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Abstract: Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with
a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based
therapeutic options are approved for other cancers, only limited therapeutic options are available for
TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC
under specific clinical conditions. However, most of these cancers are unresponsive, and there is a
requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers
that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are
widely used to identify patients who are most likely to respond to diverse therapeutic strategies.
In this review, we discuss the possible treatment options for TNBC based on its inherent subtype
receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage,
and programmed cell death, which play essential roles at multiple stages of TNBC development.
We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor
receptor, and epidermal growth factor receptor as well as the application of nanomedicine and
immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.

Keywords: triple-negative breast cancer; therapeutic target; signaling pathway; clinical trial

1. Introduction

Breast cancer (BC) is the most common type of cancer in women worldwide. The
molecular classification of BC is shown in Figure 1. The highest mortality rate has been
observed in triple-negative breast cancer (TNBC). TNBC is characterized by a high histo-
logical grade and proliferation rate and ductal histology and is associated with a lack of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor-2 (HER2) expression (making it ER-, PR-, and HER2-negative). The classification
of TNBC is shown in Figure 2 [1]. Metastatic TNBC (mTNBC) is associated with a poor
overall survival rate [2]. TNBC has a high recurrence rate, which is the greatest within the
first 3 years. However, a sharp reduction in recurrence is observed after 5 years. Therefore,
there is a lack of long post-therapy regimens [2,3]. Ductal pathology and gene expression
analyses have led to further classification of BC into HER2-enhanced, luminal A and B,
basal-like, and claudin-low subtypes [1,4]. The claudin-low subtype is primarily diagnosed
in women under 45 years of age and is identified by a high expression of epithelial-to-
mesenchymal transition-associated genes, low expression of hormone receptor (HR), and
low expression of tight junction markers [5]. Currently, TNBC diagnosis is based on mam-
mography, immunohistochemistry, and radio-imaging. Confirmatory biopsy of metastatic
lesions is required, as metastatic lesions possess different phenotypes based on the tumor
type [6]. Surgery is sometimes recommended to treat TNBC [7].
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recent years [3]. The development of targeted cancer therapies, often in combination with 
established chemotherapy, has been applied to a few new clinical studies [8,9]. Therefore, 
there is an urgent need to develop novel therapeutic options. Capecitabine has been used 
in combination with docetaxel, ixabepilone, doxorubicin cyclophosphamide, and 
paclitaxel in metastatic TNBC [1–8]. Many studies have been performed to determine 
whether patients with TNBC were more likely to choose mastectomy over lumpectomy 
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TNBC has been the subject of intensive research on new therapeutic approaches in
recent years [3]. The development of targeted cancer therapies, often in combination with
established chemotherapy, has been applied to a few new clinical studies [8,9]. Therefore,
there is an urgent need to develop novel therapeutic options. Capecitabine has been used in
combination with docetaxel, ixabepilone, doxorubicin cyclophosphamide, and paclitaxel in
metastatic TNBC [1–8]. Many studies have been performed to determine whether patients
with TNBC were more likely to choose mastectomy over lumpectomy [7]. Results revealed
that the TN status, while being associated with younger age and higher-grade tumors, did
not impact the patients’ choice of surgical treatment [5–7]. Although TNBC tends to be more
aggressive, decision-making for surgery likely rests on more traditional clinicopathological
variables and patient preferences in disputative TNBC [6]. Traditionally, radiotherapy
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is administered in TNBC, as in other breast cancer subtypes, following mastectomy or
conservative breast surgery (CBS); however, this issue remains controversial [10].

As TNBC is a rapidly growing and locally aggressive cancer, CBS followed by radia-
tion therapy in early stage (T1–2N0) may not be equivalent to mastectomy as in other types
of BC [10]. Based on the results of metastatic lesion biopsies, TNBC-associated molecu-
lar targets and their small molecule inhibitors are shown in Figure 3. In addition to the
intrinsic evolutional drive in TNBC, anticancer treatment serves as a source of selection
pressure [10,11]. To this date, it remains controversial whether chemotherapy resistance
emerges from the selection and expansion of rare pre-existing subclones (adaptive resis-
tance) or from the induction of new mutations (acquired resistance) [11]. Currently, the
treatment options for TNBC are limited, because TNBC tumors are not sensitive to hormone
therapy and TNBC-specific drug targets are lacking. Some common chemotherapeutic
agents show limited efficacy [2,6,10,11]. Therefore, the development of therapeutic options
for TNBC is urgently required. In this review, we discuss the diverse TNBC subtypes
and examine therapeutic strategies for these subtypes by focusing on platinum-based
therapy and the potential of poly-ADP ribose polymerase 1 (PARP1), androgen receptor
(AR), vascular endothelial growth factor receptor (VEGFR), and epidermal growth factor
receptor (EGFR) under specific clinical conditions, as shown in Figure 3.
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Figure 3. Representation of TNBC-associated molecular targets and their small molecule inhibitors.
The arrows represent excitatory regulation, Reversible arrows represent reversible effect of regulation
and the headed line arrows represent inhibitory effects.

2. Platinum-Based Chemotherapy

BL1 anchorages a deficiency in HR (homologous recombination) repair, which is
mainly driven by mutations or epigenetic changes in the BRCA1/2. The BL2 subgroup, on
the other hand, is exclusively improved in development issue signaling pathways such
as EGF, NGF, and MET pathways [12–16]. Consequently, directing DNA repair deficit by
DNA damage mediators looks to be a gifted action for BL-TNBC. Satisfactory response
rates to platinum-based chemotherapy have been related to low BRCA1 mRNA levels and
high BRCA1 methylation [12–16]. Platinum-based chemotherapy has been reported to
increase the pathological complete response (pCR) rate in TNBC patients [15]. A phase III
randomized clinical trial was conducted; the treatment included six cycles of paclitaxel
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plus carboplatin (PCB) with a standard-dose regimen of three cycles of cyclophosphamide,
epirubicin, and fluorouracil followed by three cycles of docetaxel (CEF-T) [NCT04127019].
A total of 647 patients (mean (SD) age, 51 (15) years) with operable TNBC were randomized
to receive CEF-T (n = 322) or PCB (n = 325). At a median follow-up period of 62 months,
the DFS was longer in patients administered PCB than in patients administered CEF-T
(5-year DFS, 86.5% vs. 80.3%, hazard ratio (HR) = 0.65; 95% CI, 0.44–0.96; p = 0.03) [15,16].
Safety data were consistent with the known safety profiles of relevant drugs. The primary
endpoint was disease-free survival (DFS). Secondary endpoints included overall survival,
distant DFS, relapse-free survival, DFS in patients with germline variants in BRCA1/2 or
homologous recombination repair (HRR)-related genes, and toxicity [14,16]. Platinum salts
have been increasingly tested for TNBC in combination with various other chemotherapy
drugs (e.g., gemcitabine, which masquerades as cytidine and inhibits DNA synthesis) [12].
Moreover, identifying predictive biomarkers is imperative for the selection of appropriate
patients for platinum-based regimens in the adjuvant setting.

3. Targets of TNBC under Active Clinical Evaluation
3.1. Poly (ADP Ribose) Polymerase Inhibitors

PARP inhibitors are actively involved in HR-repair deficiency and responding to ss-
DNA damage and continue genomic integrity by using BER (Base Excision Repair Mech-
anism) [12,13,17]. Ds-DNA damage is typically repaired via HR, which requires normal
functions of the tumor suppressor proteins BRCA1/2 [17]. Thus, the use of PARP inhibitors
shows promise in the treatment of TNBC with HR deficiency; this approach does not result
in side effects on remaining normal cells [18]. Olaparib (a PARP inhibitor) has been re-
ported to prevent the development of BRCA-related metastatic tumors [18]. PARP plays an
important role in maintaining the genome stability, chromosome number, DNA repair pro-
cess, and cell cycle and transcription regulation, as shown in Figure 4 [19]. PARP inhibitors
are novel targeted anticancer drugs, and many clinical studies on PARP inhibitors have
been accomplished. Various agents, such as olaparib (AZD2281, AstraZeneca/KuDOS)
and BSI-201 (BiPAR Sciences/Sanofi Aventis), are currently in the initial stage of clinical
trials, as shown in Table 1.
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Table 1. Structures and efficacy of PARP inhibitors currently under clinical evaluation for TNBC.

Name Mechanism Clinical Efficacy Type of Patent Status NCT Number

AZD2281,
LYNPARZATM, and

Ku-0059436

PARP1/2 inhibitor
(Selective)

HER2-negative
treated mTNBC, PARP

Inhibitor,
BRCA

Mutated

Olaparib alone, with
combination,

durvalumab MEDI4736
against
PD-L1

Phase I/II

NCT00679783
NCT03544125
NCT02484404
NCT03167619
NCT02681562
NCT02484404

Inhibitor of
Ataxia Telangiectasia

and
WEE1 inhibitor

Olaparib or
olaparib in

combination with
AZD6738 Mutated

(ATM)
and AZD1775

in patent with TNBC

Phase II NCT03330847

Inhibitor of
Ataxia Telangiectasia

Olaparib with radiation
therapy, after

chemotherapy in a
patient with TNBC.

