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Abstract: Artificial intelligence (Al) is being increasingly adopted in medical research and applica-
tions. Medical AI devices have continuously been approved by the Food and Drug Administration
in the United States and the responsible institutions of other countries. Ultrasound (US) imaging is
commonly used in an extensive range of medical fields. However, Al-based US imaging analysis
and its clinical implementation have not progressed steadily compared to other medical imaging
modalities. The characteristic issues of US imaging owing to its manual operation and acoustic
shadows cause difficulties in image quality control. In this review, we would like to introduce the
global trends of medical Al research in US imaging from both clinical and basic perspectives. We
also discuss US image preprocessing, ingenious algorithms that are suitable for US imaging analysis,
Al explainability for obtaining informed consent, the approval process of medical Al devices, and
future perspectives towards the clinical application of Al-based US diagnostic support technologies.

Keywords: ultrasound imaging; artificial intelligence; machine learning; deep learning; preprocess-
ing; classification; detection; segmentation; explainability

1. Introduction

Ultrasound (US) imaging is superior to other medical imaging modalities in terms
of its convenience, non-invasiveness, and real-time properties. In contrast, computed
tomography (CT) has a risk of radiation exposure, and magnetic resonance imaging (MRI) is
non-invasive but costly and time-consuming. Therefore, US imaging is commonly used for
screening as well as definitive diagnosis in numerous medical fields [1]. Current advances
in image rendering technologies and the miniaturization of ultrasonic diagnostic equipment
have led to its use in point-of-care testing in emergency medical care, palliative care, and
home medical care [2]. It is worth considering the combination of US diagnostic capabilities
and laboratory tests as the multi-biomarker strategy for prediction of clinical outcome [3].
However, US imaging exhibits characteristic issues relating to image quality control. In
CT and MRI, image acquisition is performed automatically with a specific patient, a fixed
measurement time, and consistent image settings. On the other hand, US imaging is
acquired through manual sweep scanning; thus, its image quality is dependent on the skill
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levels of the examiners [4]. Furthermore, acoustic shadows owing to obstructions such as
bones affect the image quality and diagnostic accuracy [5]. Certain US diagnostic support
technologies are required to resolve these practical difficulties that arise in normalizing
sweep scanning techniques and image quality.

In recent years, artificial intelligence (AI), which includes machine learning and
deep learning, has been developing rapidly, and Al is increasingly being adopted in
medical research and applications [6-16]. Deep learning is a leading subset of machine
learning, which is defined by non-programmed learning from a large amount of data
with convolutional neural networks (CNNS5s) [17]. Such state-of-the-art technologies offer
the potential to achieve tasks more rapidly and accurately than humans in particular
areas such as imaging and pattern recognition [18-20]. In particular, medical imaging
analysis is compatible with Al, where classification, detection, and segmentation used
as the fundamental tasks in Al-based imaging analyses [21-23]. Furthermore, many Al-
powered medical devices have been approved by the Food and Drug Administration (FDA)
in the United States [24,25].

The abovementioned clinical issues have affected and slowed the progress of medical
Al research and development in US imaging compared to other modalities [26,27]. Table 1
shows the Al-powered medical devices for US imaging that have been approved by the
FDA as of April 2021 (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.
cfm, the access date was 10 May 2021) (Table 1). Deep learning requires the availability
of sufficient datasets on both normal and abnormal subjects for different diseases in
high-quality controls. It is necessary to assess the input data quality and to accumulate
robust technologies, including effective data structuring and algorithm development,
to facilitate the clinical implementation of Al devices. Another concern is the Al black
box problem, whereby the decision-making process of the manner in which complicated
synaptic weighting is performed in the hidden layers of CNNs is unclear [28]. Examiners
need to understand and explain the rationale for diagnosis to patients objectively for
obtaining informed consent in constructing valid Al-based US diagnostic technologies in
clinical practice.

Table 1. List of FDA-approved medical Al devices for US imaging.

FDA Product Regulatory
No. Approval Description Body Area Decision Date Class/Submission
Number Name/Company Type
ClearView Automfitlcall.y classifies the ghape
«CAD/ClearView and orientation characteristics of
1 K161959 . . user-selected ROIs in breast US Breast 28 December 2016 Class 11/510(k)
Diagnostics, Inc., . ith the BI-RADS
Piscataway, NJ, USA images with the BI- category
et using machine learning.
U?/nganC]?%_D Visualizes and quantifies US image
2 K162574 . . data with backscattered signals Thyroid 30 May 2017 Class I1/510(k)
BioMed Corporation, . .
S echoed by tissue compositions.
Taipei, Taiwan
EchoMD AutoEF Provides automated estimation of
3 K173780 software/Bay Labs, the LVEF on previously acquired Heart 14 June 2018 Class T1/510(K)
Inc., San Francisco, cardiac US images using machine
CA, USA learning.
AmCAD-UT Analyzes thyroid US images of
Detection user-selected ROIs. Provides detailed
4 K180006 2.2/AmCad BioMed information with the quantification Thyroid 31 August 2018 Class I1/510(k)
Corporation, and visualization of US characteristics
Taipei, Taiwan of thyroid nodules.
Diagnostic aid using machine
Kojos D ksl ctre U e
5 K190442 Medical, Inc., New P Breast 3 July 2019 Class 11/510(k)

York, NY, USA

generate categorical output that
aligns to BI-RADS and the
auto-classified shape and orientation.
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Table 1. Cont.

