MFGE8 in the TME.
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Figure 4. MFGE8 induces EMT of B16F10 melanoma. (A) ELISA of MFGE8 production by Mo-MDSCs and Gr-MDSCs in
response to TGF-β treatment. (B) ELISA of TGF-β production by B16F10 melanoma cells. (C) ELISA of MFGE8 production
by B16F10 melanoma cells. (D) WST assay of B16F10 melanoma cells in response to MFGE8 treatment. (E) mRNA levels
of the EMT markers E-cadherin, vimentin, twist1, and MMP13 in B16F10 melanoma cells treated with MFGE8. Data are
expressed as the mean ± SD. NS, not statistically significant (p > 0.05). * p < 0.05, ** p < 0.01, and *** p < 0.001 by two-tailed
t-test.
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After confirming MDSCs and B16F10 as a source of MFGE8 and TGF-β, respectively,
we evaluated B16F10 proliferation, EMT marker expression, and matrix metalloproteinase
(MMP) expression after MFGE8 treatment. MMPs are enzymes that play an important role
in cancer cell invasion. For tumor cells to become invasive, MMPs are required to degrade
the basal membrane [53]. Although the proliferation of B16F10 cells was not affected by
MFGE8 treatment (Figure 4D), MFGE8 induced EMT of B16F10 melanoma cells, as the
expression of E-cadherin mRNA decreased while the expression of vimentin and twist1
mRNA increased. Moreover, the mRNA expression of MMP13 was significantly increased
by MFGE8 treatment (Figure 4E). Taken together, these data show that MFGE8 induces
metastasis of B16F10 melanoma.

3.5. MDSCs Increase B16F10 Migration in an MFGE8-Dependent Manner

To further evaluate the relationship between MDSCs and B16F10 melanoma, we
conducted a co-culture experiment of MDSCs and B16F10 cells (Figure 5A). Co-culture of
B16F10 and MDSCs significantly increased B16F10 transmigration (Figure 5B). Furthermore,
MFGE8 neutralization significantly reduced B16F10 transmigration (Figure 5C), while
MFGE8 treatment increased B16F10 transmigration and invasion (Figure 5D,E). Since
MFGE8 treatment did not affect B16F10 proliferation (Figure 4D), the increased cell numbers
are a result of augmented B16F10 migration. These results suggest that MDSCs can induce
B16F10 metastasis by secreting MFGE8 in response to TGF-β. These results highlight an
interaction between MDSCs and B16F10 melanoma cells and demonstrate that MFGE8 is a
key molecule that promotes B16F10 melanoma migration.
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co-culture experiments with MDSCs and B16F10 melanoma cells. (B) Co-culture of MDSCs and B16F10 melanoma cells.
B16F10 cells were labeled with CellTrace Violet before co-culture. (C) Co-culture of MDSCs and B16F10 melanoma cells
with MFGE8 neutralization. B16F10 cells were labeled with CellTrace Violet before co-culture. (D) Transmigration of B16F10
melanoma cells with MFGE8 treatment. (E) Invasion assay of B16F10 melanoma cells with MFGE8 treatment. Scale bars,
500 µm. Data are expressed as the mean ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001 by two-tailed t-test.

4. Discussion

MDSCs accumulate and interact with tumor cells in the TME. It is widely accepted
that MDSCs accumulation results in tumor progression and metastasis [54], however
the detailed mechanisms are still not fully understood. In this study, we showed that
MDSCs interact with B16F10 melanoma, increasing cancer cell migration. TGF-β treatment
of MDSCs resulted in increased MFGE8 secretion and addition of MFGE8 neutralizing
antibody demonstrated that MDSC-derived MFGE8 promoted the migration of B16F10
melanoma cells. Previous studies have shown that MFGE8 promotes tumor progression
or metastasis in various cancer models [27,29,30], yet the reported source of MFGE8 was
mainly TAMs or stromal cells. Therefore, our findings suggest a new mechanism through
which MDSCs promote tumor progression, as a source of MFGE8. In addition, although
MDSCs preferentially express S-MFGE8, comparing S-MFGE8 function with L-MFGE8 in
the tumor microenvironment could be an important issue in future studies.

In a previous study, we showed that TGF-β increased the immunosuppressive function
of MDSCs in a murine colitis model [7]. However, the function of TGF-β is not restricted
to prolonged inflammatory response alleviation. Many studies have shown the roles
of TGF-β in tumor metastasis [24,25] and immune modulation. Here, we demonstrate
an additional role of TGF-β as an immune modulator in the TME. TGF-β increased the
Mo-MDSC population, which directly interact with tumor cells and induce EMT in the
TME [19]. The immunosuppressive function of MDSCs was assessed based on their mRNA
expression of effector molecules. Arginase1, iNOS, and IL-10 mRNA levels increased
with TGF-β treatment. Most importantly, TGF-β altered the gene expression profile of
MDSCs, upregulating pro-metastatic genes such as Mfge8. Although MFGE8 did not
promote MDSCs immunosuppressive function itself, it affected the phenotype of B16F10
melanoma cells, suggesting a role of TGF-β and TGF-β—induced genes in tumor metastasis.
Furthermore, MFGE8 produced by MDSCs may also be involved in the inhibition of T cell
proliferation in the tumor microenvironment, as a previous report showed inhibition of T
cell proliferation by MFGE8 [55].

Generally, cancer metastasis is related to the prognosis and survival rate. Often,
melanoma can be detected easily, but it is highly metastatic, thus increasing the mortality
rate [56,57]. In this study, we showed that MDSCs induce the migration of B16F10 mouse
melanoma cells by secreting MFGE8, and MFGE8 neutralization suppressed their migration.
A previous study also suggested MFGE8 antibody as a novel therapeutic for ovarian
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carcinoma [27]. Together, these results suggest the therapeutic potential of targeting
MDSCs or MFGE8 for metastatic melanoma or other cancers.

5. Conclusions

We demonstrate that TGF-β alters the gene expression profile of MDSCs. Mfge8 and
a number of other metastatic genes were upregulated in TGF-β-treated MDSCs. MFGE8
did not directly increase MDSC effector molecule expression, but MDSC-derived MFGE8
promoted the metastasis of B16F10 melanoma cells, suggesting that MDSC-derived MFGE8
could be a promising target for metastatic cancer therapies.
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