Phase I NCT03109080

Inhibitor of
PD-L1

Olaparib with
atezolizumab

in TNBC
Phase II NCT02849496

Inhibitor of
germline BRCA

mutated

Olaparib with
paclitaxel and

carboplatin in TNBC
Phase II/III NCT03150576,

NCT02789332

Inhibitor of VEGFR
tyrosine

kinase in recurrent
TNBC

Olaparib with
AZD2171 orally Phase I/II NCT01116648

Inhibitor of BKM120
Olaparib with PI3K
inhibitor, BKM120
in recurrent TNBC

Phase I NCT01623349

Inhibitor of heat shock
protein 90 inhibitor

Olaparib with
onalespib

in
TNBC

Phase I NCT02898207

mTORC1/2 inhibitor or
Oral AKT inhibitor

Olaparib with
AZD2014,
in TNBC

Phase I/II NCT02208375

Veliparib PARP1/2 inhibitor

Inhibitor of EGFR and
HER2, BRCA

tyrosine
kinase inhibitor

Veliparib in
combination

with
cyclophosphamide

Phase II and failed
in phases
III trials

NCT01306032

Veliparib alone Completed phase I
study of NCT00892736

Veliparib in
combination

with carboplatin

Completed phase I
study NCT01251874

Veliparib with
vinorelbine Completed phase I NCT01281150

Veliparib with cisplatin Completed phase I NCT01104259

Veliparib with
pegylated Completed phase I NCT01145430

Veliparib with lapatinib Phase I NCT02158507

Veliparib in combined
with irinotecan HCl Phase I l NCT00576654

Veliparib with
cisplatin Phase II NCT02595905

Veliparib plus
carboplatin Phase III NCT02032277
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Table 1. Cont.

Name Mechanism Clinical Efficacy Type of Patent Status NCT Number

Iniparib

BSI-201 and
SAR240550

(competitive PARP
inhibitor)

Ability to form adducts
with many

cysteine-containing
proteins

Combination with
gemcitabine and

carboplatin.
Phase II

NCT00813956
NCT01045304
NCT01130259

Combination of
iniparib

with paclitaxel for
TNBC compared

to paclitaxel alone

Competed for
phase II NCT01204125

Iniparib with irinotecan Phase II trial of NCT01173497

The PARPi response is determined by the genetic status of a patient; APEX1, PCNA,
PCLB, RPC1, RPC3, RPC4, RPA1, and FEN1 have been linked with PARPi, HR, BRCA
mutations, and DNA damage response; however, patient-derived xenograft models are
required to analyze PARPi sensitivity in TNBC, as shown in Figures 3–5. The clinical impact
of olaparib, an oral PARPi, has been investigated in phase I trials (NCT04239014) in BRCA-
mutated patients with advanced tumors [13–15]. Pharmacokinetic and pharmacodynamic
data confirmed PARP inhibition, and no adverse effects were observed. Additionally, a
cohort-type, multicentric, phase II clinical trial (NCT02734004) was performed to determine
the efficacy and tolerability of olaparib in patients with BRCA1- and/or BRCA2-deficient
advanced breast cancer [14,15]. The majority of the patients harbored BRCA1 mutations,
and more than 50% presented with TNBC. Olaparib has also been evaluated in phase III
BC trials [9,13–15].
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Rucaparib is an effective inhibitor of PARP1, PARP-2, and PARP-3 in BRCA-mutated
patients (germline and/or somatic) [17–20]. Rucaparib was also found to be effective in
HR-deficient patients. Rucaparib is considered in monotherapy treatment of adults with
platinum-sensitive tumors, patients who have been treated with two or more prior lines of
platinum-based chemotherapy, and patients who are unable to tolerate further platinum-
based chemotherapy. The efficacy and safety of rucaparib in patients with HER2-negative
metastatic breast cancer were associated with a BRCAness phenotype and/or a somatic
BRCA mutation [20]. Patients received 600 mg orally for 21 days or up to the development
of disease [18,19]. The primary endpoint was the clinical benefit rate, and the secondary
endpoints included PFS, overall survival, safety, and prognostic value of the BRCAness
signature. Additional studies were performed to determine the number of sporadic TNBC
patients likely to benefit from rucaparib treatment. Rucaparib, a PARPi, was evaluated and
approved by the Food and Drug Administration (FDA) in 2016 for patients with germline
BRCA mutation (gBRCA) [20].

Talazoparib has also been approved for patients with gBRCA mutation [19]. Currently,
PARP inhibitors are considered in various combination treatments with cytotoxic agents
and radiotherapy. PARP inhibition is studied in patients with the BRCAness phenotype,
which could lead to effective clinical management in patients with TNBC. Since 30% of
sporadic tumors possess the BRCAness phenotype, clinical trials must investigate whether
there is an increased antitumor effect when combining these agents, with manageable
side effects. When pharmacodynamic assays are generally applied in treatment with
PARP inhibitors, under- and over-dosing could be prevented; however, this concept needs
prospective clinical validation.

Developing effective clinical strategies and increasing PARPi sensitivity may help
overcome drug resistance. PARPi has been reported to promote radiosensitization in an
animal model as well as in cell lines [13–15]. Preclinical model systems showed increased
radiosensitivity due to HR restoration via 53BP1 pathway inactivation. HR is a complex pro-
cess, requiring a myriad of proteins [12]. The MRN-complex, composed of MRE11, Rad50,
and Nbs1, plays several roles in the DNA damage response. The most well recognized is
the role of the MRN-complex, which acts as a sensor of DSBs to initiate HR following their
detection [12,13,17]. The MRN-complex is rapidly recruited to the sites of DSBs, facilitating
the recruitment and activation of ATM kinase and initiating the subsequent ATM-mediated
phosphorylation of each member of the MRN-complex. This promotes further recruitment
of the MRN-complex and initiates ATM-dependent downstream signaling [18–20].

It was observed that BRCA1-mutated tumors led to drug resistance due to BRCA1-
independent HR restoration and sensitization to radiotherapy [10]. PARPi was also used in
combination with HSP90 inhibitors, WEE1 inhibitors, and ATR/CHK1 inhibitors. HSP90
plays an important role in BRCA1 function [13]. The HSP90 inhibitor (7-dimethylaminoethy-
lamino-17-demethoxygeldanamycin) reverses the resistance state by decreasing the levels
of BRCA1 protein [15]. WEE1 inhibitors and ATR/CHK1 treatment also play an important
role in reversing PARPi resistance. [18] BSI was investigated as a monotherapeutic agent
and in combination with other DNA-damaging anticancer agents in a phase I clinical trial
(NCT03524261). Consequently, PARP activity was found to be suppressed [12,15].

3.2. EGFR

EGFR is a transmembrane receptor that stimulates growth factor signaling pathways
as shown in Figure 3. EGFR receptors, such as HER1, HER2, HER3, and HER4, actively
participate in cell cycle regulation, differentiation, proliferation, and survival [19]. TNBC
tumors are widely assessed as basal-like tumors, because of the overexpression of EGFR and
reduced expression of BRCA1 and miR-146a. EGFR-targeted therapies are based on tyrosine
kinase inhibitors (TKIs), monoclonal antibodies, and combination chemotherapy [20].
However, ongoing clinical trials for the same have revealed limited responses, and many
EGFR inhibitors are currently undergoing clinical trials. Combined therapy with afatinib
and dasatinib has been used to inhibit both ERK and Akt signaling. Several patients with
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TNBC do not respond to metastatic disease. [20,21]. Dasatinib is an Src family kinase
inhibitor that prevents cell cycle progression, proliferation, and translocation of EGFR [21].
Cetuximab and ixabepilone are microtubule-targeting drugs that are effective in patients
with mTNBC [20]. Cetuximab inhibits the growth of TNBC tumors by blocking the ligand-
induced phosphorylation of EGFR. Lapatinib and gefitinib are EGFR-TKIs that have also
shown anti-proliferative activity in studies [20,22,23]. Investigations of PI3K, MEK1/2, Akt,
and small interfering RNA are also molecules/pathways as shown in Figure 3. Monoclonal
antibodies have shown EGFR antitumor activity by inhibiting cell signaling pathways,
dimerization, and ligand receptors [15]. Neratinib, an irreversible pan-HER inhibitor,
has shown effective responses in clinical trials (NCT01953926) [15,20]. The targeting of
MET, a regulator of EGFR tyrosine kinase phosphorylation, has been combined with
fulvestrant in HR-positive BC [19,20]. Erlotinib, a TKI, in combination with rapamycin
can reduce tumor growth [3,16]. High expression of the RAS/MEK/ERK pathway has
been observed in patients with TNBC, and this signaling pathway may be an effective
therapeutic target for TNBC as well [24,25]. Selumetinib and gefitinib can inhibit cell cycle
arrest and apoptosis and have shown significant results in TNBC cell lines [24–26]. Further,
the tumor microenvironment has been investigated as a novel therapeutic target. Thus,
further investigations are required to understand EGFR-based targeted therapies and the
adaptive immune system in patients with TNBC as shown in Figure 3.

