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Abstract: Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignan-
cies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority.
Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant
appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases
of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and iden-
tified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-onco-
gene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) bind-
ing pathway consistently influenced progression-free survival and overall survival, and immuno-
histochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP)
in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is im-
portant during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor
2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous
ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nu-
clei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and
act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally,
SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although
it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC
subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a
crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary
tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on
these revealed targets together with precise detection to improve therapeutic effects and patient
survival rates.

Keywords: gene ontology; epithelial ovarian cancers; borderline ovarian tumors; differentially ex-
pressed genes; aryl hydrocarbon receptor; epithelial-mesenchymal transition; integrative analysis
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1. Introduction

Ovarian tumors occupy a certain place among gynecological diseases and most cases
are benign in clinical and pathological features such as follicular cysts, corpus luteum
cysts, serous or mucinous Cystadenomas, endometriomas, and teratomas [1,2]. Compara—
tively, ovarian cancer is the most lethal gynecological malignancy worldwide although
the proportion is relatively low [3]. Epithelial ovarian cancers (EOCs) are the leading cause
of death among patients with gynecologic cancers accounting for the vast majority of all
ovarian cancers [4,5]; furthermore, serous carcinoma (SC) accounts for the most common
of EOCs, with a poor prognosis and a five-year survival rate of only 25% with metastases
[6,7]. SC is less likely to be found in the early stages (International Federation of Gynecol-
ogy and Obstetrics (FIGO) stages I and II), which have higher survival rates because they
are easier to treat, whereas patients at advanced stages (FIGO stages III and IV) have poor
prognosis and high recurrence rates even after complete debulking surgery combined
with chemotherapy (carboplatin and paclitaxel) due to resistance to chemotherapy [6,8,9].

Borderline ovarian tumors (BOTs), a specific subtype of EOCs, consist of disparate
groups of neoplasms based on histopathological features, molecular characteristics, and
clinical behaviors and BOTs can generally be classified into serous, mucinous, and other
subtypes according to clinical and histopathological features [10,11]. Besides, BOTs ac-
count for approximately 10-15% of EOCs and usually occur in younger women, resulting
in an excellent prognosis [12]. Compared with ovarian cancer patients, who almost always
require chemotherapy after a debulking operation, patients with BOTs usually have better
prognoses after adequate surgery with an extremely low probability of recurrence or me-
tastasis [13,14]. Serous BOTs, comprising approximately 65% of BOTs, occur mostly in
North America, the Middle East, and most of Europe [15]. To date, surgery is still the ideal
method to treat BOTs, while adjuvant chemotherapy and radiotherapy are not usually
considered as standard therapies [14,16]. Recent studies have inferred several assump-
tions, including the incessant ovulation, gonadotropin, hormonal, and inflammation hy-
potheses, to explain the tumorigenesis of serous BOTs [17-19]. Serous BOTs are character-
ized by mutations in the KRAS, BRAF, and ERBB2 genes and overexpression of the p53
and Claudin-1 genes; furthermore, the mitogen-activated protein kinase (MAPK)/extracel-
lular signal-regulated kinase (ERK) pathway, PI3K/AKT/mTOR pathway, Hedgehog
pathway, and angiogenesis pathway are frequently activated in serous BOTs [13,14,20-
25].

As a complex disease, several genetic and environmental factors contribute to SC de-
velopment with a complicated carcinogenesis pathway, and the carcinogenesis of SC
evolves through several aberrant functions, which fluctuate with disease progression
based on findings through the widely utilized FIGO system [13,26-32]. It is widely known
that most serous ovarian carcinomas are associated with TP53 mutations [30,33-36]; about
half of them have undergone abnormal DNA repair processes through homologous re-
combination due to epigenetic or genetic alterations of BRCA1, BRCA2, or other DNA re-
pair molecules [37,38]; and some show gene mutations, such as in BRAF and KRAS [20].
In addition to debulking surgery and subsequent adjuvant chemotherapy, targeted ther-
apy and systemic immunotherapy can also be utilized to enhance the therapeutic effects.
Poly-adenosine diphosphate (ADP) ribose polymerase inhibitors (PARPis), the first ap-
proved cancer drugs, were widely used targeted therapies for BRCA1/2-mutated breast
and ovarian cancers, and they specifically target DNA damage and repair responses, es-
pecially for patients with homologous recombination deficiencies, resulting in increased
survival [39-41]. However, resistance to PARPi has recently become an emerging issue
and breast-related cancer antigens (BRCA) and homologous recombination deficiency
(HRD) status can be considered novel predictive biomarkers of response [42—45]. There-
fore, identifying potential crucial biomarkers for monitoring drug resistance and formu-
lating new drug combination strategies are efficacious methods to resolve PARPi re-
sistance along with precision medicine [46,47].
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Furthermore, it is well known that serous ovarian carcinomas have a poor clinical
prognosis because they are usually diagnosed too late, while advanced stages usually re-
sult in frequent emergence of chemoresistance [4,5,8,48,49]. Recent growing evidence sug-
gests that epithelial-mesenchymal transition (EMT) may contribute to tumor invasion and
metastasis and promote chemotherapeutic resistance, especially to cisplatin, by convert-
ing the motionless epithelial cells into mobile mesenchymal cells, escaping cell adhesion,
and altering the cellular extracellular matrix [50-52]. EMT is a reversible process in which
many crucial components, such as E-cadherin, EpCAM, vimentin, fibronectin, neural cad-
herin, matrix metalloproteinases, various integrins, and different cytokeratins, are regu-
lated by a complex functional network of transcription factors, including the zinc-finger
E-box-binding homeobox factors (Zebl and Zeb2), Snail (SNAIL), Slug (SNAI2), and the
basic helix-loop-helix factors (Twistl and Twist2) [53-55]. Loss of breast cancer type 1
susceptibility protein (BRCA1), a tumor suppressor that plays a role in mending double-
stranded DNA breaks, is also associated with EMT and tumor initiation [50,56]. The ex-
pression of EMT signaling pathways has been correlated with poor prognosis in various
epithelial cancers, including breast, pancreas, prostate, and ovarian cancer, and the role of
EMT in ovarian cancer progression and therapy resistance is highlighted in current stud-
ies [57]; however, the role of EMT plasticity in serous ovarian tumors has not been com-
prehensively investigated.

