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Abstract: Recently, accumulating evidence has supported that circular RNA (circRNA) plays impor-
tant roles in tumorigenesis by regulating gene expression at transcriptional and post-transcriptional
levels. Expression of circRNAs can be epigenetically silenced by DNA methylation; however, the
underlying regulatory mechanisms of circRNAs by DNA methylation remains largely unknown. We
explored this regulation in hepatocellular carcinoma (HCC) using genome-wide DNA methylation
and RNA sequencing data of the primary tumor and matched adjacent normal tissues from 20 HCC
patients. Our pipeline identified 1012 upregulated and 747 downregulated circRNAs (collectively
referred to as differentially expressed circRNAs, or DE circRNAs) from HCC RNA-seq data. Among
them, 329 DE circRNAs covered differentially methylated sites (adjusted p-value < 0.05, |∆M| > 0.5)
in circRNAs’ interior and/or flanking regions. Interestingly, the corresponding parental genes of 46
upregulated and 31 downregulated circRNAs did not show significant expression change in the HCC
tumor versus normal samples. Importantly, 34 of the 77 DE circRNAs (44.2%) had significant corre-
lation with DNA methylation change in HCC (Spearman’s rank-order correlation, p-value < 0.05),
suggesting that aberrant DNA methylation might regulate circular RNA expression in HCC. Our
study revealed genome-wide differential circRNA expression in HCC. The significant correlation
with DNA methylation change suggested that epigenetic regulation might act on both mRNA and
circRNA expression. The specific regulation in HCC and general view in other cancer or disease
requires further investigation.

Keywords: hepatocellular carcinoma; circular RNA; DNA methylation; transcriptional regula-
tion; epigenetics

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most frequently occurring malignancies
around the world [1]. Clinical investigation has shown that HCC is the sixth most common
cancer and the fourth main cause of cancer mortality worldwide [2,3]. So far, early-stage
HCC patients are amenable to curative therapy. The available treatment approaches for
HCC include resection, liver transplantation, image-guided tumor ablation, and systemic
therapy [4]. However, the prognosis of HCC patients is still not satisfactory, owing to
tumor recurrence and metastasis with high frequency [5]. Therefore, there is a strong need
to identify specific biomarkers for prognosis predication and new effective targets to design
a powerful therapeutic approach.
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During the past two decades, tremendous progress has been made in next generation
sequencing technologies. Such technologies have helped investigators to reveal epige-
netic abnormalities and noncoding RNA (ncRNA) change as important markers for the
occurrence and progress of cancer. DNA methylation, a process through DNA methyl-
transferases (DNMTs) that transfers methyl groups from S-adenosyl methionine to cytosine
bases of CpG dinucleotides, is one of the most studied epigenetic modifications. Previous
studies have demonstrated that DNA methylation occurs predominantly at CpG sites
(CpGs). Abnormal hypermethylation of the CpG sites in the promoter region of tumor
suppressor genes (TSGs) could alter the chromatin spatial structure, resulting in low or no
expression of TSGs [6]. DNA methylation is thus considered a promising tool for cancer
diagnosis and evaluation of prognosis and treatment response [7].

Among the different types of ncRNA, circular RNA (circRNA) has become an attrac-
tive research topic due to its promising regulatory roles in cellular systems during the
recent years [8–14]. CircRNAs represent a large class of covalently closed transcripts in mul-
ticellular organisms with emerging importance. They are derived from precursor mRNA
noncanonical splicing and exhibit their roles in a tissue- and development-specific man-
ner [14]. It has been recently reported that circRNAs can function as microRNA’s “sponges”
that naturally sequester and competitively suppress microRNA (miRNA) activity [8,9].
For example, circRNA ciRS-7/CDR1as suppresses miR-7 activity, leading to an increased
expression of miR-7’s target genes in brain tissue. Abnormal expression of circRNAs has
been found to be associated with tumorigenesis and tumor progression [15,16]. In HCC, a
previous study revealed that circTRIM33-12 is markedly downregulated in HCC tumor
tissues and cell lines, and it could act as the sponge of miR-191 to suppress hepatocellular
carcinoma progression, including tumor proliferation, migration, invasion, and immune
evasion [17]. Most recently, circular RNAs are found to have protein-coding capacity
through the special elements of internal ribosome entry site (IRES) sequence [18–20]. For
example, Liang et al. identified a circRNA “circβ-catenin” that could encode a novel
370-amino acid β-catenin isoform. Their experimental results showed that this isoform
could protect β-catenin from GSK3β-mediated degradation and potentiate the activation of
Wnt/β-catenin pathway in liver cancer cells [19]. Moreover, emerging evidence indicated
that some dysregulated circular RNAs contributed to DNA methylation level of down-
stream genes in autoimmune disease and cancer [21–23]. For example, Chen et al. found
that a novel circular RNA, FECR1, acted as an upstream regulator to control breast cancer
tumor growth by coordinating the regulation of DNA methyltransferase DNMT1 and DNA
demethylase TET1 [21].

