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Abstract: The development of patient-derived tumor organoids (TOs) from an epithelial ovarian
cancer tumor obtained at the time of primary or interval debulking surgery has the potential to
play an important role in precision medicine. Here, we utilized TOs to test front-line chemotherapy
sensitivity and to investigate genomic drivers of carboplatin resistance. We developed six high-
grade, serous epithelial ovarian cancer tumor organoid lines from tissue obtained during debulking
surgery (two neoadjuvant-carboplatin-exposed and four chemo-naïve). Each organoid line was
screened for sensitivity to carboplatin at four different doses (100, 10, 1, and 0.1 µM). Cell viability
curves and resultant EC50 values were determined. One organoid line, UK1254, was predicted
to be resistant to carboplatin based on its EC50 value (50.2 µM) being above clinically achievable
Cmax. UK1254 had a significantly shorter PFS than the rest of the subjects (p = 0.0253) and was
treated as a platinum-resistant recurrence. Subsequent gene expression analysis revealed extensively
interconnected, differentially expressed pathways related to NF-kB, cellular differentiation (PRDM6
activation), and the linkage of B-cell receptor signaling to the PI3K–Akt signaling pathway (PI3KAP1
activation). This study demonstrates that patient-derived tumor organoids can be developed from
patients at the time of primary or interval debulking surgery and may be used to predict clinical
platinum sensitivity status or to investigate drivers of carboplatin resistance.

Keywords: ovarian cancer; tumor organoids; chemotherapy resistance; carboplatin; integrated
genetic analysis

1. Introduction

Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malig-
nancy in the United States. In 2021, it is estimated that 21,410 women will be diagnosed
with ovarian cancer and that it will be responsible for 13,770 deaths in the U.S. [1]. The
high mortality rate is primarily due to the predominance of late-stage detection and the
high rate of recurrence due to chemotherapy resistance.

The current standard of care treatment for advanced stage disease includes surgi-
cal debulking, with the goal of removing all macroscopic disease (R0 cytoreduction), in
combination with platinum-based neoadjuvant or adjuvant chemotherapy [2]. Despite
this aggressive front-line treatment, more than 80% of patients recur [3]. Historically,
the platinum-free interval (PFI; time from the last dose of front-line adjuvant platinum-
based chemotherapy to the detection of recurrence) has been used to classify patients
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into platinum-sensitive, -resistant, and -refractory groups [4]. These groups have con-
siderably different clinical outcomes. “Platinum-sensitive” individuals (PFI ≥ 6 months)
comprise approximately 75% of recurrences and have a median overall survival (OS) of
24–36 months. Conversely, 15% of patients are “platinum-resistant” (PFI < 6 months), with
a median OS of only 9–12 months. Disease in “platinum-refractory” individuals progresses
during treatment and makes up about 10% of recurrences. This group suffers the worst
outcome, with a median OS of 3–5 months [5,6]. For clinicians, the choice of treatment in the
platinum-resistant or -refractory setting is difficult. Response rates to non-platinum-based
cytotoxic chemotherapy are similar and overall quite poor: topotecan (20%), gemcitabine
(19%), liposomal doxorubicin (26%), oral etoposide (27%), docetaxel (22%), and weekly
paclitaxel (21%) [2].

Despite the dramatic differences in outcomes between platinum-sensitive, -resistant,
and -refractory groups, there is no validated method to predict clinical response to platinum-
based chemotherapy, and all individuals receive the same up-front therapy. Chemosensi-
tivity assays using patient-derived tumor cells have been increasingly explored to satisfy
this unmet clinical need. In fact, some National Comprehensive Cancer Network (NCCN)
centers employ the use of chemosensitivity assays to guide management in the face of
recurrence when there are multiple equivalent chemotherapy options available [2]. Early
investigations primarily using extreme drug resistance assays [7,8] or phenotypic drug
response assays [9] were initially promising but have failed to produce sufficient evidence
of efficacy to change the standard of care or warrant reimbursement [10]. However, patient-
derived tumor organoid (TO) chemosensitivity assays have recently emerged as a more
accurate model of in vivo tumor biology [11] and have shown promise to predict clinical
chemotherapy response in vitro [12].