As mentioned above, although both are named the “serous” subtype in terms of clas-
sification, serous BOTs and serous ovarian carcinomas still have decisive differences in
genetic mechanisms, pathological characteristics, and clinical manifestations [13,32]. Var-
ious functions can be investigated using differentially expressed genes (DEGs) detected
by microarrays. In contrast to DEGs, we established a gene set regularity (GSR) model,
which reconstructed the functionomes, that is, the GSR indices of the global functions, and
then investigated the dysregulated functions and dysfunctional pathways involved in the
complex disease. Constructing a functionome can provide information about the dysreg-
ulated functionomes accompanied with dysfunctional pathways of complicated illness
and we had conducted several gene set-based analyses by integrating microarray gene
expression profiles downloaded from publicly available databases, which revealed that
comprehensive methods based on functionome defined by gene ontology (GO) are useful
for successfully conducting significant research on BOTs and ovarian carcinomas of dif-
ferent stages and subtypes [58-64]. Previously, individual studies have focused on gene
set analysis of serous ovarian carcinomas and serous BOTs to uncover pathogenic mech-
anisms during tumorigenesis. However, there is no integrated analysis to compare and
discover the genomic functionome of serous BOTs and serous ovarian carcinomas. There-
fore, we first utilized GO-based integrative approaches to explore expression profile da-
tasets of serous ovarian tumors, including serous BOTs and all stages of serous ovarian
carcinomas, to identify common and meaningful dysregulated functions and dysfunc-
tional pathways between these two groups. We then selected the featured DEGs by check-
ing the significant biomarkers related to EMT with cross comparison. In this experiment,
we aimed to excavate newly discovered pathogenetic mechanisms based on previous
studies that differ from previous theories and hoped to take advantage of these new find-
ings applied in medical detection with targeted therapy and effective avoidance of recur-
rence for better prognosis of serous ovarian tumors and patient survival.

2. Materials and Methods

2.1. Workflow for the Integrative Analytic Model

The workflow for this study is shown in the flowchart in Figure 1, and detailed in-
formation is explained below. First, we converted the gene expression profile of the ex-
tracted gene elements downloaded from the Gene Expression Omnibus (GEO) database
with selection criteria for serous ovarian tumors and normal controls to ordered data and
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then transformed them into 10,192 quantified GO terms according to the sequential ex-
pression from the gene elements in each gene set. This process produced functionomes
consisting of 10,192 GSR indices, which defined the relatively comprehensive biological
and molecular functions to explore serous ovarian tumors, including serous BOTs and all
stages of serous ovarian carcinomas. Next, we individually calculated the quantified func-
tions and functional regularity patterns among serous ovarian tumors and 136 normal
ovarian controls with GSR indices and established the GSR model for the functionome
pattern. Then, we investigated the whole informativeness of genomic functionomes con-
sisting of the GSR indices and constructed a functionome-based training model of classi-
fication and prediction using the support vector machine (SVM), a set of supervised math-
ematical commands from machine learning. The variation in the GSR indices between
each serious ovarian tumor group and normal control group revealed that the biomolec-
ular functions among serous ovarian tumors were significantly extensively dysregulated
in contrast to the normal control group. Finally, we conducted whole-genome integrative
analysis to identify meaningful dysfunctional pathways together with significant bi-
omarkers of EMT involved in the progression of serous ovarian carcinomas to determine
crucial DEGs that may be essential parts of the pathogenetic mechanisms for serous ovar-
ian tumors by elucidating dysregulated functionomes using microarray analysis of gene
expression profiles. The key biological functions and genes involved in the pathogenesis
of serous BOTs and all stages of serous ovarian carcinomas were determined by identify-
ing genome-wide and GO-defined functions and DEGs.

D Serous Ovarian Carcinoma Grou\
Serous BOT Grou 900 serous ovarian carcinoma gene Control Grou p
79 serous borderline ovarian expression profiles 136 normal ovarian tissue gene

tumor gene expression profiles (Stage I: 34, Stage II: 39, Stage lll: 696, expression profiles
Stage IV: 131)

- Convertthe downloaded pression dat: (s

. Compute 10,192 gene set-defined functions and pathwaysfor
each case/control gene expression profile and extract
functionomes

Assemble and transform the gene set regularity (GSR) indices

Cumulative portioned
transformation

Statistical
methods

Deregulated functionomes — - EMT related
and Dysfunctional Pathways E biomarkers

Potential crucial DEGs for serous ovarian tumo

Figure 1. Workflow of this study. The DNA microarray gene expression profiles of 79 serous borderline tumor (BOT)
samples, 900 serous ovarian carcinoma specimens including all stages, and 136 normal ovarian controls were downloaded
from publicly available databases with gene set regularity (GSR) indices calculated by the Gene Ontology (GO) gene set.
Functionomes consisting of 10,192 GO gene sets established from the polygenic models and cumulative portion transfor-
mations with machine learning and statistical methods were utilized to identify the functionome-based patterns to inves-
tigate dysregulated GO terms, dysfunctional pathways, and biomarkers of epithelial-mesenchymal transition (EMT) to-
gether with integrative analysis and to discover potential crucial differentially expressed genes (DEGs).

2.2. Microarray Dataset Collections and the Selection Criteria

The selection criteria for the microarray gene expression datasets from the GEO da-
tabase were as follows: (1) samples of normal controls and serous ovarian tumor samples,
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including serous BOTs and serous ovarian carcinomas, should all originate from ovarian
tissues of homo sapiens; (2) datasets should offer sufficient information about the diagno-
sis and clinical histopathological subtypes of serous ovarian tumors and normal controls
should consist of tissues or cell cultures from normal ovarian surface epithelium (NOSE)
judged by histology; and (3) any extracted sample that did not meet the above-mentioned
conditions was discarded and any gene expression profile in a dataset was abandoned if
it contained missing data.

2.3. Computing the GSR Indices and Rebuilding the Functionomes

GSR indices were calculated and extracted from the gene expression datasets by
modifying the differential rank retention (DIRAC) algorithm [65] and used to measure
sequential changes among the gene elements in the gene set datasets of the gene expres-
sion profiles of serous BOTs, all stages of serous ovarian carcinomas, and the most com-
mon gene expression ordering from the normal control samples. The details and calcula-
tion process of the GSR model were described in our previous studied papers [58-64]. The
microarray-based gene expression profiles from serous ovarian tumors and normal ovar-
ian samples obtained from the GEO database were produced using the corresponding
gene expression levels constructed according to the genetic elements in the GO-based
functionome, which were then con-verted into ordered data based on each expression
level. By definition, the GSR index refers to the ratio of the gene expression sequence in a
gene set between the case group and the most common gene expression sequence from
the normal ovarian tissue samples, ranging from 0 to 1, where 0 represents the most
dysregulated state of a gene set with oppositely ordered gene set regularities between the
serous ovarian tumors and the most common gene expression orderings in the normal
controls, whereas 1 indicates that the genomic regularities in a gene set remain the same
between the groups of serous ovarian tumors and the normal ovarian group. All GSR
indices were measured using the R programming language. A functionome was defined
as the complete gene set of biological functions, and we annotated and defined the human
functionome using the 10,192 GO gene set-defined functions because the definitions for
comprehensive biological functions are not yet available. Therefore, the functionomes
used in this study were defined as a combination of 10,192 GSR indices for all samples.