Despite accumulating evidence of circRNAs abnormally expressed in tumorigenesis,
there has been little information about how circRNA expression becomes disrupted in can-
cer by regulation. Ferreira et al. offered some clues that circRNAs, like their corresponding
linear RNAs, might undergo cancer-specific hypermethylation-associated transcriptional
silencing in cancer cell lines [24]. Their results indicated that the expression of circRNAs
could also be epigenetically silenced by DNA methylation. This intriguing feature between
DNA methylation and circRNA has not been much explored in specific cellular conditions
or diseases such as cancer.

In this study, we explored differential circRNA profiles and their relationship with
abnormal DNA methylation changes in HCC. We developed in-house computational
pipelines and characterized 12,097 differentially expressed (DE) mRNAs, 312 DE miRNAs,
1759 DE circRNAs, and 191,757 differentially methylated (DM) sites based on a published
dataset in HCC. Importantly, 77 circRNAs with differentially methylated sites were found
to express differently in tumors versus adjacent normal samples, while their parental
genes were not. Further analysis of these 77 circRNAs indicated that the expression of
34 circRNAs were significantly correlated with the alteration of DNA methylation (Spear-
man’s rank-order correlation, p-value < 0.05). We thus hypothesized that some aberrant
DNA methylation events might only affect the process of pre-mRNA to generate circRNAs
but not the process generating linear RNAs. In addition to testing this hypothesis, we
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further constructed competing endogenous RNA (ceRNA) regulation networks comprising
circRNA–miRNA–mRNA pairs, from which we attempted to find potential biomarkers
and possible new clues of treatments in HCC. The flowchart of our study is illustrated in
Figure 1a.
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2. Materials and Methods
2.1. Datasets

In this study, we retrieved several datasets from the NCBI GEO database (GSE77276)
for analysis, including RNA-seq (GSE77509), DNA methylation microarray (GSE77269),
and miRNA-seq (GSE76903) of primary tumors from 20 hepatocellular carcinoma patients
and matched adjacent normal samples [25]. Table 1 summarizes the clinical information of
the patients whose samples were used in this study.

Table 1. The clinicopathological characteristics of patients used in this study.

Patient ID Gender Age (Years) Tumor Size (cm) Hbv Infection

#3 female 46 6 Yes
#6 male 35 14.1 Yes
#7 male 42 38 Yes
#8 male 61 8 No

#10 male 66 12 Yes
#11 male 53 8 Yes
#12 female 49 10 Yes
#13 male 52 17 Yes
#14 female 51 5.5 Yes
#15 male 47 5 Yes
#16 male 43 10 Yes
#17 male 60 3 Yes
#18 male 61 10 Yes
#19 male 43 7 Yes
#20 male 64 10 Yes
#21 male 40 7 NA
#22 male 53 19 Yes
#24 male 62 2.4 Yes
#25 male 48 6.7 Yes
#26 male 49 NA Yes

2.2. Identification of Dysregulated mRNAs and circRNAs

RNA-seq data of forty samples (GSE77509) was used to identify dysregulated mRNAs
and circRNAs using our pipeline. First, the raw sequence reads were cleaned by trimming
the low-quality bases (Q < 20). Then, the cleaned RNA-seq reads were mapped to the
human reference genome (GRCh37/hg19, UCSC Genome Browser) by Tophat2 [26] (version
2.1.1) and BWA [27] software, respectively. These two tools are capable of detecting the
canonical splicing events. Next, cufflinks [26] (version 2.2.1) was used to assemble mRNAs,
and CIRI2 (version 2.0.6) [28,29] was used to identify circRNAs by recognizing the back-
splicing junction (BSJ) reads. CIRI2 is a program designed to differentiate BSJ reads from
non-BSJ reads using efficient maximum likelihood estimation (MLE) based on multiple
seed matching and to filter false positives derived from repetitive sequences or the mapping
errors. To evaluate the relative expression of mRNAs and circRNAs between tumor versus
adjacent normal samples, DESeq2 [30], an R package for differential expression analysis
based on negative binomial generalized linear models, was used with the cutoff values
(adjusted p-value < 0.05, |log2 (fold change)| > 1 for mRNA, adjusted p-value < 0.05
and junction read counts ≥ 2 for circRNAs). The read counts mapped to the sequence
of mRNAs and mapped to the BSJ of circRNAs were input to DESeq2 for differential
expression analysis, respectively.

2.3. Small RNA Data Analysis

Mature miRNA and precursor miRNAs of human were obtained from miRBase [31].
The raw reads of 40 miRNA-seq samples (GSE76903) were first subjected to adapter
removal through the Cutadapt program (version 1.9) [32]. Then, the clean reads were
further preprocessed by miRDeep2 [33]. The known mature miRNA expression profile was
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generated by using the quantifier module of the miRDeep2 package that gives the read
counts for the known miRNAs. The differentially expressed miRNAs were determined by
DESeq2 with the cutoff of adjusted p-value < 0.05 and |log2 (fold change)| > 1.

2.4. Differential Methylation Analysis

The definition of the “promoter” region in a circRNA is currently an unsolved is-
sue. In this study, for methylation analysis, we extracted three regions of a circRNA: a
2 kb sequence immediately upstream of the back-splicing site (Pre2000), the circRNA’s
sequence (Interior), and a 2 kb sequence immediately downstream of the back-splicing
site (After2000). For each gene, its promoter, defined as the 2 kb sequence immediately
upstream of the TSS, and gene body region were selected for methylation analysis.