Here, we developed and validated six patient-derived epithelial ovarian cancer
TO lines that were subsequently screened for sensitivity to front line standard of care
chemotherapeutic agents. TO genetic sequencing was used to identify genomic determi-
nants of carboplatin resistance. Our primary objective was to assess the ability of TOs
to predict clinical outcomes to initial chemotherapy. Secondary objectives included the
identification of an integrated genomic signature of platinum resistance in EOC.

2. Materials and Methods
2.1. Subjects

Women with suspected or histologically confirmed epithelial ovarian cancer with a
plan to undergo cytoreductive surgery were eligible for study inclusion. All patients who
were potentially eligible were approached for enrollment by trained clinical research staff
during their pre-operative clinic visit, which occurred 1–4 weeks before the scheduled
debulking surgery. Written informed consent was obtained from all subjects, and they were
enrolled in the Total Cancer Care Protocol: A Lifetime Partnership with Patients Who Have
or May be at Risk of Cancer (MCC 17-MTB-01, UK IRB #44224). Clinical outcome data
were prospectively collected, deidentified, and correlated with TO chemosensitivity assay
and genomic data by an honest broker. Disease assessments were performed per routine
clinical practice by the treating provider to assess progression-free survival (PFS). Patient
outcomes were followed until all patients demonstrated clinical evidence of recurrence or
progression as defined by the RECIST version 1.1 criteria [13]. The study was conducted
according to the guidelines of the Declaration of Helsinki, and it was approved by the
Institutional Review Board of the University of Kentucky.

2.2. Tumor Organoid (TO) Development and Validation

Fresh ovarian tumor tissue was obtained from patients at the time of debulking
surgery, dissociated into a single ovarian cancer cell suspension, and established in
Matrigel® Growth Factor Reduced Basement Membrane Matrix (Corning) in vitro us-
ing factor-defined media [14,15]. TOs were passaged at least two times to eliminate stromal
cells by digesting the Matrigel® matrix with trypsin-EDTA/TrypLE followed by gentle
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mechanical dissociation. Once ovarian cancer TOs were established, the TOs were fixed,
and then representative sections were H&E stained and compared with a primary tumor
by a board-certified pathologist.

2.3. Chemosensitivity Screens

Established TOs were enzymatically dissociated into single cells and plated in 384-well
plates. The cells were cultured for 72 h prior to the administration of carboplatin at five
different doses (0, 0.1, 1, 10, and 100 µM). After culturing for an additional 72 h, organoids
were incubated with Hoechst nuclear counterstain and imaged on a spinning disc confocal
high content imager. After imaging was completed, viability was measured by with an
MTS assay (Promega). Raw data were generated in triplicate, and the average cell viability
for each drug concentration was determined after normalizing values to untreated negative
controls. Cell viability curves were generated, and EC50 values were determined.

2.4. Sequencing Methods

The Tempus xT next generation targeted oncology sequencing assay was utilized to
perform a gene mutation and expression analyses for all six generated TO cell lines. TO
total nucleic acid was extracted and digested by proteinase K. RNA was purified from the
total nucleic acid by DNase-I digestion. DNA and RNA sequencing was performed as
previously described [16]. Briefly, 100 ng of DNA for each TO sample were mechanically
sheared to an average size of 200 base pairs (bp) using a Covaris ultrasonicator. DNA
libraries were prepared using the KAPA Hyper Prep Kit, hybridized to the xT probe set,
and amplified with the KAPA HiFi HotStart ReadyMix. Next, 100 ng of RNA for each
tumor sample were heat-fragmented in the presence of magnesium to an average size of
200 bp. Library preps were hybridized with the IDT xGEN Exome Research Panel, and
target recovery was performed using streptavidin-coated beads, followed by amplification
with the KAPA HiFi Library Amplification Kit. The amplified target-captured DNA tumor
libraries were sequenced to an average unique on target depth of 500× on an Illumina
HiSeq 4000. Samples were further assessed for uniformity, with each sample required to
have 95% of all targeted bp sequenced to a minimum depth of 300× [17].

2.5. Gene Mutation and Gene Expression Bioinformatic Analysis

For somatic mutation analysis, an oncoplot was generated based on the maftools [18]
package to visualize non-silent somatic mutations in DNA repair genes. For gene expres-
sion analysis, genes that were unexpressed or lowly expressed in all samples (no sample
with counts per million mapped reads (CPM) > 1) were excluded from analysis. The differ-
ential expression analysis of the carboplatin-resistant versus carboplatin-sensitive groups
was performed using the edgeR package [19]. Significantly differentially expressed genes
were identified based on a threshold of false discovery rate (FDR) < 5% and annotated for
gene ontology terms. A volcano plot was generated for results visualization. All these
analyses were performed using R 4.0.3. The pathway enrichment and network analysis
were performed using Qiagen’s Ingenuity Pathway Analysis (IPA) system for the core
analysis of the RNA sequencing data and overlaid with the Global Molecular Network
Overlay in the IPA knowledge base.