2.4. Statistical Analysis

The Mann-Whitney U-test was used to test the differences in serous BOTs, all stages
of serous ovarian carcinomas, and controls, and then corrected by multiple hypotheses
using the false discovery rate (Benjamini-Hochberg procedure) [66]. The p-value was set
atp <0.05.

2.5. Classification and Prediction by Machine Learning with Set Analysis

An R package with the function “kvsm” provided by the “kernlab” (version 0.9-27;
Comprehensive R Archive Network) and kernel-based machine learning methods were
used to classify and predict patterns of GSR indices. K-fold cross-validation was used to
measure the accuracy of classification and prediction of SVM. The results of ten repetitive
predictions were used to evaluate the performance of the binary classification. The R pack-
age “pROC” was used to calculate the area under the curve (AUC) [67]. The R package
“data.table” (version 1.12.8; Comprehensive R Archive Network) was used to display all
possible logical relationships among the dysregulated gene sets of serous ovarian tumors
clearly and sequentially in the tables.

2.6. Verification of Clinical Samples Using Immunohistochemical (IHC) Staining Method

Fifty clinical samples of serous ovarian tumors were collected (serous BOTs, n = 9;
serous ovarian carcinomas, n = 41, including 8 stage I, 2 stage II, 23 stage III, and 8 stage
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IV cases). All serous ovarian tumor tissues were collected from female patients undergo-
ing surgical treatments after signing an informed consent agreement. All patients were
diagnosed and treated according to the standard therapeutic guidelines, and all tissues of
patients were kept in the biobank at Tri-Service General Hospital, National Defense Med-
ical Center, Taipei, Taiwan. The Institutional Review Board of the General Hospital of the
National Defense Medical Center approved the study (2-107-05-043, approved on October
26, 2018, and 2-108-05-091, approved on 20 May 2019). Informed consent was obtained
from all patients and control subjects. All clinical tissue samples were confirmed via quan-
titative histopathological inspections and diagnosed by professional pathologists, and
IHC staining results were scored as follows: the intensity (I) was multiplied by the per-
centage of positive cells (P) of all biomarkers utilized in this study (the formula is shown
as IHC score [Q] =1 x P; maximum = 300) [68,69].

3. Results

3.1. Microarrays of Sample Groups for Gene Expression Profiles and Definition for Gene Set
Analysis

We performed a comprehensive bioinformatics method based on GO to explore and
analyze all relational disordered functions of serous ovarian tumors, including serous
BOTs and all stages of serous ovarian carcinomas [70]. The gene expression profiles of
DNA microarray of serous ovarian tumors and normal controls were downloaded from
the GEO repository at the National Center for Biotechnology Information (NCBI) archives.
The whole-sample data were obtained from 30 datasets containing eight heterogeneous
DNA microarray platforms without any missing data. There were 79 serous BOT samples
and 900 serous ovarian carcinoma samples based on histopathological classification, in-
cluding 34 stage I, 39 stage II, 696 stage III, and 131 stage IV cases among the 900 serous
ovarian carcinoma samples according to the FIGO staging system (Table 1). In addition,
136 normal ovarian samples were collected as a control group for comparison. Table S1
provides detailed information about all obtained samples and controls. In total, 10,192
GO-based definitions for annotating all gene set-defined functionomes were also down-
loaded from the Molecular Signatures Database (MSigDB), the version “c5.all.v7.1.sym-
bols.gmt” [71].

Table 1. Number of samples and statistics for the groups of serous BOTs and all FIGO stages of serous ovarian carcinomas.

Groups Sample  Control Total Sample Mean (SD?!) Control Mean (SD?) p-Value
Serous BOT 2 79 136 215 0.7036 (0.1772) 0.7732 (0.1646) <0.05
Serous ovarian carcinoma stage I 34 136 170 0.7298 (0.1672) 0.7715 (0.1551) <0.05
Serous ovarian carcinoma stage II 39 136 175 0.6976 (0.1838) 0.7713 (0.1552) <0.05
Serous ovarian carcinoma stage III 696 136 832 0.6355 (0.1940) 0.7705 (0.1606) <0.05
Serous ovarian carcinoma stage IV 131 136 267 0.6147 (0.1969) 0.7706 (0.1565) <0.05

1SD, standard deviation; 2 BOT, borderline ovarian tumor.

3.2. Histograms of GSR Indices of Functionomes among Each Group with Diverse Differences

According to the divergence in ranking within a gene set between the case and con-
trol groups characterized by GO terms, GSR indices were individually calculated by quan-
tifying alterations in the ranking of gene expression in a gene set or functionome. As dis-
played in Figure 2, all averages of GSR indices for the functions of serous ovarian tumors
were computed and then rectified by the mean values of the control group. Divergences
in GSR indices between serous ovarian tumor and normal control groups were statistically
significant (p <0.05). We found that in the serous ovarian carcinoma group, as the FIGO
stage progressed from early stages (I and II, yellow-green grids in Figure 2B,C, respec-
tively) to advanced stages (III and IV, yellow-green grids in Figure 2D, E, respectively), the
differences from corresponding normal controls (blue grids in Figure 2) became increas-
ingly distinct. Furthermore, differences in mutations among serous BOTs (yellow-green
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grids in Figure 2A) and normal controls seemed to be more irregular than those at the
early stages (FIGO stage I and II) but less aberrant than at the late stages (FIGO stage III
and IV) of serous ovarian carcinomas. The modulation of dysregulated functionomes was
quantified using the means of the total GSR indices of each functionome of serous ovarian
tumors and control groups with adjustments compared to the control group. The average
corrected GSR indices for serous BOTs and serous ovarian carcinomas from stage I to IV
were 0.7036, 0.7230, 0.6976, 0.6355, and 0.6147, respectively.