The relative methylation levels were measured as β-values ranging from 0 to 1, where
a value close to 0 indicates low level of DNA methylation, and a value close to 1 indicates
high level of DNA methylation. Because M-values are statistically valid for differential
methylation analysis [34], we converted the original β-values to M-values through logistic
transformation. Based on the M-values, the R package limma [35] was used to identify the
differentially methylated sites between tumor and adjacent normal samples. The limma
method uses the linear models and empirical Bayes methods, which can produce stable
analyses from experiments with a small sample size, to assess the difference between the
two groups. Because stringent multiple testing may produce a high false-negative rate
when the number of samples is small, we used adjusted p-value < 0.05 and M-value differ-
ence (|∆M|) > 0.5 as the cutoffs to identify the significantly differentially methylated sites.

2.5. Prediction of miRNAs Related to circRNAs

To predict the relationship between dysregulated miRNAs and differentially expressed
circRNAs with differentially methylated sites, the sequences and annotations of miRNAs
were obtained from the miRBase database. Then, miRanda [36] (August 2010 Release)
and TargetScan [37] (Release 7.1) pipelines were used to predict the circRNA–miRNA
interaction network. In the miRanda pipeline, we set parameters with the match score
higher than 140 and the minimum free energy less than −20 to improve the reliability of
our prediction.

2.6. Construction of the circRNA–miRNA–mRNA Network

To predict the potential roles of DE circRNAs with DM sites in molecular regulation,
the circRNA–miRNA–mRNA networks were constructed by combining the circRNA–
miRNA and miRNA–mRNA pairs. We used the experimentally validated miRNA–target
interaction datasets from miRTarBase [38] (Release 7.0) to filter the DE miRNAs–DE mRNA
pairs in our study. Then, network visualization software Cytoscape (version 3.7.1) [39] was
used to display the circRNA–miRNA–mRNA regulation network in HCC.

2.7. Integrated Functional Enrichment Analysis

The corresponding parental genes of circRNAs and the significantly dysregulated
mRNAs in ceRNA network were both used for the functional enrichment analysis. Gene
Ontology (GO) enrichment analysis (including its three domains: biological processes, cel-
lular components and molecular function) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were performed using WEB-based Gene Set Analysis Toolkit (We-
bGestalt) [40] with default parameters and false discovery rate (FDR) < 0.05.

2.8. Survival Analysis of Target Genes

We performed survival analysis and drew the survival curves using an online database,
GEPIA2 [41], and UALCAN [42]. These tools provide the relationship between patient
survival information and gene expression based on The Cancer Genome Atlas (TCGA)
datasets. We chose the liver hepatocellular carcinoma (LIHC) and input the target genes in
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the ceRNA predicted network to explore the survival curves. The genes with p-value < 0.1
were considered critical candidate genes.

2.9. Conventional Classification Algorithms

Six conventional machine learning classifiers, including Decision Tree (DT), Gradient
Boosting (GB), K-Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest (RF)
and Support Vector Machine (SVM), were implemented. Each classification algorithm
was trained using the expression feature of DE circRNAs in HCC. The receiver operating
characteristic curve (ROC) was drawn, and then the area under the curve (AUC) value was
calculated based on the 10-fold cross-validation (CV) to evaluate each algorithm’s performance.

Table S1 provides the list of bioinformatics tools used in the analyses.

3. Results
3.1. The Landscape of Differentially Expressed circRNAs in HCC

Our genome-wide transcriptomic analysis identified over 10,000 circRNAs in each
of the 20 paired matched tumor and adjacent normal samples with at least two junction
supporting reads by CIRI2 (Figure 1a). To improve the analysis confidence of our study,
we focused on the circRNA that could be identified in at least two samples, resulting in
76,355 unique circRNAs that were detected. After comparing with the previously published
circRNAs deposited in database circBase [43] (containing 140,790 human circRNAs), we
found that the overlap of circRNAs in our study and circBase was significant (Fisher’s Exact
Test, p-value < 2.2 × 10−16): 20,123 circRNAs have been annotated in the circBase, while a
total of 56,232 were novel circRNAs (Figure 1b). Furthermore, 47,437 and 47,218 circRNAs
were respectively found in tumor and normal groups. Among them, 28,510 circRNAs
were present in both groups, indicating the overlap of circRNAs in tumor and normal
samples was not significant (Figure 1c, Fisher’s Exact Test, p-value > 0.05). Notably, we
found that 28.9% (2968/10,280) of circRNA-producing genes generated only one circRNA,
and 19.9% (2046/10,280) genes produced more than 10 circRNAs (Figure 1d). Of note, the
gene DNAH14 generated 127 circRNAs, and the gene BIRC6 generated 124 circRNAs. This
is likely because each of them has large number of exons (DNAH14 and BIRC6 have 90 and
78 exons, respectively) in the human genome.