2.6. Statistical Analysis

The classification of each TO cell line as carboplatin-sensitive or -resistant was based
on the comparison of the carboplatin EC50 value to the clinically achievable plasma con-
centration of carboplatin. Resistant cell lines were defined as having a carboplatin EC50
above the plasma Cmax of carboplatin [20]. Sensitive TO cell lines had a carboplatin
EC50 within achievable plasma concentrations. One sample t-test was used to compare
carboplatin-resistant and pooled carboplatin-sensitive EC50 values using GraphPad Prism
8. The Kaplan–Meier method was used to estimate PFS curves for platinum-sensitive and
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-resistant patients. The PFS curves were compared via the log-rank test using R 4.0.3. A
p < 0.05 was considered as statistically significant.

3. Results
3.1. Subject Demographic and Treatment Charactistics

The tumor samples used to generate the TO lines were derived from a relatively
homogenous population. All subjects had histologically proven advanced-stage epithelial
ovarian or fallopian tube cancer. Histologic subtype was exclusively high-grade serous.
Primary disease sites were localized to the ovary (75%) and fallopian tubes (25%). One
TO line (UK1393) was generated from a metastatic implant in the omentum, but all others
were developed from the primary site of disease (Table 1).

Table 1. Demographic characteristics of included subjects.

ID Age TNM Stage FIGO Stage Primary Site Histology Grade

UK1236 48 ypT3cN0M1 IIIC Ovary Serous 3
UK1254 49 ypT3cNX IIIC Ovary Serous 3
UK1267 55 T2bN0 IIB Fallopian Tube Serous 3
UK1393 46 T3cNX IIIC Ovary 1 Serous 3
UK2238 58 T3aN1b IIIA Fallopian Tube Serous 3
UK2326 62 T3cNX IIIC Ovary Serous 3

1 TO developed from metastatic omentum implant.

The treatment courses of the study subjects were also relatively homogenous. All
participants were treated with a platinum and taxane doublet. One subject’s taxane therapy
(UK1236) was switched from paclitaxel to abraxane due to allergic reaction. Most subjects
were chemo-naïve (66.7%) at the time of debulking surgery. However, two subjects (33.3%)
were exposed to three cycles of neoadjuvant chemotherapy before interval debulking
surgery. Optimal cytoreduction was achieved in 50% of patients, and all other debulking
surgeries achieved <0.5 cm of residual disease. Most patients did not receive maintenance
therapy. However, one patient received olaparib, and another was enrolled in a Gynecologic
Oncology Group (GOG) clinic trial studying the effects of the PARP inhibitor rucaparib
and immunotherapy agent nivolumab [21]. It is uncertain if the patient received study
drugs or placebo (Table 2).

Table 2. Treatment courses of enrolled subjects.

ID Residual Disease (cm) Neoadjuvant Adjuvant Maintenance

UK1236 0
carboplatin and paclitaxel 1

× 1 cycle; carboplatin and
abraxane × 2 cycles

carboplatin and abraxane
× 3 cycles none

UK1254 <0.5 carboplatin and paclitaxel
× 3 cycles

carboplatin and paclitaxel
× 3 cycles

GOG 3020: rucaparib v.
placebo and nivolumab

v. placebo

UK1267 0 None carboplatin and paclitaxel
× 6 cycles none

UK1393 0 None
carboplatin and paclitaxel
× 6 cycles; bevacizumab

with cycles 2–6
none

UK2238 <0.5 None carboplatin and paclitaxel
× 6 cycles olaparib

UK2326 <0.5 None carboplatin and paclitaxel
× 6 cycles none

1 Carboplatin (AUC = 6) and paclitaxel (175 mg/m2) IV every 21 days was used as the standard dosing regimen.
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3.2. Tumor Organoid Validation

Histologic concordance between each ovarian cancer TO cell line and its respective
primary ovarian cancer tumor sample was confirmed. After the establishment of the TO
cell line, a sample of it was formalin-fixed and stained using hematoxylin and eosin (H&E)
(Figure 1). Primary tumor samples for each established cell line were also formalin-fixed
and H&E stained. The TO sample and respective tumor sample were compared. All
TO lines were determined to be similar to their respective parental tumor samples after
examination by a board-certified pathologist.
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Figure 1. Hematoxylin and eosin (H&E) micrographs of established epithelial ovarian cancer tumor organoids.