FDA Product Regulatory
No. Approval N Description Body Area Decision Date Class/Submission
Number ame/Company Tvpe
Yp
EchoGo Automatically measures cardiac US
6 K191171 Core/Ultromics Ltd., | parameters including EF, Global Heart 13 November 2019 Class I1/510(k)
Oxford, UK ongltuc:hnal Stra%n, and Ly volume
using machine learning.
Assists in the acquisition of
Caption anatomically correct cardiac US
7 DENIoop4p ~ Cuidance/Caption - images that represent standard 2D Heart 7 February 2020 Class II/De Novo
Health, Inc., echocardiographic diagnostic views
Brisbane, CA, USA and orientations using
deep learning.
Views and quantifies US image data
MEDO to aid trained medical professionals
8 K200356 ARIA /Medo.ai, Inc., in the diagnosis of developmental Hip 11 June 2020 Class I1/510(k)
Edmonton, Canada dysplasia of the hip using
machine learning.
Auto 3D Views, quantifies, and reports the
Bladder Volume results acquired on Butterfly
9 K200980 Tool/Butterfly Network US systems using machine Bladder 11 June 2020 Class I1/510(k)
Network, Inc., learning-based 3D volume
Guilford, CT, USA measurements of the bladder.
Caption
Interpretation Processes previously acquired
Automated Ejection cardiac US }i)ma es ar?d ?ovides
10 K200621 Fraction B o Heart 22 July 2020 Class T1/510(k)
Software/ Caption machine learning-based estimation
of the LVEE.
Health, Inc.,
Brisbane, CA, USA
AVA (Augmented Analyzes vascular US scans
Vascular including vessel wall segmentation
Analysis)/See-Mode and measurement of the Carotid
1 K201369 Tec}l/mologies Pte. intima-media thickness of the artery 16 September 2020 Class T1/510(k)
Ltd., Singapore, carotid artery using
Singapore machine learning.
Decision support system for
EchoGo diagnostic stress ECG using machine
12 K201555 Pro/Ultromics Ltd., learning to assess the severity of Heart 18 December 2020 Class I1/510(k)
Oxford, UK CAD using LV segmentation of
cardiac US images.
LVivo software
application/DiA Evaluates the LVEF using deep
13 K210053 Imaging Analysis learning-based LV segmentation in Heart 5 February 2021 Class I1/510(k)
Ltd., Beer cardiac US images.

Sheva, Israel

Abbreviations: ROI, region of interest; BI-RADS, Breast Imaging Reporting and Data System; LVEF, left ventricular ejection fraction; ECG,
echocardiography; CAD, coronary artery disease.

This review introduces the current efforts and trends of medical Al research in US
imaging. Moreover, future perspectives are discussed to establish the clinical applications
of Al for US diagnostic support.

2. US Image Preprocessing

US imaging typically exhibits low spatial resolution and numerous artifacts owing
to ultrasonic diffraction. These characteristics affect not only the US examination and
diagnosis but also Al-based image processing and recognition. Therefore, several methods
have been proposed for US image preprocessing which eliminates noises that are obstacles
to accurate feature extraction before US image processing. In this session, we present two
representative methods: US image quality improvement and acoustic shadow detection.
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Firstly, various techniques have been developed for US image quality improvement
at the time of image data acquisition by reducing speckle, clutter, and other artifacts [29].
Real-time spatial compound imaging using ultrasonic beam steering of a transducer array
to acquire several multiangle scans of an object has been presented [30]. Furthermore,
harmonic imaging using endogenously generated low frequency to reduce the attenua-
tion and improve the image contrast was proposed [31]. Several methods for US image
enhancement using traditional image processing have been reported [32]. Despeckling
is the representative research subject on filtering or removing punctate artifacts in US
imaging [33]. In this method, the cause of the image quality degradation is eliminated
during the US image generation phase or the noise characteristics are modeled along with
the US image generation process following close examination. Current approaches for US
image quality improvement using machine learning or deep learning include methods for
improving the despeckling performance [34,35], and enhancing the overall image qual-
ity [36]. Such data-driven methods offer the significant advantage that it is not necessary
to create a model for each domain. However, substantial training data with targeted high
quality are required to improve the US image quality, and because the preparation of such
a dataset is generally difficult, critical issues arise in clinical application.