Next, we used DESeq2 to analyze the differentially expressed circRNAs (DE circRNAs)
between tumor and adjacent normal samples. The results showed that 1759 circRNAs
were differentially expressed (adjusted p-value < 0.05). The top 20 differential expressed
circRNAs in HCC are shown in Table 2. According to the chromosome location of circRNAs,
we concluded that more than 90% of DE circRNAs were back-spliced from exonic regions;
however, we also found 6% DE circRNAs and 4% DE circRNAs derived from intergenic
regions and intronic regions, respectively (Figure 1e). Principal component analysis (PCA)
showed that circRNA expression could distinguish tumor and adjacent normal samples
well (Figure 2a). Furthermore, we applied six conventional machine learning algorithms
(DT, GB, KNN, LR, RF, and SVM) to conduct prediction models based on the expression of
DE circRNAs. As shown in Figure 3, each model has a high AUC value (AUC = 0.97~1.00).
The results suggested that circRNAs might have the potential roles to serve as biomarkers
for predicting HCC (Figure 3). Further statistical analysis in HCC tumor sample versus the
adjacent normal sample revealed that 1012 circRNAs (57.53%) were upregulated, while
747 circRNAs (42.47%) were downregulated in HCC (Figure 2d). Figure 2g displays the
heatmap cluster of DE circRNAs across 40 samples. The results showed that tumor and
adjacent normal samples could be categorized into two different branches, except for T8
and T17 samples.
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Table 2. Top 20 differentially expressed circRNAs in HCC.

circRNA ID circRNA Type Gene ID Gene Symbol log2 (Fold Change) p_adj

chr12:96381971-96384310 exon ENSG00000084110.6 HAL −3.63 1.96 × 10−27

chr10:96701615-96732002 exon ENSG00000138109.9 CYP2C9 −4.61 5.57 × 10−24

chr19:10183600-10184111 exon ENSG00000167798.12 C3P1 −3.97 6.33 × 10−24

chr3:51575514-51586079 intron ENSG00000164080.9 RAD54L2 −2.73 2.43 × 10−22

chr16:56385296-56388993 exon ENSG00000087258.9 GNAO1 −5.55 1.09 × 10−20

chr10:96818092-96827448 exon ENSG00000138115.9 CYP2C8 −3.81 3.32 × 10−19

chr8:62593527-62596747 exon ENSG00000198363.11 ASPH 2.73 7.18 × 10−17

chr7:87068983-87069718 exon ENSG00000005471.11 ABCB4 −2.65 2.34 × 10−16

chr12:56871444-56872046 exon ENSG00000135423.8 GLS2 −5.25 3.61 × 10−16

chr5:113740135-113740553 exon ENSG00000080709.10 KCNN2 −4.42 4.26 × 10−16

chr6:161157919-161162449 exon ENSG00000122194.14 PLG −2.94 6.63 × 10−16

chr4:128995615-128999117 exon ENSG00000138709.13 LARP1B −1.74 2.69 × 10−15

chr1:225140372-225156576 exon ENSG00000185842.10 DNAH14 5.36 4.75 × 10−15

chr16:87935518-87936126 exon ENSG00000174990.3 CA5A −3.30 5.00 × 10−15

chr1:225140372-225161855 exon ENSG00000185842.10 DNAH14 2.67 2.57 × 10−14

chr7:87031149-87032597 exon ENSG00000005471.11 ABCB4 −4.37 2.99 × 10−14

chr11:122162992-122165713 intron ENSG00000255090.1 RP11-820L6.1 −4.48 5.70 × 10−14

chr4:1902353-1936989 exon ENSG00000109685.13 WHSC1 3.52 7.04 × 10−14

chr13:46577274-46619651 exon ENSG00000123200.12 ZC3H13 −2.56 5.98 × 10−13

chr8:131370263-131374017 exon ENSG00000153317.10 ASAP1 2.11 9.06 × 10−13

p_adj: adjusted p-value after multiple test correction.
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We performed gene set enrichment analysis of the parental genes of dysregulated
circRNAs using GO terms and KEGG pathways and online tool WebGestalt (version 2019).
The GO enrichment results indicated that these parental genes had enrichment function
in cellular response to stress (GO: 0033554, biological process, p-value = 2.45 × 10−8),
nucleoplasm part (GO: 0044451, cellular components, p-value = 5.77 × 10−15), and adenyl
ribonucleotide binding (GO: 0032559, molecular function, p-value = 4.18 × 10−11). Nine
significant pathways were also found by KEGG pathways analysis (FDR < 0.05, Figure S1).
Among them, the pathway of synthesis and degradation of ketone bodies (hsa00072)
and the valine, leucine, and isoleucine degradation pathway (hsa00280) were previously
reported to be associated with liver metabolic function and play important roles in the
progression of HCC [44,45].

3.2. The Differential Expression Pattern of circRNAs and Genes in HCC

Genome-scale gene expression of primary tumor and matched adjacent normal sam-
ples for 20 HCC patients were examined by the tools in Figure 1a. Principal component
analysis of the genes revealed a significant differentiation between the tumor and normal
samples (Figure 2c).