3.3. Chemosensitivity Screens

Cell viability curves and resultant EC50 values were determined for all generated TO
lines (Table 3).

Table 3. Cell viability EC50 values for each TO cell line when treated with carboplatin and subject
progression-free survival (PFS).

ID Carboplatin EC50 (µM) PFS
(Days)

UK2326 0.8 398
UK1267 1.1 338
UK2238 3.3 391
UK1236 28.5 579
UK1393 44.8 445
UK1254 50.2 1 252

1 Above clinically achievable plasma Cmax.
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The mean EC50 value for UK1254 exceeded achievable plasma carboplatin Cmax
(50 µM) and was the highest of all TO line EC50 values. Conversely, all other TO lines were
determined to be sensitive to carboplatin, with a significantly lower pooled cell viability
EC50 mean value (p = 0.018). All carboplatin-sensitive TO cell lines demonstrated EC50
values within the range of achievable plasma concentrations (Figure 2).
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(UK1254) and pooled carboplatin-sensitive TO lines when treated with carboplatin. One sample t-test
was used to compare resistant and sensitive EC50 values (p = 0.018).

3.4. Clinical Outcomes

The number of days from completion of adjuvant chemotherapy until recurrence or
progression as demonstrated by RECIST criteria was used to determine each subject’s
progression free survival (PFS) (Table 3). UK1254 had a significantly shorter PFS than the
rest of the subjects with a p = 0.025 (Figure 3). Clinical outcomes directly correlate with TO
cell viability chemosensitivity assay results.
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UK2238, and UK2326. (B) Plot demonstrating number of subjects at risk for progression in platinum-resistant and
-sensitive groups.

3.5. Tumor Organoid Mutation Analysis

A limited mutation analysis was performed for all generated TO lines using the
Tempus xT gene panel. Genes that were mutated in multiple cell lines and a selection
of DNA repair genes were specifically interrogated to explore similarities in mutation
profiles between TO cell lines for all enrolled subjects (Figure 4). As expected in high-grade
serous ovarian cancer (HGSOC), the most commonly mutated gene was TP53 (4/6; 67%).
The second most commonly altered genes were FANCC (2/6; 33%) which is a critical
component of the Fanconi anemia core complex [22], and NOTCH2 (2/6; 33%), which
is a key part of the Notch signaling pathway that controls the normal morphological
development of multicellular organisms. Genomic mutations in the DNA repair genes
were mostly relegated to intron alterations but also notably included a BRCA1 frame shift
deletion mutation in UK2238, a BRIP1 missense mutation in UK1254, and an ATM missense
mutation in UK1267.
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3.6. Tumor Organoid Gene Expression Analysis

We then performed a gene expression analysis using the RNA sequencing data in
Qiagen’s IPA to evaluate differences in expression and pathways to better understand the
mechanism of carboplatin resistance. All subjects had TO RNA sequencing data available.
A total of 71 genes were significantly differentially expressed (FDR values < 0.05) between
the carboplatin-resistant and carboplatin-sensitive TOs after appropriate thresholds were
applied (Figure 5). Genes that met significance cutoff criteria are represented in blue. Genes
eliminated after thresholds were applied are represented in red.
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Figure 5. Volcano plot of the 71 differentially expressed genes identified when the carboplatin-resistant TO line (UK1254) is
compared to the carboplatin-sensitive TO lines (UK1236, UK1267, UK1393, UK2238, and UK2326).

The top upregulated and downregulated differentially expressed genes comparing
the carboplatin-resistant group to the carboplatin-sensitive group are displayed in Table 4.
In the top ten upregulated genes, many are involved in transmembrane transport, cellular
differentiation, and immune response modulation. In the top ten downregulated genes,
many are involved in regulation of cellular growth, cellular stress response, and lipid
metabolism. Notably, TMEM178B is not yet linked with an established biological pathway
identifier and may represent a novel finding.