3.3. Fibroblast Growth Factor (FGF)

The fibroblast growth factor receptor (FGFR) signaling cascade plays a pivotal role
in cell proliferation, differentiation, apoptosis, and migration [27,28]. FGF ligands bind
to FGFRs, leading to the dimerization and regulation of the PI3K/AKT, MAPK, STAT,
IP3-Ca2+, and DAG-PKC pathways as shown in Figure 3. Despite widespread preclinical
analysis on all main RTKs (Figure 3), limited studies have emphasized the possible benefits
of directing c-MET, AXL, and the EGFR family of RTKs in treating TNBC patients [29].
c-MET and AXL cooperate physically in TNBC cells, AXL suggestively expands EGFR
signaling and limits the response to EGFR-targeted inhibitors in TNBC cells [30]. AXL
systems form a complex with additional HER family members, as well as with c-MET and
PDGFR in TNBC cells, further suggesting a widespread role of these RTKs in TNBCs [31,32].
FGFR2 is amplified in TNBC, and interference with FGF signaling using FGFR inhibition
has been shown to significantly impair tumor formation in xenografts, further suggesting
that it may be a viable target for the treatment of a subset of TNBCs [32,33]. Lucitanib has
been investigated for its effect against FGFR1 amplification in xenograft models, and phase
II clinical trials (NCT02109016) have shown a significant objective response rate (ORR)
in patients with HER2-negative, HR-positive, and high FGFR1 expression [34]. Clinical
trials on rucaparib, a VEGF and PARP inhibitor, are underway. The clinical potential of
NVP-BGJ398 and AZD4547, which are FGFR inhibitors, is under phase I clinical evaluation
(NCT01004224) [35]. AZD4547 has shown limited efficacy against FGFR1, FGFR2, and
FGFR3, and low efficacy against FGFR4 [36]. In phase II clinical trial (NCT01202591), the
efficacy and toxicity of fulvestrant were evaluated in ER-positive patients. In a phase III
clinical trial (NCT01795768), patients with esophageal cancer, lung carcinoma, and gastric
cancer overexpressing FGFR1 or FGFR2 were recruited [37]. The safety level was measured
by evaluating ERK phosphorylation [37]. Dovitinib (TKI258) is an inhibitor of multiple
kinases, including FGFR, VEGFR, and platelet-derived growth factor receptor (PDGFR); its
efficacy has been proven in HER2-negative metastatic breast cancer (NCT00958971), and
it inhibits the invasion of MDA-MB-231(SA) cells [38,39]. E-3810 inhibits FGFR1, FGFR2,
CSF1R, VEGFR1, VEGFR2, and VEGFR3I [40]. Ponatinib inhibits BCR-ABL and its activity
has been evaluated in BC cell lines in vitro [41]. AP24534 inhibits the phosphorylation of
FGFR; however, further clinical evaluation is required to determine its efficacy. GP369 is a
potent inhibitor of FGFR2 in cancer cells in vitro [42]. Lenvatinib is a potential molecular
target of KIT, PDGFR-α, and FGFR, and it shows antitumor activity in HCC (hepatocellular
carcinoma) by targeting FGF/FGFR signaling; however, further investigation into its anti-
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FGFR activity is required [43]. Infigratinib is a pan-FGFR inhibitor, a phase II clinical trial
(NCT03773302) has shown significant results, efficacy was compared with gemcitabine
and cisplatin in a patient with TNBC (FGFR2 gene fusions and translocations) [44]. Thus,
further development and evaluation of FGFR inhibitors using combination therapy can be
an effective targeted therapeutic strategy for patients with TNBC.

3.4. AR

AR is expressed in TNBC tumors and plays a role in suppressing apoptosis and
cell proliferation as shown in Figure 3 [45]. AR is activated by signal transduction in an
ERK-dependent (ERKD) or independent manner. In ERKD AR signaling, cytoplasmic AR
interacts with Src proteins, Ras GTPase, and phosphoinositide 3-kinase (PI3K) TNBC as
shown in Figure 3 [46]. AR-supplemented TNBC cell lines commonly transmit PI3KCA
mutations, which make them very effective for PI3K/mTOR inhibition. AR mutations
in the kinase domain increase PTEN expression [46–49]. Increased PTEN expression
regulates the expression of protein killin (KLLN) and promotes p53 and p73 expression,
subsequently augmenting apoptosis [50,51]. GATA-3, an important transcription factor,
is involved in luminal cell differentiation and restricts the effects of drugs by enhancing
ER signaling activity [49]. Further, GATA-3 expression has been closely associated with
apocrine TNBC [49]. The antagonist bicalutamide was the first AR-based drug that was
clinically evaluated in 2013; however, limited efficacy and adverse effects, such as limb
edema, fatigue, and hot flashes, were observed. Enzalutamide has been clinically evaluated
in patients with AR-positive TNBC, and the most common adverse effects observed were
fatigue and nausea [52]. The PFS and safety of abiraterone, a selective inhibitor of CYP17
was clinically evaluated, and hypokalemia and hypertension were the most common
adverse events. A clinical trial (NCT01889238) of bicalutamide and palbociclib showed
effective clinical data for their administration alone and in combination with other drugs
in patients with TNBC [53]. Seviteronel is a CYP17-L inhibitor and is in phase II clinical
development (NCT02580448) for TNBC treatment [54].

3.5. PDGF/VEGFR

The PDGF (platelet-derived growth factor) family is composed of four members,
PDGF-A, PDGF-B, PDGF-C, and PDGF-D, which bind either as homo- or heterodimers
to one of the two RTKs, PDGFR-/or PDGFR-b, to regulate cell migration, proliferation,
and survival [55]. Overexpression of PDGF and VEGF is highly expressed in TNBC [55,56].
PDGF signaling induces self-renewal capacity in differentiated cancer cells, enabling them
to behave like cancer stem cells via PKC/-dependent activation of FOS-like antigen 1
(FRA1) [56]. Imatinib is approved by the US FDA for the treatment of chronic myeloid
leukemia (CML) and targets the phosphorylation of RTKs including PDGFR-b and v-Kit
Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (c-KIT) [57]. Both the mono-
clonal antibody bevacizumab, which specifically targets VEGF, VEGFR is a major factor
responsible for vasculogenesis and angiogenesis as shown in Figure 3 [58]. VEGF can
induce immunosuppression by inhibiting the development of cytotoxic T lymphocytes
and dendritic cells and increasing the recruitment and proliferation of immunosuppressive
cells [59]. Sixty percent of TNBC cases show high VEGF-A expression, and mesenchy-
mal stem-like TNBC tumors show high VEGF-C expression; in such cases, survival is
poor [60]. Bevacizumab and ramucirumab block the activation of VEGF TNBC as shown
in Figure 3 [61]. In a phase III clinical trial (NCT01004172) in patients with TNBC and
metastatic tumors, bevacizumab was investigated in combination with epirubicin, cy-
clophosphamide, and docetaxel. Although more substantial results were observed against
HER2-negative metastatic tumors using combination therapy than monotherapy, the results
were not statistically significant [62]. Another clinical trial of bevacizumab in combination
with a taxane, gemcitabine, capecitabine, or vinorelbine revealed enhanced ORR [61,62].
Bevacizumab was also clinically evaluated in combination with nab-paclitaxel, carboplatin,
and bevacizumab in patients with mTNBC [61,62]. However, the clinical outcomes of the
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above-mentioned trials (NCT00861705, NCT00608972, NCT02456857, NCT01094184, and
NCT00472693) have not been reported [63]. Aflibercept is a tyrosine kinase that acts on
receptor tyrosine kinases. Ramucirumab in combination with docetaxel is also undergoing
a clinical trial. Temsirolimus, an mTOR inhibitor, has shown significant improvements in
ORR [64]. Sorafenib is a VEGFR TKI that induces a significant improvement in patients
with TNBC; however, it does not show efficacy in combination with bevacizumab (BRE06-
109) [65]. The efficacy of cediranib (AZD2171) with olaparib has been tested in a phase
I trial; however, no significant clinical benefits have been observed. Apatinib has been
clinically examined for the treatment of mTNBC [66]. Cabozantinib (XL184) inhibited the
growth and invasion of TNBC in preclinical models as a monotherapeutic agent with lim-
ited clinical benefits [67]. Sunitinib is an inhibitor of PDGFR, c-Kit, and colony-stimulating
factor 1 receptor; TNBC progression has been observed after withdrawal of sunitinib. Inter-
estingly, considerable progress has been made in understanding the regulation of VEGFR-2
expression [68]. Clinical evaluation of the above-mentioned drugs in combination or alone
can be explored as an effective therapeutic strategy for TNBC as shown in Figure 3.