DESeq2 was used to identify the DE genes based on read counts. By statistical analysis,
we drew volcano plots for the genes in HCC paired samples (|log2 (fold change)| > 1,
adjusted p-value < 0.05) (Figure 2f). In total, 12,097 differentially expressed genes were
identified. Among them, 7087 genes (58.58%) were upregulated, and 5010 genes (41.42%)
were downregulated in tumor samples. As shown in Figure 2i, all HCC samples were
clustered together by gene expression data. After combining the DE circRNAs’ expression
in Figure 2g, the results suggested that HCC samples had distinct transcriptomic changes
at both the gene and circRNA molecular levels when compared to control samples.

Because circRNAs were derived from their precursor mRNA (pre-mRNA) splicing
process, we examined the expression level of DE circRNA’s parental genes and compared
the expression pattern of circRNAs and their parental genes in HCC. Interestingly, despite
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that the dysregulation of majority DE circRNAs could be explained by the dysregulation of
the parental genes (Figure 4a, red and green data points), we also found 371 DE circRNAs
whose parental genes showed no obvious change in HCC (Figure 4a, blue and purple data
points). Further analysis showed that 187 parental genes corresponding to upregulated
circRNAs and 147 parental genes corresponding to downregulated circRNAs were not
significantly differentially expressed, respectively. More importantly, we characterized that
the expression patterns of six circRNAs were opposite to their parental genes (Figure 4b,
black and brown data points), confirming previous findings that the expression of circRNAs
can be independent of their parental genes [46]. We further checked their parental genes’
expression using the data from the Genotype-Tissue Expression (GTEx, https://gtexportal.
org/home/, accessed on 15 October 2019) project. Interestingly, we found four genes (RP11-
434D9.1, DHTKD1, SLC22A10, and SLCO1B3) had the highest expression level in liver
among all the GTEx tissues, while one gene (MAPT) showed no expression in liver (below
the cutoff value). The opposite expression pattern between circRNA and parental gene
suggested that circRNAs could serve as valuable biomarkers in hepatocellular carcinoma.
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Figure 4. The correlation between log2 (fold change) of circRNAs and log2 (fold change) of linear mRNAs in HCC. (a) Red
and green data points denote the differential expression of the circRNAs that were positively correlated with the differential
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circRNAs whose differential expression had negative correlation with the differential expression of the linear mRNAs.

We performed enrichment analysis for the parental genes that showed no significant
expression change, but the corresponding circRNAs were significantly differentially ex-
pressed. A total of nine GO terms were significantly enriched in 234 genes (Figure S2a),
including biological process terms such as regulation of insulin receptor signaling pathway
(GO:0046626, p-value = 5.56 × 10−6), regulation of cellular response to insulin stimulus
(GO:1900076, p-value = 9.02 × 10−6), cellular component terms such as nucleoplasm part
(GO:0044451, p-value = 4.98 × 10−6), nuclear body (GO:0016604, p-value = 9.07 × 10−6),
and molecular function terms such as GTPase binding (GO:0051020, p-value = 1.67 × 10−5).
In addition, the enrichment analysis using KEGG pathways revealed that these genes were
primarily enriched in ubiquitin mediated proteolysis (p-value = 4.21 × 10−5, Figure S2b).
Previous studies have reported that this pathway was known to be important for hepato-

https://gtexportal.org/home/
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carcinogenesis [47–49]. To better interpret the results, we constructed a network for those
enriched GO terms (Figure S2c). From this network, we found some genes associated with
multiple terms. For example, NR1H4 was involved in three terms. NR1H4 regulated bile
acid synthesis, transport, and catabolism. It encoded a core transcription factor for normal
liver homeostasis [50,51]. Taken together, these findings indicated that these special DE
circRNAs may have potential regulatory function in HCC progression.

3.3. Altered DNA Methylation Events Associated with circRNAs in HCC

The DNA methylation datasets of 20 HCC patients were generated by the Illumina
Infinium HumanMethylation450K BeadChip Kit, which assays for more than 485,000 CpG
sites. Similar to gene methylation analysis, three regions (Pre2000, Interior, and After2000)
were selected to investigate the methylation patterns in circRNAs. Specific details are
described in Materials and Methods.

By combining the circRNA expression with the analysis results of genome-scale DNA
methylation, we drew volcano plots to display differentially expressed circRNAs that
also harbored the DM sites (Figure S3, blue and black data points). Our analysis found
that 195 upregulated (195/1012, 19.27%) and 134 downregulated (134/747, 17.94%) DE
circRNAs had DM sites in HCC (adjusted p-value < 0.05 and |∆M| > 0.5). Furthermore,
we investigated the distribution of DE circRNAs with or without harboring DM site across
human chromosomes. The number of circRNAs was normalized by gene density in each
chromosome. The results indicated that chromosome 10 had the highest proportion of DE
circRNAs, while chromosome 19 had the lowest proportion in HCC. Of note, chromosome
19 had the highest density of gene among all the human chromosomes [52]. When we
compared the number of DE circRNAs with that of DM sites, we found that chromosome
13 had the highest ratio, while chromosome 20 had the lowest ratio, after excluding the sex
chromosomes (Figure S4).