Secondly, acoustic shadow detection is also a well-known US image preprocessing
method. An acoustic shadow is one of the most representative artifacts, which is caused
by several reflectors blocking the ultrasonic beams with rectilinear propagation from
a transducer. Useful artifacts exist, such as the comet-tail artifact (B-line), which may
provide diagnostic clues for COVID-19 infection in point-of-care lung US [37]. However,
acoustic shadows are depicted in black with missing information in that region, and
obstruct the examination and Al-based image recognition of the target organs in US
imaging. Therefore, performing acoustic shadow detection prior to US imaging analysis
may enable a judgment to be made on whether an acquired image is suitable as the
input data. Traditional image processing methods for acoustic shadow detection include
automatic geometrical and statistical methods using rupture detection of the brightness
value along the scanning line [38], and random walk-based approaches [39,40]. In these
methods, the parameters and models need to be carefully changed in response to a domain
shift. However, deep learning-based methods can be applied to a wider range of domains.
The preparation of the training dataset remains challenging as the pixel-level annotation
of acoustic shadows is highly costly and difficult owing to their translucency and blurred
boundaries. Meng et al. employed weakly supervised estimation of confidence maps using
labels for each image with or without acoustic shadows [41,42]. Yasutomi et al. proposed a
semi-supervised approach for integrating domain knowledge into a data-driven model
using the pseudo-labeling of plausible synthetic shadows that were superimposed onto US
imaging (Figure 1) [43].
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Figure 1. Acoustic shadow detection: (a) The red areas represent the segmented acoustic shadows using the semi-supervised

approach [43]. (b) As a candidate for clinical application, examiners can evaluate whether the current acquired US imaging

is suitable for diagnosis in real time. In the case of low image quality, rescanning can be performed in the same examination

time. This application may improve the workflow of examiners and reduce the patient burden.

3. Algorithms for US Imaging Analysis

In this section, we briefly present the fundamental machine learning algorithms for US
imaging, along with other medical imaging modalities. Thereafter, we focus on specialized
algorithms for US imaging analysis to overcome the noisy artifacts as well as the instability
of the viewpoint and cross-section owing to manual operation.

Classification, detection, and segmentation have generally been used as the funda-
mental algorithms in US imaging analysis (Figure 2). Classification estimates one or more
labels for the entire image, and it has typically been used to seek the standard scanning
planes for screening or diagnosis in US imaging analysis. ResNet [44] and Visual Geometry
Group (VGG) [45] are examples of classification methods. Detection is mainly used to esti-
mate lesions and anatomical structures. YOLO [46] and the single-shot multibox detector
(SSD) [47] are popular detection algorithms. Segmentation is used for the further precise
measurement of lesions and organ structures in pixels as well as index calculations of the
lengths, areas, and volumes. U-Net [48] and DeepLab [49,50] are representative algorithms
for segmentation. These standard algorithms are often used as baselines to evaluate the
performance of specialized algorithms for US imaging analysis.

We introduce the specialized algorithms for US imaging analysis to address the
performance deterioration owing to noisy artifacts. Cropping—segmentation—calibration
(CSC) [51] and the multi-frame + cylinder method (MFCY) [52] use time-series information
to reduce noisy artifacts and to perform accurate segmentation in US videos (Figure 3).
Deep attention networks have also been proposed for improved segmentation performance
in US imaging, such as the attention-guided dual-path network [53] and a U-Net-based
network combining a channel attention module and VGG [54]. A contrastive learning-based
framework [55] and a framework based on the generative adversarial network (GAN) [56]
with progressive learning have been reported to improve the boundary estimation in US
imaging [57].
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Figure 2. Fundamental algorithms generally used in US imaging analysis. (a) Image classification of whether the fetal US

image contains a diagnostically useful cross-section such as a four-chamber view (4CV). (b) Detection of the fetal heart

for evaluation of fetal heart structure. (c) Segmentation of the boundaries or regions of the fetal heart to measure the fetal

cardiac index such as cardiothoracic area ratio (CTAR).
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Figure 3. Use of time-series information to reduce noisy artifacts and to perform accurate segmentation in US videos. CSC

employs the time-series information of US videos and specific section information to calibrate the output of U-Net [51].

The critical issues resulting from the instability of the viewpoint and cross-section
often become apparent when the clinical indexes are calculated using segmentation. One
traditional US image processing method is the reconstruction of three-dimensional (3D)
volumes [58]. Direct segmentation methods for conventional 3D volumes, including
3D U-Net [59], are useful for accurate volume quantification; however, their labeling is
very expensive and time-consuming. The interactive few-shot Siamese network uses a
Siamese network and a recurrent neural network to perform 3D segmentation training
from few-annotated two-dimensional (2D) US images [60]. Another research subject is the
extraction of 2D US images involving standard scanning planes from the 3D US volume.
The iterative transformation network was proposed to guide the current plane towards the
location of the standard scanning planes in the 3D US volume [61]. Moreover, Duque et al.
proposed a semi-automatic segmentation algorithm for a freehand 3D US volume, which is
a continuum of 2D cross-sections, by employing an encoder—decoder architecture with 2D
US images and several 2D labels [62]. We summarize the abovementioned segmentation
algorithms for US imaging analysis in Table 2.
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Table 2. List of segmentation algorithms for US imaging analysis.