3.6. Other Promising Therapeutic Targets

Targeting various pathways has become a major focus for an anticancer chemother-
apeutic agent such as DNA damage-induced cell cycle arrest, DNA damage checkpoint
kinases including CHK1/2 (checkpoint kinase 1/2), ATR (ataxia telangiectasia and rad3-
related protein), and ATM (ataxia telangiectasia mutated) [69–73].

3.6.1. Inhibition of CHK1/2

CHK1 is essential for checkpoint-mediated cell cycle capture in reply to DNA damage
or the presence of unreplicated DNA [70]. CHK1 is overexpressed in rapidly dividing
and gnomically unstable cells, as is predictable in TNBC cells. Based on the genomic
and clinical trial data analysis that CHK1 is a draggability target, other CHK1 inhibitors
AZD7762 (NCT00937664), PF-477736 (NCT03057145), SCH900776 (NCT00907517), and
LY2606368 (NCT02203513) are currently under clinical trials. CHK2 inhibitor LY2606368
(NCT02124148) together with chemotherapy is currently under trial in patients with
TNBC [70].

3.6.2. Inhibition of CDKs

Cyclin-dependent kinases (CDKs) are triggered via cyclins that allow progress through
the cell cycle. CDKs are repressed by logically happening CDK inhibitors, but in carcino-
genesis, CDK inhibitors are overexpressed and lead to uncontrolled cell proliferation [72].
Numerous CDK inhibitors have been developed and directly inhibit CDK2, CDK4, and
CDK6, and inhibit apoptosis. CYC202 has been shown to have in vivo activity against
CDK1 and CDK2 in TNBC [30]. CDK4/6 has shown inhibition in PIK3CA-mutant xenograft
tumor models and CDK4/6 inhibition has shown growth retardation. CDK activity is
required for resection of DSBs (double-stranded break) and to repair damage by HR (ho-
mologous recombination) [30,72]. The inhibition of CDK1 sensitizes for extending the
utility of PARP inhibitors to BRCA1/2-proficient cells.

3.6.3. PI3K Inhibitors

The PI3K/AKT signaling pathway is frequently hyperactivated in TNBC due to
PIK3CA or AKT1 mutations and/or PTEN inactivation [73]. AKT inhibition is increased
chemosensitivity in TNBC, eventually overcoming chemoresistance in this disease subset.
Hence, several trials have investigated AKT inhibitors in association with chemotherapy for
TNBC [73]. Two randomized placebo-controlled phases II trials evaluated the combination
of an ATP-competitive inhibitor such as ipatasertib and capivasertib with weekly paclitaxel
for the first-line treatment of advanced TNBC [74]. The PAKT trial randomized 140 patients
to receive capivasertib plus paclitaxel (n = 70) or placebo plus paclitaxel (n = 70). The pri-
mary endpoint was median PFS in the intention-to-treat population and it was numerically
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longer in the experimental arm (5.9 months) compared to the control arm (4.2 months)
(HR 0.74; 95% CI: 0.5–1.08, one-sided p = 0.06) [75]. However, progression-free survival
was significantly extended with capivasertib in the PIK3CA/AKT1/PTEN mutated sub-
population (9.3 months vs. 3.7 months; HR 0.3; 95% CI: 0.11–0.79; p 0.1). Updated results
after 40 months of follow-up showed a favorable trend in terms of OS for capivasertib plus
paclitaxel, regardless of the PIK3CA/AKT/PTEN mutational status (median OS in the
overall population 19.1 months vs. 13.5 months; HR 0.7; 95% CI: 0.47–1.05; p = 0.085) [74].
Additionally, the combination of ipatasertib with a non-taxane-based chemotherapy in
mTNBC patients is currently under evaluation in the phase II PATHFINDER trial [75,76].
In the early-stage setting, a phase II randomized trial evaluated the use of AKT inhibitors
in TNBC.

4. Nanomedicines for TNBC

Nanotechnology can be used to develop nanoparticles (NPs) with functional prop-
erties for therapeutic applications [77,78]. These functional properties typically include
surface charge, particle size, and conformation for specific targeted drug delivery using
a receptor-specific target in a cancerous cell [78]. Functionalized NPs are fabricated from
various materials, such as gold, silver, diamond, and copper (Table 2). Antibodies (anti-
EGFR and anti-VEGFR) are considered the best class of targeting ligands [61]. Antibodies
conjugated with fluorescent NPs and radio-imaging contrast agents can be detected using
fluorescence microscopy and ultrasonography [79]. A preclinical study on TNBC xenograft
mice demonstrated good visualization of TNBC tumor virus-like particles produced by
the expression of viral structural genes [80]. Therefore, Nanomedine may provide hope
for TNBC treatment by improving on classical chemotherapy. A preclinical study in an-
imal models with TNBC demonstrated that labeled antibodies show a good treatment
response [80,81]. Various nanomedicines for TNBC theranostics are shown in Table 3.
Liposome-based NPs carrying doxorubicin and rapamycin with cyclic octapeptide LYX
(Cys-Asp-Gly-Phe (3,5-DiF)-Gly-Hyp-Asn-Cys) have been investigated. Irinotecan (SN-38)
with NK012 (NCT00951054) micelle is currently undergoing a phase II clinical trial in
patients with TNBC (Table 3) [64]. siRNA-conjugated poly(amidoamine) dendrimers have
shown the downregulation of the TWIST transcription factor in patients with TNBC [81,82].
The Gd-DOTA (42-G4 PAMAM-DL680) dendrimeric agent has been inserted hypoder-
mically into mice for imaging and drug delivery purposes. L-lactic-co-glycolic-acid, a
polymeric nanoparticle, shows a high degree of tumor inhibition in vivo in TNBC mouse
models [83]. Poloxamer (P188) with succinobucol inhibits vascular cell adhesion molecule-1
invasion and cell migration. RGD-SLN or RGD-functionalized solid lipid NPs have shown
efficacy in a TNBC animal model [77,83,84]. Differential overexpression of platelet-derived
growth factor (PDGF) receptor in the TNBC cell line was detected by using conjugated
gold NPs [85]. Many clinical trials of drugs with functionalized NPs are ongoing and are
summarized in Table 3 [86]. However, such functionalized targeted therapy and diagnosis
still need to be improved and combined with drug delivery for effective TNBC therapeutic
applications.

Table 2. Nanomedicine for triple-negative breast cancer theranostics.

Nanoparticle Properties Application Status Evidence References

Quantum dots High fluorescent
intensity

Quantitative detection
and Imaging in TNBC Clinical ongoing

Applied in TNBCs
patent for prognosis in
immunohistochemistry

(IHC)
fluorescent signaling

[87]

Gold nano-stars Increased
optoelectronics

Therapy
Photodynamic
Drug delivery
Hyperthermia

Experimental
ongoing

sT1-signal for RMI
imaging and

photothermal therapy
for TNBC

[88]
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Table 2. Cont.

Nanoparticle Properties Application Status Evidence References

Nanocages
Used to deliver

peptides, nucleic acids,
and drugs

Hyperthermia Imaging
Immunotherapy
Photodynamics

Clinical
ongoing

Used in therapy with
gold nanocages on

TNBC
[83]

Nanorods
Increased magnetic-

optoelectronics
capacity

Immunotherapy
Photodynamics

Hyperthermia Imaging
Drug Delivery

Experimental/clinical
ongoing

Deliver cisplatin
therapy on TNBC [88]

Nanocomposites

Increased
nucleic acids, peptides,

and drug-releasing
with enhanced

specificity.

Theranostics
Gene Therapy

Immunotherapy
Photodynamic

Clinical ongoing

On using
immunotherapy

nanocomposites vehicle
on TNBC

[89]

Nano-matryoshkas
Nanoparticles can

deliver multiple drug
payloads

Imaging and drug
delivery

Clinical
ongoing

Hyperthermia used in
MDA-MB-231 murine

xenograft study
[90]

Superparamagnetic
iron oxide
nanoparticles
(SPIONs)

SPIONs have
ability to spin

alignment to an
external

magnetic field

SPIONs can apoptosis
by using hyperthermia

as well as real-time
images of the tumors

Clinical ongoing
SPIONs are often used
in TNBC MDA-MB-231

therapeutics
[91]

Fluorescent
nano-diamonds
(FNDs)

Tunable-enhanced
optoelectronics

Enhance sensitivity and
specificity

Samarium-183 and
Strontium-89,

Iodine-131,
Technetium-99

Nuclear medicine for
enhancing

Clinical ongoing
Nanomaterials often

used in MDA-MB-231
theranostics

[75,76]

Core-shell
nanoparticles

Enhancing
photodynamic to

generate apoptosis for
cancer theranostics

Enhanced
frequencies to the

magnetic field

Clinical
Ongoing

SPION intravenously
for cancer theranostics [76,77]

AgNPs Ag affects cellular
microenvironment

Therapeutics by using
cytotoxicity Clinical ongoing

AgNP reduces TNBC
growth in radiation

therapy
[78]

IONP
(Iron oxide
nanoparticles)

Increased
optoelectronics and
magnetic features

Produce strong contrast
images in MRI in T1

and T2

Clinical
ongoing

MRI diagnostic on
TNBC [79]

Table 3. Clinical trials in the area of nanotechnology and TNBC.