(A)Serous BOT
7.5

5.0

Density

2.5

0.0 —

0.25 0.50 0.75 1.00
(B) Serous OvCa stage | GSR indexes

0.25 0.50 0.75 1.00

z
£4
8
2
0 | IS 1 .
0.25 0.50 0.75 1.00
(E) Serous OvCa stage IV GSR indexes
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z4 "
(-3 1 i l
. " | i N""llll Tt
0.25 0.50 0.75 1.00

GSR indexes

Figure 2. Histograms of global GSR indices of functionomes for serous BOTs, all stages of serous
ovarian carcinomas (yellow green), and control groups (blue). Different distributions of the func-
tionomes among five case sample groups and control groups are shown with statistical significance
(p < 0.05). The normal control group (blue, right) was used as the control and is the same in all
panels. Peaks in distribution were observed (yellow green), indicating dysregulated biomolecular
functionomes of serous BOTs and all stages of serous ovarian carcinomas. (A-E) Corrected GSR
indices of serous BOTs: 0.7036 (A); FIGO stage I: 0.7230 (B); FIGO stage II: 0.6976 (C); FIGO stage III:
0.6355 (D); and FIGO stage IV: 0.6147 (E).
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3.3. Regularity Patterns of Functionomes Classified and Predicted by Supervised Machine
Learning with High Sensitivity, Specificity, and Accuracy

As displayed in Figure 2, the regularity patterns of functionomes among the five se-
rous ovarian tumor groups were compared with those of the normal control group, and
the functional regularity patterns of the five case groups (serous BOTs and all four stages
of serous ovarian carcinomas) showed significant divergence. We then identified, classi-
fied, and predicted different functions of various gene sets defined by GO using SVM, a
powerful technological algorithm for supervised machine learning. The accumulated data
of assessed performances were operated with ten consecutive binary classifications and
checked with forecasting approaches by five-fold cross-validation; all the calculated re-
sults with high sensitivity, specificity, and accuracy are listed in Table S2. The sensitivity,
specificity, and accuracy of binary classification for gene set databases among serous ovar-
ian tumor and control groups were approximately 95.13-100.00%, 99.85-100.00%, and
98.97-100.00%, respectively. The AUCs for the performance of each case group ranged
from 0.9771 to 1.0000. The evaluated performances by binary classifications between se-
rous ovarian carcinoma, FIGO stage IV, and normal control groups had the best overall
effects. The results revealed that the quantified functional regularity patterns with the
GSR indices transformed from the DNA microarray gene expression profiles could offer
sufficient and credible information to the SVM for accurate identification and classifica-
tion. These results also indicated that all the functional regularity patterns of serous ovar-
ian tumors were demarcated and suitable for integrated genetic and molecular classifica-
tions interpreted in this study.

3.4. The Most Dysregulated and Common GO Terms among Serous Ovarian Tumors

We used the cluster weight index (CWI) with SVM to uncover 655, 662, 643, 828, and
841 GO terms among serous BOTs and serous ovarian carcinomas at FIGO stages I-1V,
respectively. CWI, a calculated exponent based on the p-values with statistical signifi-
cance, is defined as the weighted ratio of the single weight of each clustered GO term
divided by the total weights of the whole clusters, and it is used to measure the repre-
sentative weight and express the mutual correlation for every cluster in the GO trees. All
identified GO terms were meaningful and could represent dysregulated functionomes in
each group of serous ovarian tumors. We used the calculated CWI to quantify and judge
the value of each dysregulated GO cluster among the pathogenetic mechanisms of serous
ovarian tumors. We ranked the 50 most dysregulated GO terms judged by CWI for serous
ovarian tumors, as shown in Table 2. The first dysregulated GO terms for each group were
“regulation of immune system process (GO:0002682)” for serous BOT; “transporter activ-
ity (GO:0005215)” for serous ovarian carcinoma, FIGO stage I; “small molecule metabolic
process (GO:0044281)” for serous ovarian carcinoma, FIGO stage II; “regulation of im-
mune system process (GO:0002682)” for serous ovarian carcinoma, FIGO stage III; and
“small molecule metabolic process (GO:0044281)” for serous ovarian carcinoma, FIGO
stage IV. Details on dysregulated GO terms for all disease groups of serous ovarian tu-
mors are listed in Table S3. We then selected and reorganized the top 25 from the 50 most
dysregulated GO terms among the five groups by comprehensively comparing weighted
CWIs with their original rankings in each group, as listed in Table S4. Next, we summa-
rized the 25 most common dysregulated GO terms among the five disease groups of se-
rous ovarian tumors with representative biological and molecular effects and reclassified
them into three major categories: cellular cycle and signaling-related effects, membrane
and transport-related effects, and metabolic, immunological, and other effects.
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Table 2. The 50 most dysregulated GO terms for serous BOT and all stages of serous ovarian carcinoma ranked by cluster

weight index (CWI).
Groups Serous BOT Serous Ovarian Carcinoma  Serous Ovarian Carcinoma  Serous Ovarian Carcinoma  Serous Ovarian Carcinoma
P Stage I Stage I1 Stage III Stage IV
Ranking GO ID GO term GOID GO term GOID GO term GOID GO term GOID GO term
Regulation of im- Transporter ac- Small molecule Regulation of im- Small molecule
1 GO:0002682  mune system  GO:0005215 P . GO:0044281 . GO:0002682  mune system  GO:0044281 metabolic pro-
tivity metabolic process
process process cess
Transporter ac- Small molecule Transporter ac- Small molecule Regulation of
2 GO:0005215 ti/it GO:0044281 metabolic pro- GO:0005215 tligvit GO:0044281 metabolic pro- GO:0002682 immune system
Y cess Y cess process
Regulation of im- Transporter ac: Transporter ac:
3 GO:0001775  Cell activation  GO:0006811  Ion transport GO:0002682 mune system  GO:0005215 P . GO:0005215 P .
tivity tivity
process
Lipid metabolic R Regulation of
4 GO:0006811  Ion transport ~ GO:0006629 GO:0006811  Ton transport ~ GO:0001775 Cell activation ~ GO:0051049
process transport
Small molecule
Regulation of Lipi li Regulation of
5 GO0044281 metabolic pro- GO:0051049 <eBUAHON Of o acepg Lipid metabolic o 0049 Regulation of o 5550611 Ton transport
cess transport process transport
6 GOwosl049  Resulationof o 05y Cell-cellsignal- oo 51049 ReBUIAONOE 5 5006811 Ton transport  GO:0006629 LPId metabolic
transport ing transport process
7 Gowoozzsy mmune effector oo h046609 LYMPROYIRAC 006001775 Cell activation  GO:0016070 A MePONE 566001775 Cell activation
process tivation process
I t Regulation of cell RNA metaboli
8 GO0002520 LMESYSIMU 660040011 Locomotion  GO:0007267 Cell-cell signaling GO:0045595 o o on O SR 6010016070 metabotie
development differentiation process
. . L . Regulation of
k - T RNA 1 L 1
9 Gowooisle  YIOKINCPIOT o go5sggs Transmembrane oo g,z RNA metabolic - o 506659 Lipid metabolic - o6 5015505 cell differentia-
duction transport process process tion
10 GOouassos Resulation of cell oy g, Homeostatic o 5505 Regulation of cell 4010011 Locomotion  GOw0007267 CCll-cell signal-
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3.5. Three Reclassified Categories of the Top 25 Common Dysregulated GO Terms and the Most
Relevant Corresponding DEGs