Next, in the upregulated DE circRNA group, 28 (23 hypermethylated and 5 hy-
pomethylated), 196 (179 hypermethylated and 17 hypomethylated), and 30 (27 hyper-
methylated and 3 hypomethylated) significant DM sites were detected, respectively, in
After2000, Interior, and Pre2000 regions of circRNAs. In downregulated DE circRNA
group, 27 (19 hypermethylated and 8 hypomethylated), 143 (113 hypermethylated and
30 hypomethylated), and 23 (20 hypermethylated and 3 hypomethylated) significant DM
sites were detected, respectively, in After2000, Interior, and Pre2000 regions of circRNAs
(Table 3). These results revealed that the number of hypermethylated sites was higher than
that of hypomethylated sites in DE circRNAs, and both were mainly distributed in interior
regions (>80%).

Table 3. Summary of differentially expressed circRNAs associated with differentially methylated sites in HCC.

Dysregulated circRNAs Number (by Region) Hypomethylated Sites Hypermethylated Sites

Upregulated 195
31 (After2000) 5 23
155 (Interior) 17 179
32 (Pre2000) 3 27

Downregulated 134
23 (After2000) 8 19
102 (Interior) 30 113
19 (Pre2000) 3 20

We further analyzed and displayed the DM site frequency for each DE circRNA
by heatmap (Figure 5). We found 88.7% (173/195) upregulated circRNAs and 92.5%
(124/134) downregulated circRNAs had only one region with DM sites. Interestingly,
circSNHG14 (chr15:25328543-25339104) and circTOLLIP (chr11:1307232-1317024) had DM
sites in all regions in both the upregulated and downregulated groups. On the other hand,
most DM sites distributed in the circRNA interior regions (79.5% upregulated and 76.1%
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downregulated). Moreover, chr3:195343807-195444620 and circINPP5A (chr10:134421419-
134523960) had more than 10 DM sites in the interior regions.

3.4. Aberrant DNA Methylation Profiles May have Specific Effect on Circular RNAs That Are Not
Observed on Linear RNAs in HCC

We analyzed the methylation level of these DE parental genes corresponding to DE
circRNAs. The results showed that 69 DE parental genes of upregulated circRNAs and
49 DE parental genes of downregulated circRNAs did not have DM sites (Table 4).
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Table 4. Summary of parental genes of differentially expressed circRNAs with or without differentially methylated sites.

Genes Expression Number Methylation Promoter Gene body Number

Parental genes of
upregulated

circRNAs

With DE 436
With DM 121 345 367

Without DM 237 88 69
Without probe NA NA NA

Without DE 187
With DM 54 125 146

Without DM 86 59 38
Without probe NA NA 3

Parental genes of
downregulated

circRNAs

With DE 337
With DM 84 266 283

Without DM 180 66 49
Without probe NA NA NA

Without DE 147
With DM 32 107 112

Without DM 84 32 29
Without probe NA NA 6

DE: differentially expressed. DM: differentially methylated.

By combining the circRNA expression, mRNA expression, and DNA methylation
changes in our study, we found a total of 77 DE circRNAs (46 upregulated and 31 downreg-
ulated) had significant DM sites, while their parental genes had no differential expression
in tumor versus normal samples. Further analysis showed that the expression of 34 DE cir-
cRNAs (18 upregulated and 16 downregulated) had significant correlation with alteration
of DNA methylation in HCC, and 9 circRNAs were significantly correlated with more than
one DM site (Spearman’s rank-order correlation, p-value < 0.05, Table S2).

By further examining the sequence component of these DE circRNAs harboring DM
sites, we found that most of them (>90%) contained more than three exons. Notably, our
analysis revealed that alternative splicing events of circAHSA2P (chr2:61406116-61413889),
circDCUN1D4 (chr4:52729603-52765544), and circCLEC16A (chr16:11114050-11220003)
were different from their corresponding parental mRNAs. That is, the circ–exon sequences
are derived from different linear transcripts. These results further support that the process
of generating circRNAs and mRNAs may be different. Strong evidence has been implicated
that the circCLEC16A’s parental gene CLEC16A plays important role in autoimmunity, and
the variation in CLEC16A was associated with multiple immune-mediated diseases, such
as type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus [53–57]. Thus,
we considered that CLEC16A may act through generating circRNA to perform biological
function in HCC. GO analysis showed no significant enrichment of 77 circRNAs’ parental
genes (FDR > 0.05); however, we noticed that circCCNL2 (chr1:1322615-1326245) was
derived from cyclin L2 gene (CCNL2). A previous study has demonstrated that CCNL2 was
involved in pre-mRNA splicing and induced apoptosis of human hepatocellular carcinoma
cells [58]. Although RNA-seq analysis showed that the expression of CCNL2 did not change
at mRNA level when compared to controls, the dysregulated circRNAs observed from
CCNL2 gene in HCC likely represent a novel mechanism underlying apoptosis in human
hepatocellular carcinoma cells. We hypothesized that the alteration of DNA methylation
may influence the process of pre-mRNA splicing and such a process prefers to influence the
transcription factors (TFs) that mediate circRNAs’ generation rather than the TFs mediate
linear mRNAs’ generation. According to this hypothesis, aberrant DNA methylation may
have specific regulation on circular RNA. Such a role may not similarly act on linear RNA.