Table 01525966. Interventions with Drugs Status ClinicalTrials.gov Identifier

Trial of Neoadjuvant Chemotherapy
+Carboplatin + NAB-Paclitaxel

Carboplatin,
Paclitaxel Albuminstabilized

nanoparticle laboratory biomarker
analysis

Phase II
Patients with Locally Advanced

and Inflammatory TNBC
NCT01525966

A Randomized, Placebo-Controlled,
Double-Blind of Nanoparticle
Albumin-Bound Paclitaxel
(Nab-Paclitaxel, Abraxane®) With or
Without Mifepristone for Advanced,
Glucocorticoid Receptor-Positive,
TNBC

Drug: mifepristone
Other: placebo

Drug: nab paclitaxel
Phase II Trial NCT02788981

Study of CORT125134 in Combination
with Nab-paclitaxel in Patients with
Solid Tumors

Drug: CORT125134 with nab
paclitaxel Phase 1/2 NCT02762981

Combined Targeted Therapies for
Triple-Negative Advanced Breast
Cancer—A of Weekly Nab-Paclitaxel
and Bevacizumab Followed by
Maintenance Targeted Therapy with
Bevacizumab and Erlotinib

Drug: paclitaxel albumin
stabilized nanoparticle

formulation
Biologic: bevacizumab Drug:

erlotinib hydrochloride Other:
laboratory biomarker analysis

Phase II Trial NCT00733408
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Table 3. Cont.

Table 01525966. Interventions with Drugs Status ClinicalTrials.gov Identifier

Efficacy and Tolerability of
Nanoparticle Albumin-Bound
Paclitaxel (Abraxane) in Patients with
Metastatic Breast Cancer

Paclitaxel albumin stabilized
nanoparticle formulation phase -II NCT01463072

Alone ABT-888 in Patients with Either
BRCA 1/2 -Mutated Cancer Veliparib A Phase 1 NCT00892736

Pembrolizumab in Combination with
Nab-paclitaxel Followed by
Pembrolizumab in Combination with
Cyclophosphamide and Epirubicin in
Patients with TNBC

Drug: pembrolizumab
Drug: nab paclitaxel

Drug: epirubicin
Drug: cyclophosphamide

Phase II NCT03289819

Carboplatin, Abraxane, and
Bevacizumab in mTNBC

Abraxane
bevacizumab
carboplatin

A Phase II NCT00479674

AZD2281 (KU-0059436) Combined
with Carboplatin in BRCA1/2
Mutation Carriers

Drug: AZ2281+carboplatin Phase I NCT01445418

Trabectedin in mTNBC patient with
BRCA2 Mutation Carriers

Dexamethasone
trabectedin Phase II, NCT00580112

Nab®-Paclitaxel with Gemcitabine or
Carboplatin, as First-Line Treatment
in TNBC

Abraxane
Carboplatin Phase 2/3, NCT01881230

5. Immunotherapy

Immunotherapy for TNBC has accelerated the research on immuno-oncology drugs
as shown in Figure 6 [92,93]. The FDA has approved the combination of Tecentriq (ate-
zolizumab) and Abraxane (nab-paclitaxel) for the front-line treatment of patients with
metastatic PD-L1-positive TNBC as shown in Figure 3 and Table 4 [92,93]. Notably, the
2-year overall survival (OS) rates were higher in the PD-L1-expressing population at 51%
in the atezolizumab arm versus 37% in the as monotherapy (Tables 5 and 6) and combina-
tion therapy (Tables 4–6) [94–98]. Further, the combination of AKT and PARPi has been
approved for use as a potential immunotherapy pipeline for cancer.
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The combination of atezolizumab with nab-paclitaxel has been approved as front-line
therapy for patients with metastatic PD-L1-positive TNBC who have received at least 1 year
of either adjuvant or neoadjuvant taxane; many patients in this trial presented with de
novo metastatic diseases [97]. Impassion130 the trial showed a significant, though modest,
improvement in the PFS, but a marked difference in the OS [98]. The tumor microenvi-
ronment plays a role in immune cell functions and downregulates antitumor immune
responses. For instance, PD-1 and PD-2 are expressed in cytotoxic CD8+ T cells and pro-
mote cellular immunity against cancer cells as shown in Table 4 [99]. A phase I clinical
trial (NCT04157985) of pembrolizumab and avelumab, which are anti-PD-1 antibodies,
revealed partial ORR (objective response rate) in mTNBC (Table 4). High expression of
EGFR and PD-L1 is a common phenomenon in TNBC [100–102]. In immune cells (IC), PD-
L1 is expressed in CD11b+ myeloid cells such as dendritic cells and macrophages mainly
but also T cells and NK cells [94,103]. In the Impassion 130 investigating atezolizumab
in combination with nab-paclitaxel for mTNBC, PD-L1 IC expression was a stratification
parameter [97,98]. The subgroup of patients with PD-L1 > 1% (185/451 patients) benefited
particularly from atezolizumab, a trend toward a higher ORR was seen in patients with
PD-L1 IC+ vs. patients with PD-L1 IC− in the overall population (16.7% vs. 1.6%) [104].
Nevertheless, the FDA recently granted accelerated approval to atezolizumab in combina-
tion with nab-paclitaxel patients with unresectable locally advanced or metastatic TNBC
whose tumors express PD-L1 (PD-L1 IC ≥ 1% of the tumor area) [104]. A recent retro-
spective study examined PD-1 mRNA expression in 10,078 tumor samples representing
34 different cancer types from TCGA and found a significant correlation between PD-1
mRNA and the ORR following anti-PD-1 monotherapy, while PD-L1 tumor expression
by IHC or the percentage of TILs were not found to be associated with the response [104].
However, contrary to other tumor types like melanoma and lung cancer, in which recent
studies support TMB as a predictive biomarker for ICI efficacy, TMB was not demonstrated
as a predictor of ICI efficacy in BC, notably in the Impassion 130 study, but few data are
available about TMB and response to immunotherapy in BC [105]. The ORR was 21%, and
the disease control rate was 37%, suggesting a certain level of activity of pembrolizumab
in this subset of patients [100–102]. Moreover, early changes in circulating tumor DNA
levels may be associated with a response to ICI. Of note, no tumor-associated antigens
(TAAs) have been shown to be associated with the ICI response [102]. More specifically, a
translational analysis using single-cell RNA-seq revealed that a specific subset of T cells
(CD8+, resident memory) was significantly associated with improved patient survival in
early-stage TNBC [105]. Thus, for patients with PD-L1-positive disease, this is an important
therapeutic development.

MSI (microsatellite instability) is caused by dMMR (defective DNA mismatch repair)
genes and is categorized by an altered in repeated nucleotide sequences, which may
enhance to evasion of apoptosis, expansion of mutations, and tumorigenesis [106]. MSI is a
marker of dMMR. dMMR and MSI-H have been found in various tumors, such as uterine,
central nervous system, and adrenal gland tumors. Both dMMR and high-frequency
MSI (MSI-H) have been demonstrated as effective predictors of immunotherapy response,
dMMR/MSI-H has been associated with poor prognosis in individuals with colorectal
cancer who were insensitive to 5-fluorouracil (FU)-based adjuvant chemotherapy. However,
data on the prevalence and the prognostic significance of dMMR/MSI-H in BC is limited,
especially for TNBC. Although there have been studies on MMR/MSI status in breast
cancer, the number of cases is often small, with the largest cohort comprising 444 patients,
only 23 of which were TNBC. The proportion of MSI-H in these groups varied largely (from
0.2% to 18.6%) [106]. Therefore, further verification of the relationship between MMR/MSI
status and prognosis is needed.