As displayed in Table 3, we reclassified the top 25 most common dysregulated GO
terms among serous ovarian tumors into three major categories based on each representa-
tive function. There were 9, 8, and 8 GO terms belonging to “cellular cycle and signaling-
related effects”, “membrane and transport-related effects”, and “metabolic, immunologi-
cal, and other effects”, respectively. We sorted the potential genes annotated for all re-
grouped GO terms among each category with definitions (http://geneontology.org/, ac-
cessed on 5 June 2021) and selected the most relevant DEGs with the highest repetitive
frequencies determined statistically with cross comparisons. Nine GO terms were reclas-
sified to cellular cycle- and signaling-related effects and four most relevant DEGs were
identified with the highest repetition: EDN1 (endothelin 1), AKT1 (AKT serine/threonine
kinase 1), IL1B (interleukin 1 beta), and INS (insulin). Eight GO terms were reclassified to
membrane- and transport-related effects and the two most relevant DEGs were identified
with the highest repetition: CDK5 (cyclin dependent kinase 5) and ATP1B1 (sodium/po-
tassium-transporting ATPase subunit beta-1). Eight GO terms were reclassified to meta-
bolic, immunological, and other effects and the seven most relevant DEGs were identified
with the highest repetition: PTK2B (protein tyrosine kinase 2 beta), MTOR (mechanistic
target of rapamycin kinase), APP (amyloid beta precursor protein), KIT (tyrosine-protein
kinase KIT), LEP (leptin), MAPK3 (mitogen-activated protein kinase 3), and SRC (proto-
oncogene tyrosine-protein kinase Src).

Table 3. Categorized lists of the top 25 common dysregulated GO terms among serous ovarian tumors reclassified by
biological functions and the most relevant corresponding DEGs in each group.

Cellular Cycle and Signaling Related Effects

GOID GO Term Most Relevant DEGs
GO:0045595 Regulation of cell differentiation
GO:0007267 Cell-cell signaling
GO:0042592 Homeostatic process
GO:0048585 Negative regulation of response to stimulus
GO:0007049 Cell cycle EDN1, AKT1, IL1B, INS
GO:0033043 Regulation of organelle organization
GO:0051240 Positive regulation of multicellular organismal process
G0:0023056 Positive regulation of signaling
GO:0098772 Molecular function regulator




Biomedicines 2021, 9, 866

12 of 29

Membrane and Transport Related Effects

GOID GO Term Most Relevant DEGs
GO:0005215 Transporter activity
GO:0006811 Ion transport
GO:0051049 Regulation of transport
GO:0040011 Locomotion CDK5, ATP1B1
GO:0055085 Transmembrane transport
GO:0070727 Cellular macromolecule localization
GO:0046907 Intracellular transport
GO:0022610 Biological adhesion

Metabolic, Inmunological, and Other Effects

GOID GO Term Most Relevant DEGs
GO:0044281 Small molecule metabolic process
GO:0006629 Lipid metabolic process
GO:0031399 Regulation of protein modification process
GO:0051174 Regulation of phosphorus metabolic process PTK2B, MTOR, APP, KIT, LEP,
GO0:0019219 Regulation of nucleobase containing compound metabolic process MAPK3, SRC
GO:0002520 Immune system development
G0:0022008 Neurogenesis
GO:0000003 Reproduction

3.6. The Significant Common Dysfunctional GO-Defined Pathways and Corresponding DEGs

We firstly discovered that there were 5346, 4047, 6779, 7985, and 8251 dysfunctional
pathways defined with GO terms in the serous BOT and serous ovarian carcinoma stage
I-1V groups, respectively. Then, we placed these pathways in order of correlation for each
group according to statistically significant p-values. Next, we selected the top 50 most
dysfunctional pathways ranked by p-value for each disease group to investigate meaning-
ful correlations, as listed in Table 4 and the detailed GO-defined pathways for serous ovar-
ian tumors are listed in Table S5. “Negative regulation of isotype switching (GO:0045829)”
ranked first in the serous BOT group; “modified amino acid transmembrane transporter
activity (GO:0072349)” ranked first in serous ovarian carcinoma, FIGO stage I; “DNA dou-
ble-strand break processing involved in repair via single-strand annealing (G0O:0010792)”
ranked first in serous ovarian carcinoma, FIGO stage II; “DNA double-strand break pro-
cessing involved in repair via single-strand annealing (GO:0010792)” ranked first in se-
rous ovarian carcinoma, FIGO stage III; and “aryl hydrocarbon receptor binding
(GO:0017162)” ranked first in serous ovarian carcinoma, FIGO stage IV. Moreover, we
found only one common dysfunctional pathway among the five disease groups of serous
ovarian tumors: “aryl hydrocarbon receptor binding (GO:0017162),” which is ranked at
42,2,2,29, and 1 in the groups of serous BOTs and serous ovarian carcinomas of stages I-
IV, respectively. Meanwhile, we also found ten corresponding genes, AHR (aryl-hydro-
carbon receptor), AIP (aryl-hydrocarbon receptor-interacting protein), ARNT (aryl hydro-
carbon receptor nuclear translocator), ARNT2 (aryl hydrocarbon receptor nuclear trans-
locator 2), ARNTL (aryl hydrocarbon receptor nuclear translocator-like), NCOA1 (nuclear
receptor coactivator 1), NCOA2 (nuclear receptor coactivator 2), TAF4 (TATA-box binding
protein associated factor 4), TAF6 (TATA-box binding protein associated factor 6), and
TBP (TATA box binding protein), with their representative proteins annotated for these
GO term-defined dysfunctional pathways acquired from the GO gene set database
(http://geneontology.org/, accessed on 5 June 2021).
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Table 4. The top 50 most dysfunctional GO-defined pathways among serous BOT and all stages of serous ovarian carci-
noma ranked by p-values.
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3.7. The Influences of Distinct Valuable DEGs with Corresponding Biomarkers Expressed in
Serous Ovarian Tumors