Algorithm Name Description Ref.

Based on a fully convolutional network and achieves more
accurate segmentation using smaller amounts of training
data compared with the other methods. Several studies

U-Net . : : [48]
have reported superior segmentation performances using
their models based on U-Net, which is particularly
suitable for biomedical image segmentation.
Utilizes atrous convolution and demonstrates its
-of-the- i . +
DeepLab state-of-the-art segmentation performance. DeepLabv3 [49,50]

is the latest version developed by combining pyramidal
pooling modules with an encoder-decoder model.

Utilizes time-series information to reduce noisy artifacts
CsC and performs accurate segmentation on a small and [51]
deformable organ in US videos.

Uses time-series information and demonstrates
MECY high-performance segmentation on a target organ with a [52]
cylindrical shape in US videos.

The attention-guided dual-path network improves

AIDAN segmentation performance in US imaging. (531
. A U-Net-based network combining a channel attention
Deep attention . . .
module and VGG improves segmentation performance in [54]
network . .
US imaging.
Contrastive rendering A contrastlve. learpmg-base(.i framework improves the [55]
boundary estimation in US imaging.
GAN-based method A GAN-based framework with progressive learning 57]

improves the boundary estimation in US imaging.

The representative direct segmentation method for
3D U-Net conventional 3D volumes is useful for accurate [59]
volume quantification.

The interactive few-shot Siamese network uses a Siamese
IFSS-NET network and a recurrent neural network to perform 3D [60]
segmentation training from few-annotated 2D US images.

A semi-automatic segmentation algorithm for a freehand
3D US volume by employing an encoder—decoder [62]
architecture with 2D US images and several 2D labels.

Encoder—decoder
architecture

Abbreviations: CSC, cropping—segmentation—calibration;, MFCY, multi-frame + cylinder method; AIDAN,
attention-guided dual-path network; GAN, generative adversarial network; IFSS-NET, interactive few-shot
Siamese network.

4. Medical AI Research in US Imaging
4.1. Oncology
4.1.1. Breast Cancer

Breast cancer is the most common cancer in woman globally [63]. US imaging is used
extensively for breast cancer screening in addition to mammography. Various efforts have
been made to date regarding the classification of benign and malignant breast tumors in US
imaging. Han et al. trained the CNN model architecture to differentiate between benign
and malignant breast tumors [64]. The Inception model, which is a CNN model with
batch normalization, exhibited equivalent or superior diagnostic performance compared
to radiologists [65]. Byra et al. introduced a matching layer to convert grayscale US
images into RGB to leverage the discriminative power of the CNN more efficiently [66].
Antropova et al. employed VGG and the support vector machine for classification using
the CNN features and conventional computer-aided diagnosis features [67]. A mass-level
classification method enabled the construction of an ensemble network by combining
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VGG and ResNet to classify a given mass using all views [68]. Considering that both
thyroid and breast cancers exhibit several similar high-frequency US characteristics, Zhu
et al. developed a generic VGG-based framework to classify thyroid and breast lesions
in US imaging [69]. The model that was constructed with features that were extracted
from all three transferred models achieved the highest overall performance [70]. The
Breast Imaging Reporting and Data System (BI-RADS) provides guidance and criteria
for physicians to determine breast tumor categories based on medical images in clinical
settings. Zhang et al. proposed a novel network that integrates the BI-RADS features into
task-oriented semi-supervised deep learning for accurate diagnosis using US images with
a small training dataset [71]. Huang et al. developed the ROI-CNN (ROI identification
network) and the subsequent G-CNN (tumor categorization network) to generate effective
features for classifying the identified ROIs into five categories [72]. The Inception model
achieved the best performance in predicting lymph node metastasis from US images in
patients with primary breast cancer [73].

Yap et al. investigated the use of three deep learning approaches for breast lesion
detection in US imaging. The performances were evaluated on two datasets and the
different methods achieved the highest performance for each dataset [74]. An experimental
study was performed to evaluate the different CNN architectures on breast lesion detection
and classification in US imaging, in which SSD for breast lesion detection and DenseNet [75]
for classification exhibited the best performance [76].

Several ingenious segmentation methods for breast lesions in US imaging have been
reported. Kumar et al. demonstrated the performance of the Multi-U-Net segmentation
algorithm for suspicious breast masses in US imaging [77]. A novel automatic tumor
segmentation method that combines a dilated fully convolutional network (FCN) with
a phase-based active contour model was proposed [78]. Residual-dilated-attention-gate-
U-Net is based on the conventional U-Net, but the plain neural units are replaced with
residual units to enhance the edge information [79]. Vakanski et al. introduced attention
blocks into the U-Net architecture to learn feature representations that prioritize spatial
regions with high saliency levels [80]. Singh et al. proposed automatic tumor segmentation
in breast US images using contextual-information-aware GAN architecture. The proposed
model achieved competitive results compared to other segmentation models in terms of
the Dice and intersection over union metrics [81].