Immuno-oncology (IO) is a novel approach to cancer treatment by the stimulation
of the body’s own immune system [107]. Immune checkpoint inhibitors (ICPis) have had
notable achievement across multiple malignancies, and are the most well-established IO
agents to date, with several approvals [107,108]. Biomarker testing for the programmed
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death-ligand 1 checkpoint target is mandatory earlier in treating some tumor types with
ICPis (e.g., pembrolizumab and atezolizumab). Combining IO agents with conventional
therapies has provided significant improvements in patient outcomes in some cases [109].
The two main challenges for IO agents are managing their toxicities and affording the
high cost of these novel therapies. In a recent study, pembrolizumab was administered
in a neoadjuvant setting, along with standard chemotherapy comprising paclitaxel and
carboplatin followed by doxorubicin, epirubicin, or cyclophosphamide [61]. Currently,
trials are investigating combination treatments with an AKT inhibitor [68,74]. One single-
arm study aims at randomizing patients to receive ipatasertib and a taxane with or without
atezolizumab (Tables 5–7) [94,97,98]. Other trials are examining AKT inhibitors, ipatasertib
and capivasertib, in combination with checkpoint inhibitors in patients with TNBC who
have alterations in the PI3K pathway [73]. The combination of immunotherapy with PARPi
is also of great interest [74]. The phase II/III MK-7339-009/KEYLYNK-009 trial is based on
randomized patients receiving gemcitabine/carboplatin and pembrolizumab, followed by
continuous chemotherapy and maintenance with pembrolizumab or pembrolizumab and
olaparib (Lynparza) [88–101].

In the OlympiAD study, olaparib has been shown to improve progression-free survival
compared with chemotherapy treatment of physician’s choice (TPC) in patients with a
germline BRCA1 and/or BRCA2 mutation (BRCAm) and HER2-negative mBC (metastatic
breast cancer) [110]. In the phase III OlympiAD study in patients with a germline BRCA
mutation and HER2-negative metastatic BC, a total of 205 patients were randomized to
olaparib and 97 to TPC. HR for OS with olaparib versus TPC in prespecified subgroups
were prior chemotherapy for mBC receptor status (triple-negative: 0.93, 0.62–1.43; hor-
mone receptor-positive: 0.86, 0.55–1.36); prior platinum (yes: 0.83, 0.49–1.45; no: 0.91,
0.64–1.33) [10]. Adverse events during olaparib treatment were generally low grade and
manageable by supportive treatment or dose modification. There was a low rate of treat-
ment discontinuation (4.9%), and the risk of developing anemia did not increase with
extended olaparib exposure [110]. The trial has enrolled patients with TNBC as monother-
apy and combination therapy as shown in Tables 5–7. Administering these agents earlier
during therapeutic action is also being investigated.

Table 4. Clinical trials of PD-L1 combination therapy with conventional cytotoxic chemotherapeutics targeting TNBC patients.

Drugs Tested Patients Combination with Phase Trial

Pembrolizumab Neoadjuvant treatment for TNBC

Cyclophosphamide
Paclitaxel Nab-paclitaxel

Doxorubicin
Carboplatin

I NCT02622074;

Pembrolizumab Metastatic TNBC (mTNBC) Gemcitabine
Carboplatin II NCT02755272

Pembrolizumab Neoadjuvant and Adjuvant
treatment for TNBC

Doxorubicin
Epirubicin

Cyclophosphamide Placebo
Carboplatin

Paclitaxel

III NCT03036488

Pembrolizumab Metastatic TNBC (mTNBC) Capecitabine
Paclitaxel I/II NCT02734290

Pembrolizumab Metastatic TNBC (mTNBC) Eribulin Ib/II NCT02513472;

Pembrolizumab Metastatic TNBC (mTNBC) Radiotherapy II NCT02730130

Pembrolizumab Metastatic TNBC (mTNBC) Cyclophosphamide II NCT02768701

Pembrolizumab Metastatic TNBC (mTNBC)

Paclitaxel
Gemcitabine
Carboplatin

Nab-paclitaxel

II NCT02819518;
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Table 4. Cont.

Drugs Tested Patients Combination with Phase Trial

Durvalumab Locally Advanced TNBC
Paclitaxe

Epirubicin
Cyclophosphamide

II NCT03356860

Durvalumab Nab-paclitaxel Epirubicin
Cyclophosphamide II NCT02685059

Durvalumab Clinical Stage I-III TNBC

Nab-paclitaxel
Dose-dense

doxorubicin/cyclophosphamide
(ddAC)

I/II NCT02489448

Durvalumab mTNBC patients Paclitaxel I/II NCT02628132

Durvalumab First-line chemotherapy
TNBC patients

Nab-paclitaxel + carboplatin +
tremelimmab+Gemcitabine +
carboplatin + tremelimumab

Ib NCT02658214

Durvalumab Metastatic TNBC (mTNBC)

Carboplatin Gemcitabine
Hydrochloride
Nab-paclitaxel

Neoantigen vaccine

II NCT03606967

Durvalumab mTNBC patent

Carboplatin
Paclitaxel

Oleclumab
(MEDI9447; anti-CD73)

I/II NCT03616886

Atezolizumab Advanced TNBC patient Paclitaxel Ib NCT01633970

Atezolizumab mTNBC patient Nab-Paclitaxel Placebo III NCT02425891

Atezolizumab Neoadjuvant treatment for TNBC Anthracyclin, Abraxane
Carboplatin, M PDL3280A III NCT02620280

Nivolumab mTNBC patient Cisplatin
Romidepsin I/II NCT02393794

Table 5. Monotherapy and chemotherapy anti-PD-1/L1 trials in metastatic TNBC.

Regimen Prior Lines PD-L1 Number of
Participants

ORR (Overall
Response
Rate), %

Median PFS
(Progression-

Free
Survival)

(95% CI), mo

Median OS
(Overall
Survival)

(95% CI), mo

Trial/ClinicalTrials.gov
Identifier

Monotherapy trials

Pembrolizumab

44% ≥3 (min 1) 1 or – 170 5.3 2.0 (1.9–2.0) 9.0 (7.6–11.2)
KEYNOTE-086A

NCT0244700340% ≥3 (min 1) + (CPS ≥1) 105 5.7 2.0 (1.9–2.1) 8.8 (7.1–11.2)

50% ≥3 (min 1) – 64 4.7 1.9 (1.7–2.0) 9.7 (6.2–12.6)

Pembrolizumab Median: 2 (0–9) 1 (stroma≥%
TC) 32 18.5 1.9 (1.7–5.5) KEYNOTE-012

NCT01848834

Pembrolizumab 0 + (CPS ≥1) 84 21.4 2.1 (2.0–2.2) 18.0 (12.9–23.0) KEYNOTE-086B
NCT02447003

Pembrolizumab
vs.

chemotherapy

1–2 (prior
taxane 1)

anthracycline

+ (CPS ≥1) or – 622 9.6 vs. 10.6
2.1 vs. 3.3;
HR, 1.60

(1.33–1.92)

9.9 vs. 10.8;
HR, 0.97

(0.82–1.15)

KEYNOTE-119
NCT02555657

CPS ≥1 405 12.3 vs. 9.4
2.1 vs. 3.1;
HR, 1.35

(1.08–1.68)

10.7 vs. 10.2;
HR, 0.86

(0.69–1.06)

CPS ≥10 194 17.7 vs. 9.2
2.1 vs. 3.4;
HR, 1.14

(0.82–1.59)

12.7 vs. 11.6;
HR, 0.78

(0.57–1.06)

CPS ≥20 109 26.3 vs. 11.5
3.4 vs. 2.4;
HR, 0.76

(0.49–1.18)

14.9 vs. 12.5;
HR, 0.58

(0.38–0.88)

Avelumab Median: 2 (1–6)

+ or – 58 5.2 5.9 (5.7–6.9) 9.2 (4.3–NR)
JAVELIN

NCT01772004+ (≥10 IC) 9 22.2

– (≥10 IC) 39 2.6

Atezolizumab 58≥ 2 78% + (≥10 IC) 115 10 1.4 (1.3–1.6) 8.9 (7.0–12.6) NCT01375842
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Table 5. Cont.

Regimen Prior Lines PD-L1 Number of
Participants

ORR (Overall
Response
Rate), %

Median PFS
(Progression-

Free
Survival)

(95% CI), mo

Median OS
(Overall
Survival)

(95% CI), mo

Trial/ClinicalTrials.gov
Identifier

Chemotherapy combination trials

Pembrolizumab
+

eribulin

0–2 + or – 106 26.4 4.2 (4.1–5.6) 17.7 (13.7–NR)
ENHANCE-1
NCT025134720 + or – 65 29.2 4.9 (4.1–6.1) 17.7 (13.3–NR)

1–2 + or – 41 22.0 4.1 (2.1–6.2) 16.3 (12.4–19.2)

Nab-paclitaxel +
atezolizumab 0 (DFS ≥ 12 mo) + or – 902 56.0 vs. 45.9

7.2 vs. 5.5;
HR, 0.80

(0.69–0.92)

21.0 vs. 18.7;
HR, 0.85

(0.72–1.02)

IMpassion130
NCT02425891

0 (DFS ≥ 12 mo) + (≥1% IC) 369 58.9 vs. 42.6
7.5 vs. 5.0;
HR, 0.62

(0.49–0.78)

25.0 vs. 18.0;
HR, 0.71

(0.54–0.93)

Atezolizumab +
nab-paclitaxel 0–2 + or – 33 39.4 9.1 (2.0–20.9) 14.7 (10.1–NR) NCT01375842

Table 6. Resulted targeted therapy and novel immunotherapy agent anti-PD-1/L1 trials in metastatic TNBC.