So far, we have performed GO-based integrative methods to analyze, discover, and
reclassify the 25 most important common dysregulated functions among the serous ovar-
ian tumor groups into distinct effective categories and obtained 13 corresponding DEGs
in total. We also found one common dysfunctional pathway among the five disease
groups and the corresponding ten DEGs. Next, we searched several important biomarkers
and relevant genes with close relationships with EMT among ovarian cancers from previ-
ous research [50,57,72] and compared them with the DEGs of the top 25 meaningful
dysregulated functionomes in this experiment by checking for repetitions and cross com-
parisons. Five featured DEGs were selected: CDH1 (cadherin 1), CTNNBI (catenin beta 1),
SNAII (snail family transcriptional repressor 1, SNAIL), SNAI2 (snail family transcrip-
tional repressor 2, SLUG), and TWIST1 (twist-related protein 1). In addition, we have in-
dividually established three functional protein—protein interaction networks using the
STRING database (https://string-db.org, accessed on 5 June 2021) based on the relevant
DEGs and their corresponding proteins as biomarkers. These networks comprised the fol-
lowing: one, all relevant DEGs sorted from the top 25 common dysregulated functionomes
(Figure 3A); two, the 10 DEGs involved in the dysfunctional AHR binding pathway (Fig-
ure 3B); and three, the featured DEGs among relevant biomarkers associated with EMT
(Figure 3C). All these biomarkers revealed intensive interactions with regulatory cross
effects in each  network. Simultaneously, we searched the GEO
(http://www .ncbi.nlm.nih.gov/geo/, accessed on 5 June 2021) and The Cancer Genome At-
las (TCGA; http://cancergenome.nih.gov, accessed on 5 June 2021) repositories, including
datasets downloaded from three major microarray platforms, GPL96 (Affymetrix HG-
U133A), GPL570 (Affymetrix HG-U133 Plus 2.0), and GPL571/GPL3921 (Affymetrix HG-
U133A 2.0), which contained extracted and corrected raw data of 1232 patients with se-
rous ovarian carcinoma. We entered these datasets with gene expression into the Post-
greSQL relational database and compared 28 meaningful DEGs (EDN1, AKT1, IL1B, INS,
CDK5, ATP1B1, PTK2B, MTOR, APP, KIT, LEP, MAPK3, SRC, AHR, AIP, ARNT, ARNT?2,
ARNTL, NCOA1, NCOA2, TAF4, TAF6, TBP, CDH1, CTNNB1, SNAI1, SNAI2, and
TWIST1) selected from the above steps. Then, we calculated and investigated the DEG
expression levels, progression-free survival (PFS), and overall survival (OS) among serous
ovarian carcinoma patients using the Mann-Whitney test and the receiver operating char-
acteristic test in the R statistical environment (http://www.r-project.org, accessed on 5
June 2021) with Bioconductor libraries (http://www .bioconductor.org, accessed on 5 June
2021) followed by a second normalization to set the average expression of the 22,277 iden-
tical probes (http://kmplot.com/analysis/index.php?p=service&cancer=ovar, accessed on
5 June 2021) [73]. Combining all the methods mentioned above, we found that only four
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DEGs (SRC, ARNT, TBP, and SNAI2) showed stronger and closer relationships than the
other biomarkers in each functional protein—protein interaction network (Figure 3A-C)
and had consistent synchronous poor effects on PFS and OS among patients with serous
ovarian carcinomas with statistical significance (Figure 3D-K). The high expression levels
of the four potentially crucial genes (SRC, ARNT, TBP, and SNAI2) were significantly cor-
related with poor prognosis and survival, and the hazard ratios of PFS and OS are shown
in each graph below (Figure 3D-K).
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3.8. Immunohistochemical Validation of Expression Levels for SRC, ARNT, TBP, and SNAI2
among Serous Ovarian Tumors

Since the inferred biomarkers including SRC, ARNT, TBP, and SNAI2 from the pre-
vious analysis were assumed to be influential in the tumorigenesis of serous ovarian tu-
mors, we gathered relevant clinical samples from a cohort of patients (serous BOT, n=9;
serous ovarian carcinoma, n =41, including n=3§, 2, 23, and 8 for FIGO stages I-1V, respec-
tively) to explore the clinical characteristics and verify the specific manifestations of the
four abovementioned selected DEGs that were determined to participate in the pathoge-
netic mechanisms of serous ovarian tumors. Because the number of samples in each group
was inconsistent, we combined groups as follows to facilitate verification and comparison:
serous BOTs, early-stage serous ovarian carcinomas (FIGO stages I and II), and late-stage
serous ovarian carcinomas (FIGO stages III and IV). We then performed IHC staining of
anti-SRC, anti-ARNT, anti-TBP, and anti-SNAI2 antibodies separately among the three
modified disease groups to clinically assess the significant manifestation of SRC, ARNT,
TBP, and SNAI2. Professional pathologists verified and interpreted the results evenly and
repeatedly throughout the whole diagnostic process using SPSS software (IBM SPSS Sta-
tistics version 22.0 for Windows, IBM Corp., Armonk, NY, USA) to quantify the im-
munoscores of SRC, ARNT, TBP, and SNAI2. The organized results clearly showed that
the highest biomarker expression levels tended to occur in the group of late-stage serous
ovarian carcinoma, followed by the early-stage group, and lastly the serous BOT group
(Figure 4A). We also found that the highest mean values of expression levels for all these
biomarkers (SRC, ARNT, TBP, and SNAI2) belonged to the late-stage serous ovarian car-
cinoma group, with clear increasing trends from the serous BOT group to the late-stage
group, and the calculated mean values of the relevant biomarkers were statistically sig-
nificant (Figure 4B). The detailed results of all scores for relevant featured biomarkers of
clinical samples and detailed clinical characteristics of the patients (grade, menopausal
status, the presence of BRCA1, BRCA2 mutation, overall survival, and Cal25 level) are
listed in Table S6. These results were in accordance with our inferences, implying that
many dysregulated functionomes deduced from the integrative GO-based enrichment
analysis are dedicated to the pathogenetic mechanisms of serous ovarian tumors. Simi-
larly, these validated results also demonstrated that the dysfunctional AHR binding path-
way played a role in the tumorigenesis of serous ovarian tumors. Furthermore, this veri-
fication supported the association between EMT and tumor progression. All these signif-
icant results confirmed the importance of the previously proposed DEGs and related path-
ogenic tumorigenesis for serous ovarian tumors.
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Figure 4. Verified analysis of biomarkers among serous ovarian tumors by IHC staining. (A) Clinical
samples from patients with serous BOTs (n =9, left column), early stages of serous ovarian carcino-
mas (n = 10, middle column), and late stages of serous ovarian carcinomas (n = 31, right column)
were immunostained with hematoxylin and eosin (first row), anti-SRC antibody (second row), anti-
ARNT antibody (third row), anti-TBP antibody (fourth row), and anti-SNAI2 antibody (fifth row).
(B) Box plots for expressed biomarkers including SRC, ARNT, TBP, and SNAI2 among groups of
serous BOTs (blue), early stages of serous ovarian carcinomas (green), and late stages of serous
ovarian carcinomas (light brown). All the expression levels of these meaningful biomarkers were
quantified and clearly revealed an increasing trend of mean values from serous BOTs to late stages
of serous ovarian carcinomas with statistical significance.
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4. Discussion