4.1.2. Thyroid Cancer

The incidence of thyroid cancer has been increasing globally as a result of overdiag-
nosis and overtreatment owing to the sensitive imaging techniques that are used for
screening [82]. A CNN with the addition of a spatial constrained layer was proposed to
develop a detection method that is suitable for papillary thyroid carcinoma in US imag-
ing [83]. The Inception model achieved excellent diagnostic efficiency in differentiating
between papillary thyroid carcinomas and benign nodules in US images. It could provide
more accurate diagnosis of nodules that were 0.5 to 1.0 cm in size, with microcalcification
and a taller shape [84]. Ko et al. designed CNNSs that exhibited comparable diagnostic
performance to that of experienced radiologists in differentiating thyroid malignancy in
US imaging [85]. Furthermore, a fine-tuning approach based on ResNet was proposed,
which outperformed VGG in terms of the classification accuracy of thyroid nodules [86]. Li
et al. used CNNSs for the US image classification of thyroid nodules. Their model exhibited
similar sensitivity and improved specificity in identifying patients with thyroid cancer
compared to a group of skilled radiologists [82].

4.1.3. Ovarian Cancer

Ovarian cancer is the most lethal gynecological malignancy because it exhibits few
early symptoms and generally presents at an advanced stage [87]. The screening methods
for ovarian cysts using imaging techniques need to be improved to overcome the poor
prognosis of ovarian cancer. Zhang et al. proposed an image diagnosis system for classify-
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ing ovarian cysts in color US images using the high-level deep features that were extracted
by the fine-tuned CNN and the low-level rotation-invariant uniform local binary pattern
features [88]. US imaging analysis using an ensemble model of CNNs demonstrated com-
parable diagnostic performance to human expert examiners in classifying ovarian tumors
as benign or malignant [89].

4.1.4. Prostate Cancer

Feng et al. presented a 3D CNN model to detect prostate cancer in sequential contrast-
enhanced US (CEUS) imaging. The framework consisted of three convolutional layers, two
sub-sampling pooling layers, and one fully connected classification layer. Their method
achieved a specificity of over 91% specificity and an average accuracy of 90% over the
targeted CEUS images for prostate cancer detection [90]. A random forest-based classifier
for the multiparametric localization of prostate cancer lesions based on B-mode, shear-
wave elastography, and dynamic contrast-enhanced US radiomics was developed [91].
A segmentation method was proposed for the clinical target volume (CTV) in the tran-
srectal US image-guided intraoperative process for permanent prostate brachytherapy. A
CNN was employed to construct the CTV shape in advance from automatically sampled
pseudo-landmarks, along with an encoder-decoder CNN architecture for low-level feature
extraction. This method achieved a mean accuracy of 96% and a mean surface distance
error of 0.10 mm [92].

4.1.5. Other Cancers

Hassan et al. developed stacked sparse auto-encoder and softmax classifier architec-
ture for US image classification of focal liver diseases into a benign cyst, hemangioma, and
hepatocellular carcinoma along with the normal liver [93]. Schmauch et al. proposed a
deep learning model based on ResNet for the detection and classification of focal liver
lesions into the abovementioned diseases, as well as focal nodular hyperplasia and metas-
tasis in liver US images [94]. An ensemble model of CNNs was proposed for kidney US
image classification into four classes, namely normal, cyst, stone, and tumor. This method
achieved a maximum classification accuracy of 96% in testing with quality images and 95%
in testing with noisy images [95].

4.2. Cardiovascular Medicine
4.2.1. Cardiology

Echocardiography is the most common imaging modality in cardiovascular medicine,
and it is frequently used for the screening as well as diagnosis and management of car-
diovascular diseases [96]. Current technological innovations in echocardiography, such as
the assessments of 3D US volumes and global longitudinal strain, are remarkable. Clinical
evidence has been accumulating for the utilization of 3D echocardiography. However,
3D US volume is still inferior in spatial and temporal resolutions to 2D US images. To
utilize these latest technologies, it is a prerequisite for examiners to have the skill levels of
acquiring high-quality images in 2D echocardiography. In addition, echocardiography has
become the primary point-of-care imaging modality for the early diagnosis of the cardiac
symptoms of COVID-19 [97,98]. Therefore, it is expected that the clinical applications of Al
will improve the diagnostic accuracy and workflow in echocardiography. To our knowl-
edge, there is the highest number of the Al-powered medical devices for echocardiography
among those devices which the FDA has been approved in application to US imaging.