Regimen Prior Line Biomarker Number of
Participants

ORR (Overall
Response
Rate), %

Median PFS
(Progression-
Free Survival)
(95% CI), mo

Median OS
(Overall
Survival)

(95% CI), mo

Trial/ClinicalTrials.gov
Identifier

Monotherapy trials

Niraparib
+pembrolizumab
(PARP inhibitors)

1–3

PD-L1 + or –,
BRCAm + or – 55 21 2.3 (2.1–3.9)

TOPACIO/
KEYNOTE-162
NCT02657889

BRCAm + or – 15 47 8.3 (2.1–NR)

BRCAm – 27 11 2.1 (1.4–2.5)

Nab-paclitaxel vs.
paclitaxel +

cobimetinib +
atezolizumab

(MEK inhibitors)

0 PD-L1 + or – 90 29.0 vs.
34.4

7.0 (3.7–12.8) vs.
3.8 (3.0–7.4)

NR (10.2–NR) vs.
11.0 (9.5–NR)

COLET
NCT02322814

Nab-/paclitaxel +
ipatasertib +

atezolizumab
(AKT inhibitors)

0 (DFS ≥
12 mo) PD-L1 + or – 26 73 Schmid AACR

NCT03800836

Olaparib +
durvalumab after 4

wk run-in
(PARP inhibitors)

≤ 2 Germline
BRCAm 17 58.8 4.9 20.5 MEDIOLA

NCT02734004

Intratumoral
c-MET

mRNA CAR T cells
(CAR T cells)

Any PD-L1 + or – 6 0 NCT01837602

NKTR-214 +
nivolumab

(IL-2 agonists)
0–2 PD-L1 + or – 38 13.2 PIVOT-02

NCT02983045

Table 7. Ongoing anti-PD-1/L1 novel immunotherapy trials in TNBC.

Regimen Line or Stage Primary Endpoint N Trial/ClinicalTrials.gov
Identifier

Chemotherapy (carboplatin +
gemcitabine, or capecitabine) ±

atezolizumab
0 (DFS ≥12 mo) OS 350 IMpassion132

NCT03371017

Olaparib (PARPi) ±
durvalumab: sporadic or

germline BRCAm

≤ 2 including current
platinum PFS 60 DORA

NCT03167619

Chemotherapy (carboplatin +
gemcitabine, or nab-/paclitaxel)

± pembrolizumab
0 (DFS ≥6 mo)

PFS (Progression-free
Survival), OS (overall

survival)
847 KEYNOTE-355

NCT02819518
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Table 7. Cont.

Regimen Line or Stage Primary Endpoint N Trial/ClinicalTrials.gov
Identifier

Paclitaxel ± atezolizumab 0 PFS 600 IMpassion131
NCT03125902

Olaparib (PARPi) ±
atezolizumab:

BRCAm (BRCA
mutation)-positive

any PFS 72 ETCTN
NCT02849496

Paclitaxel ± ipatasertib (AKTi) ±
atezolizumab (DFS ≥12 mo) PFS 450 IPATunity130

NCT03337724

Avelumab + binimetinib (MEKi)
or utomilumab

(IgG2 antibody) or anti-OX40
antibody

0–3 ORR 150 InCITe
NCT03971409

Paclitaxel ± pembrolizumab X4
+ SD-101 X 6→ AC x 4→

surgery
Stage II–III Estimated pCR TBD I-SPY 2

NCT01042379

PVX-410 vaccine +
pembrolizumab: HLAA2–

positive
>1 Immune 20 NCT03362060

Paclitaxel 1 durvalumab
±capivasertib (AKTi) or
danvatirsen (STAT3i) or
oleclumab (anti-CD73)

0 AE (adverse event) rate 120 BEGONIA
NCT03742102

Adjuvant neoantigen DNA
vaccine ±

durvalumab

RCB post NACT
(neoadjuvant

chemotherapy)
Safety 24 NCT03199040

Cyclophosphamide ±folate
receptor a vaccine

≥T1c/≥N1/RCB
(residual cancer burden) DFS 280 NCT03012100

Adjuvant PVX-410 vaccine +
durvalumab Stage II–III AE rate 22 NCT02826434

Adenovirus-mediated
expression of HSV (Herpes

simplex virus) thymidine kinase
+valacyclovir + SBRT

(stereotactic body radiation
therapy)→

pembrolizumab

>1 ORR 57 NCT03004183

Autologous TILs (LN-145) with
intravenous IL-2 0–3 ORR, AEs (adverse event) 10 NCT04111510

Cyclophosphamide→
mesothelin-targeted

CAR T-cell
>1 MTD (Maximum Tolerated

Dose) 36 NCT02792114

Gemcitabine 1 carboplatin 3 18
weeks→ nab-paclitaxel

+ durvalumab ± Neoantigen
vaccine

0 PFS 70 NCT03606967

5.1. Antibody-Drug Conjugates (ADCs)

Antibody-drug conjugates (ADCs) are immunoconjugate agents engineered to deliver
potent small molecules preferentially to cancer cells [111]. This novel approach combines
the specificity of a monoclonal antibody (mAb) with the high potency of small molecules
and has the potential to improve TNBC [111]. Since ADCs can provide a broader thera-
peutic window than conventional chemotherapy, combination therapy with other agents
is a potentially effective strategy to enhance synergy as well as target tumor heterogene-
ity [112,113]. For example, the combination of sacituzumab govitecan with PARP inhibition
in TNBC models in vitro and in vivo resulted in increased dsDNA breaks and synergistic
growth inhibition regardless of the BRCA1/2 status in a preclinical study [113]. Despite
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advancements in the development and engineering of ADCs, the majority of ADCs utilize
payloads from only a few categories of cytotoxic agents: antimitotic agents, microtubule
inhibitors, antitumor antibiotics, and DNA-damaging agents [114]. The largest group of
ADCs in clinical trials use antimitotic monomethyl auristatin E (MMAE) and MMAF, owing
to their high potency, water solubility, and stability under physiological conditions [115].
The second-largest class of payloads of ADCs in clinical trials is microtubule-inhibiting
maytansinoids (DM1 and DM4), which have excellent stability and acceptable water solu-
bility [116]. Calicheamicin is a highly potent antibiotic that binds to the minor groove of
DNA and creates double-stranded DNA breaks [117]. Camptothecin analogs, such as SN-38
and exatecan mesylate, are potent DNA-damaging agents that exhibit topoisomerase 1-
inhibitory activity [116,117]. Recently, polatuzumab vedotin-piiq, a CD79b-directed ADC
carrying MMAE by protease-cleavable peptide linker in combination with bendamustine
plus rituximab, was approved for relapsed diffuse large B-cell lymphoma [118]. As a result
of these efforts to improve the therapeutic index of the drug by maximizing the tolerated
dose and minimizing the effective dose, novel ADCs are emerging for treatment of patients
with TNBC.

5.2. Tumor-Associated Antigens (TAAs)

Targets for tumor vaccines are divided into two types: tumor-associated antigens
(TAAs) and tumor-specific antigens (TSAs) [119]. TAAs are self-antigens and are abnor-
mally expressed in tumor cells, as self-antigens. T cells that bind with a high affinity to
TAAs are typically deleted from the immune repertoire via central and peripheral tolerance
mechanisms, and thus a cancer vaccine using these antigens must be potent enough to
break the immunological tolerance [120]. High-affinity T cells may be present and strongly
activated by these antigens. Similarly, neoantigens encoded by genes carrying oncogenic
driver mutations may be prevalent across patients and tumor types and hence are referred
to as shared neoantigens [121]. The majority of neoantigens are unique to tumors of
individual patients (private neoantigens), thus necessitating personalized therapy [120].

5.3. Adoptive T-Cell Therapy

Adoptive T-cell therapy, involving the autologous or allogeneic transplantation of
tumor-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell
receptors or chimeric antigen receptors, has shown promise in the treatment of cancer [122].
Tumor-infiltrating lymphocyte (TIL) therapies are a form of adoptive cell transfer (ACT)
immunotherapy in which T cells are grown and expanded from resected metastatic tumor
deposits [123,124]. In chimeric antigen receptor (CAR) T-cell therapy, T cells isolated
from a patient with cancer are engineered to express tumor antigen-specific receptors
that facilitate the elimination of tumor cells upon reintroduction [125]. Two CAR T-cell
therapies, tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta), have been
FDA-approved for hematological malignancies [126]. Rosenberg and others reported
successful outcomes of ACT-TIL therapy in metastatic melanoma; these are thought to be
partly due to the high acquired/somatic mutational load and the highly immunogenic
nature of this cancer [122–125]. Improvements in high-throughput genetic sequencing
have enabled the identification of TIL-targetable mutations in BC [124]. The impressive
efficacy of ACT-TIL therapy in metastatic melanoma is highlighted not only by higher
ORRs (approximately 50%) but also durable and complete response (CR) rates (13%), which
exceed those of some immunotherapies, such as checkpoint-blockade agents in TNBC and
HER2-positive BC [123–126]. T-cell therapies face many challenges but hold great promise
for improving clinical outcomes for patients with solid tumors. The field of ACT is growing
exponentially.