In this study, we implemented a comprehensive GO-based multi-genome interpreta-
tive model using gene set defined functionomes and GSR indices calculated based on gene
expression profiles and levels downloaded from public gene set databases to further in-
vestigate the complicated and divergent molecular and genetic events of serous ovarian
tumors, including serous BOTs and serous ovarian carcinomas at all stages. All results
obtained using SVM were statistically significant with high sensitivity, specificity, and
accuracy. The GSR indices of all groups of serous ovarian tumors compared to the control
groups revealed obvious deviations. The most apparent divergence detected was in the
group of serous ovarian carcinoma, FIGO stage IV, and the deviation of serous BOT was
just between the early and late stages of serous ovarian carcinomas. Among all groups of
serous ovarian tumors, we first identified the top 25 significant common dysregulated
functionomes with 13 relevant DEGs, then found one common dysfunctional pathway,
AHR binding (GO:0017162), containing 10 corresponding DEGs and excavated five appli-
cable EMT-related DEGs that were related with ovarian neoplasms. Recently, EMT, a re-
versible process in which epithelial cells acquire mesenchymal cell characteristics due to
the loss of cellular polarity and adhesion with increasing cellular migration, has become
an important concept in research on tumorigenesis, progression, and chemoresistance of
ovarian neoplasms; thus, we included biomarkers of EMT for ovarian tumors in this re-
search. After integrative analysis, including comparison of functional protein—protein in-
teractions and patient survival (PFS and OS) of serous ovarian carcinomas, we obtained
four potentially important DEGs: SRC, ARNT, TBP, and SNAI2. Finally, IHC validation of
these four biomarkers revealed that they significantly increased in samples incrementally
from serous BOT to early stages and then to late stages of serous ovarian carcinomas. Since
the results obtained in this study are extraordinarily rich and complex, we mainly ex-
plained and discussed the crucial dysfunctional AHR binding pathways accompanied by
four consequential DEGs that were statistically verified. However, other related meaning-
ful results deserve further exploration and investigation.

Among the preliminary results of GO-based analysis for each group of serous ovar-
ian tumors, we noticed significant differences between serous BOT and serous ovarian
carcinomas, that is similar to the divergences of clinical manifestations and histopatholog-
ical characteristics between the two groups; furthermore, there were also discrepancies
even in the four stages of serous ovarian carcinomas. This experiment thus revealed that
serous BOTs and serous ovarian carcinomas are basically inconsistent, although all histo-
pathological classifications are confirmed as “serous”. Even so, we identified the top 25
dysregulated functionomes from the first 50 GO-defined terms among the five groups and
reclassified them into three categories according to their representative functions. After
statistical comparison, we noticed that the category of metabolic and immunological ef-
fects had the greatest influence on serous ovarian tumors, followed by membrane and
transport-related effects, and lastly, cellular cycle and signaling-related effects. Therefore,
we can reasonably infer the importance of the metabolome and immunome in the tumor-
igenesis of serous ovarian tumors, which require investigation in the future together with
the other two effects. In our experiments, we also identified 13 highly relevant DEGs.
Many related studies have examined how these DEGs affected the formation of serous
ovarian tumors, such as tyrosine kinase related DEGs (PTK2B, KIT, and SRC) [74-76], cru-
cial factors known to be related to tumorigenesis (AKT1, MTOR, MAPK3) [64,77-80],
DEGs related to cellular metabolism and immunity (EDN1, IL1B, INS, APP, LEP)
[29,56,60,81-86], and agents for signal transmission and channels of cell membranes
(CDK5 and ATP1B1) [59,87,88]. Among these DEGs, we found that SRC has consistently
poor effects on the survival of serous ovarian carcinoma patients with a poor prognosis of
PFS and OS. SRC, a non-receptor protein tyrosine kinase known as a proto-oncogene, par-
ticipates in the regulation of embryonic development and cell growth [89]. SRC has been
found to be activated and overexpressed in association with HER-2/neu overexpression
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in a high percentage of ovarian cancers, especially in the late stage, and to increase prolif-
eration, angiogenesis, and invasion during tumor development [90]. Silencing of SRC
could enhance the cytotoxicity of taxol in ovarian cancer cells to improve the efficacy of
chemotherapy [91].

Of the top 50 GO-defined dysfunctional pathways, we found only one meaningful
common pathway (AHR binding, GO:0017162) among the five disease groups. We con-
ducted integrated analysis to comprehensively discover the pivotal role of the AHR bind-
ing pathway in the tumorigenesis of serous ovarian tumors for the first time. However, in
addition to the dysfunctional AHR binding pathway, we also found two common disor-
dered pathways, including positive regulation of keratinocyte differentiation
(GO:0045618) and adiponectin secretion (GO:0070162), in all stages of serous ovarian car-
cinomas. Although not in the top 50 pathways of serous BOTs, these two disordered path-
ways may be potential problems to be investigated further for the pathogenesis of serous
ovarian carcinoma. Through comprehensive analysis, it was revealed that ARNT and TBP
have consistently poor effects on PFS and OS. AHR, a ligand-activated transcription fac-
tor, is notable for its role in environmental chemical toxicity [92-94]; however, in recent
studies, AHR was also recognized to play a critical role in tumorigenesis through complex
epigenetic and pathogenetic mechanisms encompassing both pro- and anti-tumorigenic
activities [95,96]. AHR exists in the cytoplasm and is induced and activated by linking
with a group of environmental pollutants as well as other AHR ligands from microbes
and diet, and it undergoes certain conformational transformations together with SRC and
other cofactors in the cytoplasm to translocate to the nucleus in a dissociated form [95,97—
99]. AHR can heterodimerize with ARNT, a nuclear translocator, to compose the AhR-
ARNT complex, which subsequently binds with specific DNA sequences and xenobiotic
response element (XRE) in the enhancer region of certain genes associated with TBP, lead-
ing to transcriptional activation of enzymes, such as the cytochrome P450 (CYP) enzymes
1A1 (CYP1A1), CYP1A2, and CYP1BI, for xenobiotic metabolism to induce carcinogenic-
ity of cancer stem cells as tumors or initiate cancer (Figure 5) [100-103]. Although the cur-
rent research on the AHR binding pathway and serous ovarian tumors is still limited, it
can be roughly understood that the AHR binding pathway influences the formation and
occurrence of serous ovarian malignancy through the deep deletion and amplification of
AHR transcription factors [95,96,104,105]. Moreover, localization of AHR in the nucleus
of tumor cells has been associated with a worse outcome in patients with ovarian cancer,
and the role of the AHR/ARNT/CYP-enzyme pathway [106,107] and AHR-driven TBP
gene expression in carcinogenesis and cancer initiation, as well as its potential use, have
been considered as therapeutic targets for better outcomes [108]. In addition, AHR and
NCOAL1 discovered in this experiment may also be targets warranting further discussion
[98].