Abdi et al. developed a CNN to reduce the user variability in data acquisition by
automatically computing a score of the US image quality of the apical four-chamber view
for examiner feedback [99]. Liao et al. proposed a quality assessment method for cardiac
US images through modeling the label uncertainty in CNNs resulting from intra-observer
variability in the labeling [100]. Deep learning-based view classification has also been
reported. EchoNet could accurately identify the presence of pacemaker leads, an enlarged
left atrium, and left ventricular (LV) hypertrophy by analyzing the local cardiac structures.
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In this study, the LV end systolic and diastolic volumes, and ejection fraction (EF), as well as
the systemic phenotypes of age, sex, weight, and height, were also estimated [101]. Zhang
et al. proposed a deep learning-based pipeline for the fully automated analysis of cardiac
US images, including view classification, chamber segmentation, measurements of the LV
structure and function, and the detection of specific myocardial diseases [102].

The assessment of regional wall motion abnormalities (RWMAs) is an important
testing process in echocardiography, which can localize ischemia or infarction of coronary
arteries. Strain imaging, including the speckle tracking method, has been used extensively
to evaluate LV function in clinical practice. Ahn et al. proposed an unsupervised motion
tracking framework using U-Net [103]. Kusunose et al. compared the area under the curve
(AUC) obtained by several CNNs and physicians for detecting the presence of RWMAs.
The CNN achieved an equivalent AUC to that of an expert, which was significantly higher
than that of resident physicians [104].

4.2.2. Angiology

Lekadir et al. proposed a CNN for extracting the optimal information to identify
the different plaque constituents from carotid US images. The results of cross-validation
experiments demonstrated a correlation of approximately 0.90 with the clinical assessment
for the estimation of the lipid core, fibrous cap, and calcified tissue areas [105]. A deep
learning model was developed for the classification of the carotid intima-media thickness
to enable reliable early detection of atherosclerosis [106]. Araki et al. introduced an
automated segmentation system for both the near and far walls of the carotid artery using
grayscale US morphology of the plaque for stroke risk assessment [107]. A segmentation
method that integrated the random forest and an auto-context model could segment the
plaque effectively, in combination with the features extracted from US images as well
as iteratively estimated probability maps [108]. The quantification of carotid plaques
by measuring the vessel wall volume using the boundary segmentation of the media-
adventitia (MAB) and lumen-intima (LIB) is sensitive to temporal changes in the carotid
plaque burden. Zhou et al. proposed a semi-automatic segmentation method based on
carotid 3D US images using a dynamic CNN for MAB segmentation and an improved
U-Net for LIB segmentation [109]. Biswas et al. performed boundary segmentation of
the MAB and LIB, incorporating a machine learning-based joint coefficient method for
fine-tuning of the border extraction, to measure the carotid intima-media thickness from
carotid 2D US images [110]. The application of a CNN and FCN to automated lumen
detection and lumen diameter measurement was also presented [111]. The deep learning-
based boundary detection and compensation technique enabled the segmentation of vessel
boundaries by harnessing the CNN and wall motion compensation in the analysis of
near-wall flow dynamics in US imaging [112]. Towards the cost-effective diagnosis of deep
vein thrombosis, Kainz et al. employed a machine learning model for the detection and
segmentation of the representative veins and the prediction of their vessel compression
status [113].

4.3. Obstetrics

US imaging plays the most important role in medical diagnostic imaging in the
obstetrics field. The non-invasiveness and real-time properties of US imaging enable fetal
morphological and functional evaluations to be performed effectively. US imaging is
used for the screening of congenital diseases, the assessment of fetal development and
well-being, and the detection of obstetric complications [114]. Transvaginal US enables the
clear observation of the fetus and other organs including the uterus, ovaries, and fallopian
tubes, which are mainly located on the pelvic floor during the first trimester. Moreover,
transabdominal US is useful for observing the fetal growth during the gestational weeks.

During fetal US imaging, numerous anatomical structures with small shapes and
movement are simultaneously observed in clinical practice. Medical Al research has been
conducted on the development of algorithms that are applicable to the US imaging analysis
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of the fetus or fetal appendages. Dozen et al. improved the segmentation performance of
the ventricular septum in fetal cardiac US videos using cropped and original image infor-
mation in addition to time-series information [51]. CSC can be applied to the segmentation
of other organs that are small and have dynamically changing shapes with heartbeats, such
as the heart valves. Shozu et al. proposed a novel model-agnostic method to improve the
segmentation performance of the thoracic wall in fetal US videos. This method was based
on ensemble learning of the time-series information of US videos and the shape information
of the thoracic wall [52]. Medical Al research was conducted on the measurement of fetal
anatomical segments in US imaging [115-118]. The scale attention pyramid deep neural
network using multi-scale information could fuse local and global information to infer the
skull boundaries that contained speckle noise or discontinuities. The elliptic geometric axes
were modified by a regression network to obtain the fetal head circumference, biparietal di-
ameter, and occipitofrontal diameter more accurately [119]. Kim et al. proposed a machine
learning-based method for the automatic identification of the fetal abdominal circumfer-
ence [120]. The localizing region-based active contour method, which was integrated with
a hybrid speckle noise-reducing technique, was implemented for the automatic extraction
and calculation of the fetal femur length [121]. A computer-aided detection framework for
the automatic measurement of fetal lateral ventricles [122] and amniotic fluid volume [123]
was also developed. The fully automated and real-time segmentation of the placenta from
3D US volumes could potentially enable the use of the placental volume to screen for an
increased risk of pregnancy complications [124].