3.5. Construction of ceRNA Regulatory Network in HCC

Regulatory network is an important tool to study cancer such as HCC [59,60], as
previous studies have reported that circRNAs could compete with miRNAs and regulate
miRNA-mediated target genes. In this study, we constructed ceRNA regulation network to
further explore the potential function and regulatory mechanisms of circRNAs harboring
DM sites while we excluded those parental genes with differential expression in HCC. First,
we used DESeq2 to identify the differentially expressed miRNAs in HCC. In total, 312 DE
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miRNAs were identified (|log2 (fold change)| > 1, adjusted p-value < 0.05, Figure 2e).
Among them, 243 miRNAs (77.88%) were upregulated, while 69 miRNAs (22.12%) were
downregulated in tumor tissues (Figure 2h). Then, we used miRanda and TargetScan
pipelines to test which DE miRNAs could interact with these 77 DE circRNAs (see details in
Materials and Methods). Next, we used the experimentally validated miRNA-target interac-
tion datasets from miRTarBase [38] (Release 7.0) and the DE mRNAs in our study to predict
the potential role for these special DE circRNAs in molecular regulation. Finally, Cytoscape
software was used to visualize the circRNA–miRNA–mRNA regulation network. Taken
together, two genome-wide networks were constructed according to the relationships be-
tween co-expressed circRNAs and miRNAs and between miRNAs and mRNAs: Figure 6a
shows 29 upregulated circRNAs, 29 downregulated miRNAs, and 299 upregulated mR-
NAs. Figure 6b displays 19 downregulated circRNAs, 24 upregulated miRNAs, and
38 downregulated mRNAs. Among them, circCLEC16A_1 (chr16:11114050-11154879) and
circCLEC16A_2 (chr16:11114050-11220003) (downregulated in HCC samples) interacted
with the largest number (n = 10) of upregulated miRNAs, suggesting these two circRNAs
may be important regulatory factors in HCC.

3.6. Survival Analysis of Target Genes in Network

To explore the relationship between our identified target genes and clinical features,
we performed survival analysis and drew the survival curves using an online database,
GEPIA2 [41], and UALCAN [42]. These tools provide the relationship between patient
survival information and gene expression base on The Cancer Genome Atlas (TCGA)
datasets. We chose the liver hepatocellular carcinoma (LIHC) and input the target genes
in the ceRNA predicted network to explore the survival curves. In upregulated circRNA
network, we found that 137 target genes (45.8%) were significantly correlated with survival
in HCC. Notably, a high expression level of them revealed a significantly poor overall
survival (OS). (Figure S5). Moreover, in downregulated circRNA network, five target
genes (13.2%) were significantly correlated with survival outcome in HCC. Interestingly, a
low expression level of these genes (CYP2C9, ESR1, FOSB, SERPINF2, and ZAP70) was
associated with a significantly poor OS. (Figure 7).

To explore the potential molecular therapeutic targets for HCC, we decomposed
the ceRNA regulatory network. CYP2C9 could be inhibited by miR-130b-3p, while two
circRNAs, circCLEC16A_1 and circCLEC16A_2, may act as “sponges” to mediate the
expression of miR-130b-3p. In addition, based on the network, circCLEC16A_2 may
regulate ZAP70 through miR-34c-5p, and circCDYL2 may regulate the expression of FOSB
and SERPINF2 through miR-224-5p. CircGRB10 and circTTC28 interacted with miR-18a-5p
and miR-20b-5p, respectively, to regulate the expression of gene ESR1, which was detected
as a candidate tumor suppressor gene and reported to be associated with the susceptibility
to persistent HBV infection [61,62]. Collectively, these DE circRNAs associated with DNA
methylation changes in our regulatory network are promising candidates for future study
in HCC. Further studies will be warranted for validation some of these circRNAs.
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4. Discussion

HCC accounts for >80% of primary liver cancers and is also the fourth main cause of
cancer mortality worldwide [3]. Although the available treatment approaches for early-
stage HCC include resection, liver transplantation has been developed [4]. The prognosis
of HCC patients is still not satisfactory, owing to tumor recurrence and metastasis with
high frequency [5]. Therefore, further studies are needed to identify specific biomarkers for
prognosis predication and new effective targets to design a powerful therapeutic approach.
In recent years, numerous studies have reported that circRNAs possess important functions
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in cancer [15,16], and their expression, like the linear RNAs, can be epigenetically silenced
by DNA methylation [24]. However, circRNA expression and its correlation with DNA
methylation have not been well profiled in cancer, including HCC. To better understand the
molecular mechanisms underlying HCC development and progression, we systematically
analyzed the expression changes at multitranscriptional levels and regulatory networks,
including differentially expressed mRNAs, miRNAs, circRNAs, and DNA methylation
alternation through high-throughput RNA sequencing. Our study represents the first
comprehensive characterization of the potential relationship between DNA methylation
and circRNAs in HCC.