6. Cancer Stem-Like Cell Therapy

CSCs (cancer stem-like cells) have been known to improve the efficacy of cancer
therapy. Triptolide (C1572) selectively depleted CSCs in a dose-dependent manner in
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TNBC cell lines [127]. Nanomolar concentrations of C1572 markedly reduced c-MYC
(MYC) protein levels via a proteasome-dependent mechanism [128,129]. Silencing MYC
expression phenocopied the CSC-depletion effects of C1572 and induced senescence in
TNBC cells [129]. Limited dilution assays revealed that ex vivo treatment of TNBC cells
with C1572 reduced CSC levels by 28-fold [127]. In mouse xenograft models of human
TNBC, administration of C1572 suppressed tumor growth and depleted CSCs in a manner
correlated with diminished MYC expression in residual tumor tissues. Together, these
findings provide a preclinical proof of concept defining C1572 as a promising therapeutic
agent to eradicate CSCs for drug-resistant TNBC treatment [127–129]. Selinexor (KPT-330)
is an oral SINE targeting Exportin 1 (XPO1). XPO1 functions as a nuclear exporter of major
tumor suppressor proteins (TSPs) [130]. A phase II trial evaluated the safety, pharmacody-
namics, and efficacy of selinexor (KPT-330), an oral selective inhibitor of nuclear export
(SINE) in patients with TNBC [130]. Selinexor was well tolerated in patients with advanced
TNBC but did not result in objective responses [127–131]. However, the clinical benefit rate
was 30%, and further investigation of selinexor in this patient population should focus on
combination therapies.

7. Future Prospective

TNBC is an aggressive malignancy associated with poor survival. So far, clinical trials
have shown promising early-phase results. For instance, capecitabine has a significant
response in patients with TNBC. Sacituzumab govitecan is likely to be approved for a
phase II randomized trial and the ongoing ASCENT trial. Immunoconjugates such as saci-
tuzumab govitecan have shown activity in patients with TNBC. The immunotherapeutic
agent atezolizumab, with paclitaxel, is now approved for PD-L1-positive cancer patients.
However, more immune-related drugs are required for chemotherapy and immune cell
exhaustion. Tumor-specific target-based drugs can be developed against activators of
tumor progression. Cell-based therapy can be used for tumor-specific mutations at specific
targets. Thus, immunoconjugates are a crucial area of research for TNBC treatment. Finally,
specific lesions, FGFR, AKT amplification, and specific mutations can also be targeted.
There are ongoing trials for PI3 kinase and AKT inhibitors in TNBC, and whole genomic
targeting is also being investigated.
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11. Nedeljković, M.; Damjanović, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise
to the Challenge. Cells 2019, 8, 957. [CrossRef]

12. Fermaintt, C.S.; Peramuna, T.; Cai, S.; Takahashi-Ruiz, L.; Essif, J.N.; Grant, C.V.; O’Keefe, B.R.; Mooberry, S.L.; Cichewicz, R.H.;
Risinger, A.L. Yuanhuacine Is a Potent and Selective Inhibitor of the Basal-Like 2 Subtype of Triple Negative Breast Cancer with
Immunogenic Potential. Cancers 2021, 13, 2834. [CrossRef] [PubMed]

13. Liedtke, C.; Rody, A.; Cornelia, L. Neoadjuvant Therapy for Patients with Triple Negative Breast Cancer (TNBC). Rev. Recent Clin.
Trials 2017, 12, 73–80. [CrossRef] [PubMed]

14. Winter, C.; Nilsson, M.P.; Olsson, E.; George, A.M.; Chen, Y.; Kvist, A.; Törngren, T.; Vallon-Christersson, J.; Hegardt, C.; Häkkinen,
J.; et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of
mutations are somatic. Ann. Oncol. 2016, 27, 1532–1538. [CrossRef]

15. Alba, E.; Chacon, J.I.; Lluch, A.; Anton, A.; Estevez, L.; Cirauqui, B.; Carrasco, E.; Calvo, L.; Segui, M.A.; Ribelles, N.; et al.
A randomized phase II trial of platinum salts in basal-like breast cancer patients in the neoadjuvant setting. Results from the
GEICAM/2006-03, multicenter study. Breast Cancer Res. Treat. 2012, 136, 487–493. [CrossRef]

16. Dieci, M.V.; Del Mastro, L.; Cinquini, M.; Montemurro, F.; Biganzoli, L.; Cortesi, L.; Zambelli, A.; Criscitiello, C.; Levaggi, A.;
Conte, B.; et al. Inclusion of Platinum Agents in Neoadjuvant Chemotherapy Regimens for Triple-Negative Breast Cancer Patients:
Development of GRADE (Grades of Recommendation, Assessment, Development and Evaluation) Recommendation by the
Italian Association of Medical Oncology (AIOM). Cancers 2019, 11, 1137. [CrossRef]

17. Ladan, M.M.; van Gent, D.C.; Jager, A. Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to
Clinical Validation. Cancers 2021, 13, 1004. [CrossRef]

18. Keung, M.Y.T.; Wu, Y.; Vadgama, J.V. PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in
Breast Cancers. J. Clin. Med. 2019, 8, 435. [CrossRef]

19. Kim, M.S.; Lee, H.S.; Kim, Y.J.; Lee, D.Y.; Kang, S.G.; Jin, W. MEST induces Twist-1-mediated EMT through STAT3 activation in
breast cancers. Cell Death Differ. 2019, 26, 2594–2606. [CrossRef]

20. Curtin, N.J. The Development of Rucaparib/Rubraca®: A Story of the Synergy Between Science and Serendipity. Cancers 2020, 12,
564. [CrossRef]

21. Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.;
et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763.
[CrossRef] [PubMed]

22. Diana, A.; Carlino, F.; Franzese, E.; Oikonomidou, O.; Criscitiello, C.; De Vita, F.; Ciardiello, F.; Orditura, M. Early Triple Negative
Breast Cancer: Conventional Treatment and Emerging Therapeutic Landscapes. Cancers 2020, 12, 819. [CrossRef] [PubMed]

23. Yumnam, S.; Subedi, L.; Kim, S.Y. Glyoxalase System in the Progression of Skin Aging and Skin Malignancies. Int. J. Mol. Sci.
2020, 22, 310. [CrossRef]

24. Parveen, A.; Choi, S.; Kang, J.-H.; Oh, S.H.; Kim, S.Y. Trifostigmanoside I, an Active Compound from Sweet Potato, Restores the
Activity of MUC2 and Protects the Tight Junctions through PKCα/β to Maintain Intestinal Barrier Function. Int. J. Mol. Sci. 2020,
22, 291. [CrossRef]

25. Coppola, A.; Ilisso, C.P.; Stellavato, A.; Schiraldi, C.; Caraglia, M.; Mosca, L.; Cacciapuoti, G.; Porcelli, M. S-Adenosylmethionine
Inhibits Cell Growth and Migration of Triple Negative Breast Cancer Cells through Upregulating MiRNA-34c and MiRNA-449a.
Int. J. Mol. Sci. 2021, 22, 286. [CrossRef]

26. Mezi, S.; Botticelli, A.; Pomati, G.; Cerbelli, B.; Scagnoli, S.; Amirhassankhani, S.; D’Amati, G.; Marchetti, P. Standard of Care and
Promising New Agents for the Treatment of Mesenchymal Triple-Negative Breast Cancer. Cancers 2021, 13, 1080. [CrossRef]

27. Yumnam, S.; Kang, M.C.; Oh, S.H.; Kwon, H.C.; Kim, J.C.; Jung, E.S.; Lee, C.H.; Lee, A.-Y.; Hwang, J.-I.; Kim, S.Y. Downregulation
of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy
metabolism. Free. Radic. Biol. Med. 2021, 162, 77–87. [CrossRef] [PubMed]

28. Ryu, S.H.; Hong, S.M.; Khan, Z.; Lee, S.K.; Vishwanath, M.; Turk, A.; Yeon, S.W.; Jo, Y.H.; Lee, D.H.; Lee, J.K.; et al. Neurotrophic
isoindolinones from the fruiting bodies of Hericium erinaceus. Bioorg. Med. Chem. Lett. 2021, 31, 127714. [CrossRef] [PubMed]

29. Simiczyjew, A.; Dratkiewicz, E.; Van Troys, M.; Ampe, C.; Styczeń, I.; Nowak, D. Combination of EGFR Inhibitor Lapatinib and
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