The acquisition of optimal US images for diagnosis in fetal US imaging is dependent
on the skill levels of the examiners [4]. Therefore, it is essential to evaluate whether
the acquired US images have a suitable cross-section for diagnosis. Furthermore, when
labeling a huge amount of US images for Al-based image processing, it is necessary
to classify the acquired US images and to assess whether the image quality thereof is
suitable for the input data. Burgos-Artizzu et al. evaluated a wide variety of CNNs for the
automatic classification of a large dataset containing over 12,400 images from 1792 patients
that were routinely acquired during maternal-fetal US screening [125]. An automatic
recognition method using deep learning for the fetal facial standard planes, including the
axial, coronal, and sagittal planes was reported [126]. Moreover, automated partitioning
and characterization on an unlabeled full-length fetal US video into 20 anatomical or activity
categories was performed [127]. A generic deep learning framework for the automatic
quality control of fetal US cardiac four-chamber views [128] as well as a framework for
tracking the key variables that described the contents of each frame of freehand 2D US
scanning videos of a healthy fetal heart [129] were developed. Wang et al. presented a
deep learning framework for differentiating operator skills during fetal US scanning using
probe motion tracking [130].

Al-based abnormality detection and classification in fetal US imaging remain challeng-
ing owing to the wide variety and relatively low incidence of congenital diseases. Xie et al.
proposed deep learning algorithms for the segmentation and classification of normal and
abnormal fetal brain US images in the standard axial planes. Furthermore, they provided
heat maps for lesion localization using gradient-weighted class activation mapping [131].
An ensemble of neural networks, which was trained using 107,823 images from 1326 retro-
spective fetal cardiac US studies, could identify the recommended cardiac views as well as
distinguish between normal hearts and complex congenital heart diseases. Segmentation
models were also proposed to calculate standard fetal cardiothoracic measurements [132].
Komatsu et al. proposed the CNN-based architecture known as supervised object detection
with normal data only (SONO) to detect 18 cardiac substructures and structural abnormali-
ties in fetal cardiac US videos. The abnormality score was calculated using the probability
of the cardiac substructure detection. SONO enables abnormalities to be detected based
on the difference from the correct anatomical localization of normal structures, thereby
addressing the challenge of the low incidence of congenital heart diseases. Furthermore,
in our previous work, the above probabilities were visualized similar to a barcode-like
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timeline. This timeline was useful in terms of Al explainability when detecting cardiac
structural abnormalities in fetal cardiac US videos (Figure 4) [133].

Abdomen

1. Crux

2. Ventricular Septum

3. Right Atrium

4. Tricuspid Valve

5. Right Ventricle

6. Left Atrium

7. Mitral Valve

8. Left Ventricle

9. Pulmonary Artery

10. Ascending Aorta

11. Superior Vena Cava
12. Descending Aorta
13. Stomach

14. Spine

15. Umbilical Vein

16. Inferior Vena Cava

17. Pulmonary Vein

18. Ductus Arteriosus

Time —

Figure 4. Possible techniques for Al explainability. The cardiac substructures were detected with colored bounding boxes in
a three-vessel trachea view in (a) a normal case, and (b) a tetralogy of Fallot (TOF) case. (c) An image of the class-specific
heatmap indicates the discriminative regions of the image that caused the particular class activity of interest. (d) Barcode-like
timeline in a TOF case. The vertical axis represents the 18 selected substructures and the horizontal axis represents the
examination timeline in the rightward direction. A probability of >0.01 was set as well-detected and is indicated as the blue
bar, whereas <0.01 was set as non-detected and is indicated by the gray bar in each frame. The pulmonary artery was not

detected (red dotted box).

Deep learning-incorporated software improved the prediction performance of neona-
tal respiratory morbidity induced by respiratory distress syndrome or transient tachypnea
of the newborn in fetal lung US imaging for Al-based fetal functional evaluation [134].

5. Discussion and Future Directions

In this review, we have introduced various areas of medical Al research with a focus
on US imaging analysis to understand the global trends and future research subjects from
both the clinical and basic perspectives. In addition to other medical imaging modali-
ties, classification, detection, and segmentation are the fundamental tasks of Al-based
image analysis. However, US imaging exhibits several issues in terms of image quality
control. Thus, US image preprocessing needs to be performed and ingenious algorithm
combinations are required.