Table 4. Top differentially expressed genes comparing the carboplatin-resistant group to the carboplatin-sensitive group.
(A) Upregulated pathways in carboplatin-resistant TO compared to the carboplatin-sensitive TO group. (B) Downregulated
pathways in carboplatin-resistant TO compared to the carboplatin-sensitive TO group.

A. Upregulated

Gene LogFC p Value QValue (FDR) Pathway ID Pathway Description

1. AQP1 8.722968 1.46 × 10−15 2.26 × 10−11 GO:0022857 Transmembrane transport activity
2. TMEM178B 6.489275 1.30 × 10−14 1.01 × 10−10 — —

3. RELN 7.083244 1.29 × 10−13 6.68 × 10−10 GO:0030154 Cell dedifferentiation
4. ZNF723 8.998623 1.08 × 10−12 4.20 × 10−9 GO:0003700 DNA Binding transcription factor activity

5. HAVCR1 9.870356 3.29 × 10−11 1.02 × 10−7 GO:00023676 Immune system process
6. FXYD2 8.374937 8.24 × 10−10 2.13 × 10−6 GO:0030234 Enzyme regulator activity
7. TGM3 6.3814 1.01 × 10−9 2.24 × 10−6 GO:0006464 Cellular protein modification process

8. OGFRL1 3.648762 1.25 × 10−9 2.41 × 10−6 GO:0007165 Signal transduction
9. LIPC 5.511889 2.91 × 10−8 4.31 × 10−5 GO:0006629 Lipid metabolic process

10. ADGRF2 9.051376 3.06 × 10−8 4.31 × 10−5 GO:0007165 Signal transduction

B. Downregulated

Gene LogFC p Value QValue (FDR) Pathway ID Pathway Description

1. MAPK1 −10.0724 2.43 × 10−9 4.19 × 10−6 GO:0030154 Cell differentiation
2. ARNT2 −9.9226 3.89 × 10−7 0.000463 GO:0006950 Response to stress
3. STRA6 −5.39401 6.80 × 10−6 0.00405 GO:0006629 Lipid metabolic process
4. RBP1 −5.05496 8.05 × 10−6 0.004168 GO:0006629 Lipid metabolic process

5. ANTXR1 −5.06802 1.13 × 10−5 0.005453 GO:0007010 Cytoskeleton organization
6. LTBP1 −4.19728 3.59 × 10−5 0.01285 GO:0006464 Cellular protein modification process
7. AXIN2 −5.6952 4.47 × 10−5 0.01442 GO:0008283 Cell population proliferation
8. SLFN11 −3.93117 8.66 × 10−5 0.02396 GO:0006950 Cell response to stress

9. PHACTR1 −5.39943 9.58 × 10−5 0.025592 GO:0007010 Cytoskeleton organization
10. LYPD1 −4.77696 0.000116 0.030426 GO:0007267 Cell–cell signaling
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Next, an in depth network analysis used the RNA sequencing data to determine
cell-specific pathways impacted by carboplatin resistance. Notably, leukocyte extrava-
sation signaling, GP6 signaling, cardiac hypertrophy signaling, and PI3K signaling in B
lymphocytes were predicted to be increasingly activated in the carboplatin-resistant TO,
as demonstrated by pathways represented with shades of orange. Conversely, the CD40
signaling, HER-2 signaling, and MSP-RON signaling in macrophages were suspected to
have decreased activation in the carboplatin-resistant phenotype and are represented in
shades of blue (Figure 6A). Pathways that were differentially activated and downregulated
were found to be extensively interconnected (Figure 6B).
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To better assess the clinical applicability of the gene expression analysis, we converted
the pathway analysis to a heatmap with analysis by disease and organ system (Figure 7A).
The length of the box denotes the −log(p-value). The color of the boxes correlates with the z-
score, with the intensity of blue representing z ≤ 0 and the intensity of orange representing
z ≥ 0. Pathways related to organismal injury and abnormalities, cancer, gastrointestinal
disease, and reproductive system disease predominated. This suggests that carboplatin
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resistance is partly mediated by the alteration of injury-associated biological mechanisms
and well-established cancer-related pathways.
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Figure 7. Gene network analysis between carboplatin-resistant and carboplatin-sensitive subjects. (A) Heatmap of the
network analysis of genes differentially expressed between carboplatin-resistant and carboplatin-sensitive TOs by organ and
disease system. The color and intensity of the boxes correlate with the z-score. Blue represents z ≤ 0, and orange represents
z ≥ 0. (B) Heatmap of network analysis separated by cancer disease process. (C) Disease system pathways involved in
carboplatin resistance are shown through network analysis of genes differentially expressed between carboplatin-resistant
and carboplatin-sensitive TOs.
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Finally, we performed network mapping using IPA with Global Network Overlay to
explore the effect of carboplatin resistance on genes that were determined to be significantly
altered between the carboplatin-resistant and carboplatin-sensitive groups. Upregulated
expression is denoted in red, with the color intensity corresponding to increased signifi-
cance. Conversely, downregulated expression is notated in green, with the color intensity
again corresponding to increased significance. Network mapping results were filtered
by statistically significant p-values with expression fold changes ≥ 0. We focused on the
most significantly altered gene network (Figure 8A) and the second most significantly
altered gene network (Figure 8B). Exploration of the most significantly altered network
map (Figure 8A) revealed an interplay between various pathways all centered around
NF-kB when the carboplatin-resistant TO was compared to the carboplatin-sensitive TOs.
The second most significantly altered network (Figure 8B) demonstrates interplay between
pathways involved in cellular differentiation (PRDM6 activation) and the linkage of B-cell
receptor signaling to the PI3K–Akt signaling pathway (PI3KAP1 activation) [23].
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4. Discussion