Approximately 80% of patients with ovarian cancer suffer from recurrence of metas-
tasis within five years after the initial therapy with debulking operation and chemother-
apy due to the development of resistance [109,110]. Accumulating findings have recently
demonstrated that EMT may induce chemotherapy resistance and cancer cell stemness by
regulating EMT transcription factors, such as Zebl, Zeb2, Snail, Slug, and Twistl, in a
complicated network, and all functional EMT in the tumor microenvironment could ex-
change tumor cell morphology to upgrade metastatic abilities via migration and invasion
[72,111-113]. Because avoidance of EMT may be crucial for evaluating and managing tu-
mor metastasis and recurrence [114], we selected five featured DEGs by proofreading and
collation with all meaningful DEGs from the top 25 common functionomes of all groups
of serous ovarian tumors, and we found that SNAI2 was the most influential DEG due to
the concordant results of patient survival. IHC analysis showed an increasing trend from
borderline tumors to the late stage of ovarian malignancy. The transcriptional factor
SNAI2, also known as SLUG, is considered important for cell migration, differentiation,
and metastasis [115,116]. Our study identified the expression and role of SNAI2 in serous
ovarian tumors, indicating the progression of serous ovarian tumors possibly through
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EMT. So far, the association between the AHR binding pathway and EMT among serous
ovarian tumors remains unexplored thoroughly, and this experiment provides the oppor-
tunity to solve this problem. Aromatic hydrocarbon substances, such as phthalates, di(2-
ethylhexyl)phthalate (DEHP), or bisphenol A, are recognized as aggravators, as they up-
regulate and promote cell proliferation and tumor progression [117-119]. In contrast, di-
etary phytoestrogen and kaempferol could exert anti-carcinogenic and anti-proliferative
effects through AHR-related pathways to inhibit the EMT process [120]. Our results
showed that there is indeed a tight correlation between AHR and EMT as the degree of
malignancy develops in serous ovarian tumors, just like other malignancy [121]. How-
ever, how the AHR binding pathway and EMT interact and influence each other in tumor
progression and resistance to chemotherapy warrants further research.

This study had several limitations. First, we noticed some limitations in the integra-
tive analytic methods utilized in this study, because the gene set databases of GO terms
and related biomolecular pathways did not completely contain or fully define all func-
tionomes of humans. False positivity was attributed to the heterogenicity of disparate cel-
lular histopathological compositions and the indistinguishable elements of different gene
sets among the chosen tumor and control samples, and detection by the GSR model was
uncertain due to missed errors and untransformed GSR indices if the expression levels
were undetectable when converting levels for ordering gene expression. However, these
disadvantages may not be obvious in the overall results coupled with the statistically sig-
nificant high sensitivity, specificity, and accuracy of this experiment. To eliminate these
problems in the future, a more precise programming syntax design and more specified
sample screening are required. The second limitation is the uneven distribution of case
groups. The numbers of serous BOTs, serous ovarian carcinomas, and normal control
samples are quite different, and even in the largest population of serous ovarian carcino-
mas, the numbers of tumors in each stage are quite different. According to the known
proportions of serous ovarian tumors, serous ovarian carcinomas account for more EOCs
than BOTs, and early stages of serous ovarian carcinomas are usually difficult to diagnose,
resulting in fewer diagnoses than at advanced stages. The number of specimens collected
for subsequent clinical verification also fits this situation. Although the number of clinical
samples is small, with the support of the support vector machine (SVM) used in this study,
the preliminary results of this multidisciplinary comprehensive analysis are reliable with
high sensitivity, specificity, and accuracy. Even a relatively small number could obtain
statistically significant results through IHC verification. Perhaps a more intact gene ex-
pression profile database could be constructed to decrease individual discrepancies
among ethnic groups in retrospective or prospective cohort studies conducted on a larger
scale globally. Third, this study only investigated the common pathogenetic mechanisms
of serous ovarian tumors. However, due to the current lack of research, the small number
of clinical specimens, and limited funds, data gathered from the GO term database are
somewhat obstructed, especially data of serous BOT. Nevertheless, the results are clear
and statistically significant, as determined by clinical verification with the immunostain-
ing method. In the future, it may be necessary to gather more specimens, examine more
global academic research, and utilize databases of various subtypes to compare and in-
vestigate more profoundly and comprehensively the pathogenetic mechanisms with the
aid of large-scale experimental tests and funding.

In summary, to investigate potential crucial pathogenetic mechanisms, we per-
formed an integrated GO-based analysis to obtain global genome-wide expression pro-
files individually and explore meaningful dysregulated functionomes, dysfunctional
pathways, and relevant biomarkers of EMT among assorted groups of serous ovarian tu-
mors with the support of elementary machine learning. Based on the above conclusions,
we proposed the inferred hypothesis for the formative process of serous ovarian tumor
that activated AHR could cooperate with SRC in the cytoplasm to enter cell nuclei and
then bind to ARNT together with TBP to act on DNA for initiating targeted AHR-respon-
sive genes to cause tumor or cancer initiation. Besides, biomarker of EMT such as SNAI2
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in the tumor microenvironment could also facilitate EMT process accompanied with tu-
morigenesis (Figure 5). These results provided new directions for understanding the tu-
morigenesis of serous ovarian tumors and more potential crucial targets for the identifi-
cation, treatment, monitoring, and even prevention of recurrence combined with targeted
therapies as precision medicine in the future.
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Epithelial-mesenchymal Stage m~i
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Figure 5. Proposed pathogenetic mechanism of the AHR binding pathway combined with EMT-related factors for tumor-
igenesis of serous ovarian tumors. BOT: borderline ovarian tumor; OvCa: ovarian carcinoma.

5. Conclusions

Serous ovarian tumors, consisting mainly of serous ovarian carcinoma and serous
BOT, are epithelial tumors of the ovary with distinctive characteristics for each subtype.
In this study, we made use of integrative analytic methods to select the top 25 significant
common GO terms as dysregulated functionomes reclassified into three crucial categories
(metabolic, immunological, and other effects; membrane and transport-related effects;
and cellular cycle and signaling-related effects) and acquired 13 corresponding DEGs with
high probability through cross comparison. For the first time, the dysfunctional AHR
binding pathway accompanied with 10 corresponding DEGs was found significantly to
be participated in tumorigenesis of both serous BOT and serous ovarian carcinoma and
five vital biomarkers related to EMT were searched and gathered for this analytic study.
Finally, four important DEGs (SRC, ARNT, TBP, and SNAI2) were compiled to have dis-
tinct effects on the survivals of serous ovarian tumor patients with the help of IHC staining
for verification showing elevated expression among all clinical samples with increasing
malignancy from serous BOT to early stages and to late stages of serous ovarian carcino-
mas. All acquired results initially supported the inference that dysregulated functionomes
with active DEGs and relevant biomarkers could cooperate with the dysfunctional AHR
binding pathway together with increased EMT effects in the tumor microenvironment to
synergistically influence tumor initiation. These findings considerably contributed to elu-
cidating the pathogenesis of serous ovarian tumors.
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