Acoustic shadow detection is the characteristic task in US imaging analysis. Although
deep learning-based methods can be applied to a wide range of domains, the preparation of
training datasets remains challenging. Therefore, weakly or semi-supervised methods offer
the advantage of cost-effectiveness for labeling [41-43]. Towards the clinical application of
acoustic shadow detection methods, examiners can evaluate whether the current acquired
US imaging is suitable for diagnosis in real time. If not, rescanning can be performed dur-
ing the same examination time. This application may improve the workflow of examiners
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and reduce the patient burden. Several frameworks relating to specialized algorithms
for US imaging analysis have been proposed, in which the time-series information in US
video [51,52] or a channel attention module [53,54] have been integrated with conventional
algorithms to overcome the performance deterioration owing to noisy artifacts. Further-
more, the Al-based analysis of 3D US volumes is expected to resolve the problem of the
viewpoint and cross-section instability resulting from manual operation.

From a clinical perspective, breast cancer and cardiovascular diseases are medical
fields in which substantial research efforts in Al-based US imaging analysis have been
made to date, resulting in more medical Al devices being approved. Considering the
clinical background of these two medical fields in which US imaging is commonly used,
the potential exists to develop medical Al research and technologies in obstetrics as well.
However, Al-based US imaging analysis remains challenging and few medical Al devices
are available for this purpose. Therefore, deep learning-based methods that are appli-
cable to cross-disciplinary studies and a wide range of domains need to be learned and
incorporated. According to our review, several ingenious segmentation methods for target
lesions or structures in US imaging may apply to cross-disciplinary utilization among
oncology, cardiovascular medicine, and obstetrics. For example, CSC can be applied to the
segmentation of other small and deformable organs using time-series information of US
videos. Valid US diagnostic support technologies can be established in clinical practice
by accumulating Al-based US image analyses. Automated image quality assessment and
detection can lead to the development of a scanning guide and training material for examin-
ers. Accurate volume quantification as well as the measurement of lesions and indexes can
result in an improved workflow and a reduction in examiner bias. Al-based abnormality
detection is expected to be used for the objective evaluation of lesions or abnormalities and
in preventing oversights. However, it remains challenging to prepare sufficient datasets on
both normal and abnormal subjects for the target diseases. To address the data preparation
issue, it is possible to implement Al-based abnormality detection using correct anatomical
localization and the morphologies of normal structures as a baseline [133].

Furthermore, Al explainability is key to the clinical application of Al-based US di-
agnostic support technologies. It is necessary for examiners to understand and explain
their rationale for diagnosis to patients when obtaining informed consent. Class activation
mapping is a popular technique for Al explainability, which enables the computation of
class-specific heatmaps indicating the discriminative regions of the image that caused
the particular class activity of interest [135]. Zhang et al. provided an interpretation for
regression saliency maps, as well as an adaptation of the perturbation-based quantitative
evaluation of explanation methods [136]. ExplainGAN is a generative model that produces
visually perceptible decision-boundary crossing transformations, which provide high-level
conceptual insights that illustrate the manner in which a model makes decisions [137]. We
proposed a barcode-like timeline to visualize the progress of the probability of substructure
detection along with sweep scanning in US videos. This technique was demonstrated to
be useful in terms of Al explainability when we detected cardiac structural abnormalities
in fetal cardiac US videos. Moreover, the barcode-like timeline diagram is informative
and understandable, thereby enabling examiners of all skill levels to consult with experts
knowledgeably [133].

Towards the clinical application of medical Al algorithms and devices, it is important
to understand the approval processes and regulations of the US FDA, the Japan Pharma-
ceuticals and Medical Devices Agency, and the responsible institutions of other countries.
Furthermore, knowledge of the acts on the protection of personal information and the
guidelines for handling all types of medical data, including the clinical information of
patients and medical imaging data, should be updated. Wu et al. compiled a comprehen-
sive overview of medical Al devices that are approved by the FDA and pointed out the
limitations of the evaluation process that may mask the vulnerabilities of devices when
they are developed on patients [25]. In the majority of evaluations, only retrospective
studies have been performed. These authors recommended the performance evaluation of
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medical Al devices in multiple clinical sites, prospective studies, and post-market surveil-
lance. Moreover, industry—academia—medicine collaboration is required to share valuable
concepts in the development of medical Al devices for patients and examiners, and its
actual use in clinical practice.

The utilization of Al and internet of things (IoT) technologies, along with advanced
networks such as 5G, will presently accelerate infrastructure development in the medical
field, including remote medical care and regional medical cooperation. The current COVID-
19 pandemic has also provided an opportunity to promote such developments. US imaging
is the most common medical imaging modality in an extensive range of medical fields.
However, stronger support for examiners in terms of image quality control should be
considered. The clinical implementation of Al-based US diagnostic support technologies is
expected to correct the medical disparities between regions through examiner training or
by remote diagnosis using cloud-based systems.
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