In our work, we characterized a total of 12,097 differentially expressed mRNAs, 312 DE
miRNAs, 1759 DE circRNAs, and 191,757 differentially methylated sites. According to
PCA analysis, HCC tumor and matched normal samples were better distinguished by
circRNA and mRNA expression than by miRNA expression (Figure 2g–i). This observation
implied that circRNAs could be potential biomarkers for diagnose and prognosis of HCC
in future. In our DE analysis, we found that some circRNAs were significantly differentially
expressed, but the corresponding parental genes showed no significant expression change
in HCC. This unique gene set is particularly interesting to study the potential roles of
DE circRNAs in the disease like HCC. The GO function and KEGG pathway analysis
revealed many enriched gene sets in liver function or hepatocarcinogenesis, indicating
that circRNAs may have potential regulatory function in HCC progression. Furthermore,
we observed that the expression pattern of six circRNAs were opposite to their parental
genes. In our examination of expression of tissue panel using the GTEx data, we found that
four genes (RP11-434D9.1, DHTKD1, SLC22A10, and SLCO1B3) had highest expression
level in liver than any other tissues in the human body. The opposite expression pattern
suggested that circRNAs combined with mRNAs could serve as paired biomarkers in HCC.

So far, we have known that some circRNA expression changes are associated with
cancer progression, but the knowledge of circRNA silenced by DNA methylation in HCC
has been very limited. Thus, our study had a unique way to perform epigenetic analysis.
We detected 195 upregulated and 134 downregulated DE circRNAs that had DM sites in
After2000, Interior, or Pre2000 regions of the circRNAs. Most of the DM sites (84.3%) were
hypermethylated (Table 3) and mainly distributed in their interior regions (>80%, Figure 5).

A key finding of our study was that 46 upregulated and 31 downregulated circRNAs
had significant DM sites, but their parental gene had no differential expression in HCC.
This specific set of circRNAs may be directly regulated by DNA methylation to link to
the potential clinical outcome. For example, circSLC43A1 (chr11:57258697-57259335) was
downregulated in tumor versus normal samples. The expression level of circSLC43A1 was
significantly positively correlated with altered methylation level of cg11376147 probe in
HCC (Spearman’s rank-order correlation, p-value < 0.05), while the parental gene SLC43A1
was not differentially expressed. Considering circRNAs and mRNAs were both generated
from pre-mRNA through different splicing methods, this finding indicated that some
aberrant DNA methylation events might have specific effect on circular RNA but not linear
RNA in HCC. Nano et al. reported that cg11376147 probe annotated to SLC43A1 gene
was associated with gamma–glutamyl transferase (GGT) level in whole blood [63]. GGT
is an enzyme elevated in the blood in most diseases, causing damage to the liver. Our
results provided new insights into epigenetic mechanisms that circRNAs regulated by
DNA methylation could be potential markers associated with liver function or liver cancer.

Regulatory networks have been established to understand DE circRNA regulation
pattern in our study. The networks contained DE circRNAs harboring differentially methy-
lated sites, DE miRNAs, and DE mRNAs in HCC. The network analysis identified many
potential regulator modules that might play important roles in HCC. Among them, circ-
CLEC16A_1 and circCLEC16A_2 (downregulated in HCC samples) interacted with the
largest number (n = 10) of upregulated miRNAs in network, suggesting these two circR-
NAs may be important regulatory factors in HCC. Furthermore, our analysis of TCGA
dataset found that a total of 142 target genes in the regulated network were correlated
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with survival curves with clinical outcome significance in HCC. We expect it will provide
potential candidates for future functional studies of circRNAs in HCC.

This study has some limitations or potential future work. First, genome-wide analysis
may lead to both false positive and false negative results. Experimental validation using
matched tissues (e.g., HCC and adjacent tissues) will be needed in future study. Second,
circRNA and other gene annotations are still limited. Third, we may expand our work by
using some additional public data. For example, The Cancer Genome Atlas (TCGA) has
RNA and miRNA sequencing data, along with the methylation and clinical data. Although
the number of samples with matched total RNA-seq, small RNA-seq, and methylation
data is expected to be small in each cancer type, this unique resource may help us further
explore such synergistic features in pan-cancer. Such data may also allow us to perform
survival analysis to validate the selected circRNAs as potential biomarkers in cancer.

5. Conclusions

In summary, we performed a unique integrative omics analysis of circRNAs with
differential gene expression and methylation change. We reported a list of circRNAs whose
expression was associated with DNA methylation alteration, but their parental genes were
not. This list of circRNAs may serve as promising candidates to further explore their roles
in gene regulation, especially how such regulation is coordinated with the protein-coding
mRNA expression regulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9060657/s1, Figure S1. Gene Ontology (GO) and KEGG pathway enrichment
analysis of the parental genes of differentially expressed circRNAs in HCC. Figure S2. Gene Ontology
(GO) and KEGG pathway enrichment analysis of the parental genes with no significant expression
change corresponding to the differentially expressed circRNAs. Figure S3. Volcano plot shows
differentially expressed circRNAs with differentially methylated sites in HCC. Figure S4. Normal-
ized distribution of differentially expressed circRNAs with (blue) or without (yellow) differentially
methylated sites across human chromosomes. Figure S5 Target genes correlated to survival curves
with significance in upregulated network. Table S1 Summary of bioinformatics tools used in this
study. Table S2 Characteristics of DE circRNAs associated with DNA methylation.
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