This prospective, observational, exploratory study demonstrates that TO develop-
ment from chemo-naïve and neoadjuvant-chemotherapy-exposed epithelial ovarian cancer
patients is both feasible and potentially predictive of clinical response to front line therapy.
Commiserate with this study, other groups have successfully developed TOs from epithe-
lial ovarian cancer patients and utilized TOs to screen for sensitivity to chemotherapeutic
agents [24]. However, to our knowledge, this study is the first to report a prospective
correlation of carboplatin chemo-sensitivity screening with PFS.

Our mutation analysis provides insight into the genetic underpinnings driving tumori-
genesis in our population. As expected in high-grade serous ovarian cancer, alterations
in the tumor-suppressor gene TP53 were the most common mutations. The second most
commonly altered gene, FANCC, is a critical component of the Fanconi anemia core com-
plex. A dysregulated Fanconi anemia pathway is frequently identified in epithelial ovarian
cancer due to its extensive interconnection with DNA repair pathways [25]. Missense
mutations in Notch2 occurred in two of the carboplatin-sensitive TO lines (UK1267 and
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UK1393). A wide range of cancer types have been found to overexpress Notch2 or to exhibit
Notch2 gain-of-function mutations. Overactive Notch2 signaling has been linked to the
dysregulation of certain miRNAs, tumor-associated stromal cell input, and the modulation
of internal and external stimulation conditions in tumor cells that contribute to chemo-
and radio-resistance [26]. If the Notch2 missense mutations identified in these ovarian
cancer TO cell lines renders the Notch2 protein nonfunctional, then a dysregulated Notch2
signaling pathway may be partially responsible for the observed carboplatin sensitivity.
An exploration of the mutation patterns of a selection of DNA repair genes reveals mostly
intron mutations that likely do not impact function. However, notably, a BRIP1 missense
mutation was identified in the resistant TO cell line UK1254, but the functional significance
of this mutation is uncertain [27].

Though the gene panel mutation analysis provides some insight into the molecular
drivers of tumor cell growth, it does not paint a complete picture of carboplatin resistance
in UK1254. Our comparative gene expression analysis using TO RNA sequencing and
IPA pathway analysis provides insight into the biological processes that are potentially
driving chemotherapy resistance. An exploration of the most significantly altered network
map (Figure 8A) revealed an interplay between various pathways all centered around
NF-kB when the carboplatin-resistant TO was compared to the carboplatin-sensitive TOs.
In addition to apoptosis threshold determination, the transcription factor NF-kB regulates
multiple aspects of the innate and adaptive immune functions, and it serves as a pivotal
mediator of inflammatory responses [28]. It has been well-established that various dysreg-
ulated signaling pathways can activate the NF-κB signaling pathway in ovarian cancer,
which in turn promotes chemoresistance, cancer stem cell maintenance, metastasis, and
immune evasion [29–31]. The second most significantly altered network (Figure 8B) demon-
strates interplay between pathways involved in cellular differentiation (PRDM6 activation)
and the linkage of B-cell receptor signaling to the PI3K–Akt signaling pathway (PI3KAP1
activation) [23]. These combined functions may be responsible for the observed clinical
and in vitro carboplatin resistance of UK1254. The discovery of these cellular alterations
provides novel insight into the mechanism of carboplatin resistance in UK1254 and may be
able to be exploited with targeted therapy.

We found that in the top ten upregulated genes, many have been linked to platinum-
based chemotherapy resistance (AQP1 [32,33] and RELN [34]), poor prognosis when
exposed to platinum agents (LIPC [35] and FXYD2 [36]), or increased invasiveness (AD-
GRF2 [37]) when overexpressed. Notably, the upregulation of TMEM178B and ZNF723 has
not been directly linked to carboplatin resistance, and understanding of their biological
function in cancer remains limited. Interestingly, transmembrane protein 178B, the gene
product of TMEM178B, has been identified as a novel downstream target of the nuclear
factor kappa beta (NF-κB) ligand/phospholipase C gamma-2 signaling axis that modulates
osteoclast activation [38]. NF-κB is a pleiotropic transcription factor key that determines
the death threshold of cancer cells after exposure to platinum drugs and the inhibition
of NF-κB sensitizes cells to the effects of platinum-based chemotherapy [30]. Thus, the
overexpression of TMEM178B may produce a biological effect similar to the upregulation of
NF-κB and warrants further investigation. Among the top ten downregulated genes, many
have been linked to platinum-based chemotherapy resistance (MAPK1 [39,40], SLFN11 [41],
and LYPD1 [42]), poor clinical outcome (ARNT2 [43]), or oncogenesis via the constitutive
activation of wnt/β signaling (AXIN2 [44]) when under expressed.

The main strength of our study was that we were able to successfully correlate TO
chemosensitivity assay results with clinical PFS despite only including six subjects in the
analysis and that we identified genomic predictors of response. These results contrast
prior ovarian cancer tumor organoid publications that report in vitro sensitivity to anti-
neoplastics but fail to include correlation with clinical outcome and genomic predictors of
resistance. Genomic predictors of platinum resistance identified at the initial surgery have
the potential to guide subsequent clinical management with the advantages of convenience
and speed over organoid sensitivity testing [24,45–47]. The major limitation of our study
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was its small sample size. We intentionally only utilized advanced-stage, high-grade serous
epithelial ovarian cancer specimens in an effort to create the most clinically and genetically
homogenous sample possible. Though this strategy decreased the number of subjects
eligible for inclusion in this study, it reinforces the clinical applicability of our results to
this specific patient population with an unmet clinical need. In addition, focusing on this
homogenous population limits the generalizability of our findings to other types of ovarian
cancer. An additional limitation of this study was the lack of normal tissue organoid
controls. At the time of debulking surgery, some subjects lacked normal human ovarian
tissue due to complete destruction by malignancy. Thus, matched normal ovarian tissue
was unavailable for culture.

The early stratification of patients into carboplatin-sensitive and -resistant cohorts,
before clinical recurrence, may help delineate who should receive maintenance therapy
with bevacizumab or a biosimilar. Furthermore, the combined use of TO chemosensitivity
assay results and genomic markers of carboplatin resistance into a predictive scoring
system of recurrence may provide a basis for additional cycles of cytotoxic chemotherapy
beyond the traditional six. We envision that if the methodologies utilized here are applied
to a larger cohort, we could develop a novel epithelial ovarian cancer predictive scoring
system. The Oncotype DX test is a similar system that is currently the standard of care for
adjuvant chemotherapy stratification in early stage, ER+, HER2/neu-negative breast cancer,
and intermediate-risk prostate cancer. The development of an accurate scoring system
that predicts an individual’s front line PFS has the potential to change the standard of care
for high-grade serous ovarian cancer treatment and improve outcomes for thousands of
patients every year.

5. Conclusions

Tumor organoid (TO) development from chemo-naïve and neoadjuvant-chemotherapy-
exposed epithelial ovarian cancer patients is both feasible and potentially predictive of
clinical response to front line therapy. An integrated TO mutation and gene expression
analysis can be utilized to investigate the molecular mechanisms of carboplatin resistance.
The combination of these methods may provide the basis for development of a predic-
tive recurrence scoring system that can be utilized to tailor maintenance and additional
adjuvant therapy to individual patient needs.
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