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Abstract: Epidermal growth factor receptor variant III (EGFRvIII) is highly and specifically expressed
in a subset of lethal glioblastoma (GBM), making the receptor a unique therapeutic target for GBM.
Recently, bispecific antibodies (BsAbs) have shown exciting clinical benefits in cancer immunotherapy.
Here, we report remarkable results for GBM treatment with a BsAb constructed by the “BAPTS”
method. The BsAb was characterized through LC/MS, SEC-HPLC, and SPR. Furthermore, the
BsAb was evaluated in vitro for bioactivities through FACS, antigen-dependent T-cell-mediated
cytotoxicity, and a cytokine secretion assay, as well as in vivo for antitumor activity and pharma-
cokinetic (PK) parameters through immunodeficient NOD/SCID and BALB/c mouse models. The
results indicated that the EGFRvIII-BsAb eliminated EGFRvIII-positive GBM cells by recruiting and
stimulating effector T cells secreting cytotoxic cytokines that killed GBM cells in vitro. The results
demonstrated the antitumor potential and long circulation time of EGFRvIII-BsAb in NOD/SCID
mice bearing de2–7 subcutaneously heterotopic transplantation tumors and BALB/c mice. In conclu-
sion, our experiments in both in vitro and in vivo have shown the remarkable antitumor activities of
EGFRvIII-BsAb, highlighting its potential in clinical applications for the treatment of GBM. Addi-
tional merits, including a long circulation time and low immunogenicity, have also made the novel
BsAb a promising therapeutic candidate.

Keywords: bispecific antibody; GBM; EGFRvIII; split intein

1. Introduction

GBM is a highly malignant tumor that originates in the central nervous system (CNS).
It accounts for 54% of all gliomas and 16% of all primary brain tumors [1]. For newly
diagnosed patients, the five-year survival rate is only 6.8% [2]. Over the past 30 years, little
improvement has been made in treating GBM. Possible reasons include a highly heteroge-
neous brain tumor microenvironment, an impermeable blood–brain barrier (BBB), and a
lack of T-cell infiltration. GBM is characterized by rapid proliferation, invasiveness, and
poor prognosis [3]. The current standard of care is still external irradiation after maximum
safe resection, treatment with temozolomide (TMZ), and maintenance chemotherapy [4,5].

EGFRvIII is an EGFR mutant, an 801 bp in-frame deletion spanning exons 2–7 of
the coding sequence [6–8], and is highly and specifically expressed in a subset of human
GBM. The EGFRvIII loses its binding site to the ligand EGF, so it exhibits a low level
of constitutive activity due to impaired endocytosis and degradation [9]. Furthermore,
cells with the EGFRvIII confer significant tumor growth advantages and resistance to
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chemotherapy and radiation therapy [10,11]. The mutant EGFRvIII has been detected in
various cancers, including brain, breast, ovarian, lung, and prostate cancers, but not in
normal tissue, which makes it a potential tumor-specific antigen (TSA) for cancer therapy.

Bispecific antibodies (BsAbs) have shown excellent potential in the treatment of
cancers. Until recently, there were four BsAbs approved on the market—Removab [12],
Blincyto [13,14], Hemlibra [15], and Rybrevant (EP2922872A1)—and many others in clinical
trials [16,17]. The T-cell-engaged bispecific antibody (TCB) that recruits and activates
circulating T cells to tumor sites has attracted extensive research attention. Here, we would
like to develop an IgG format of EGFRvIII-BsAb, a TCB antibody, targeting CD3 and
EGFRvIII. We expected that a BsAb with an IgG format would have low immunogenicity
and a prolonged body circulation time. Until recently, chain-mispairing, especially light
chain-mispairing, has been a major issue in the generation of a BsAb. Thus, a “Bispecific
Antibody by Protein Trans-splicing” (BAPTS) platform, developed in our lab [18–20], was
employed to synthesize the EGFRvIII-BsAb for this study.

Since the uncontrolled cytokine release of an Fc-equipped BsAb is due to CD3 aggre-
gates on T cells that may not be conducive to antitumor effects [16,21], we designed the
EGFRvIII-specific BsAb with attenuated antibody-dependent cellular cytotoxicity (ADCC)
and complement-dependent cytotoxicity (CDC) functions, targeting EGFRvIII-expressing
GBM by recruiting T cells. This design may validate the suggestion that BsAbs with an IgG
format have an extended half-life and durable tumor inhibition potential, as previously
reported [22,23].

2. Materials and Methods
2.1. Animal and Tumor Cell Lines

Female NOD/SCID mice and male BALB/c mice were purchased from Charles River
Laboratories in China and fed according to guidelines from the Institutional Animal Care
and Use Committee of the School of Pharmacy of Shanghai Jiao Tong University (SJTU).
The U87MG.∆EGFR cell line was a gift from Renji Hospital, affiliated with the School of
Medicine at SJTU. U87MG and Jurkat cells were purchased from the Chinese Type Culture
Collection and preserved in our laboratory. All cell lines were cultured under standard
conditions and used within 6 months after resuscitation without reauthentication. The
HEK293E cell line and CHO-S cell line were preserved in our lab.

2.2. Protein Expression and Purification

The ADCC and CDC functions were attenuated by introducing mutations at L234A,
L235A, and P329G (LALA-PG) in the Fc region of the EGFRvIII-BsAb, the EGFRvIII
mAb, and the CD3 mAb, respectively. The CD3 protein fragment (fragment A in the
BAPTS platform) was expressed by a stable transfected CHO cell line. Meanwhile, the
EGFRvIII protein fragment (fragment B in the BAPTS platform) was transiently expressed
by HEK293E cells, as previous reported [24,25]. Both fragment A and fragment B were
captured by affinity chromatography with Capto L (GE Healthcare, Chicago, IL, USA).
The EGFRvIII-BsAb was synthesized by the BAPTS method [20]. The complete BsAb was
purified via isometric-precipitation and subsequent MMC ImpRes Multimodal Chromatog-
raphy Column (Cytiva, Marlborough, MA, USA). Likewise, both controls, EGFRvIII mAb
and CD3 mAb, were transiently expressed by HEK293E cells and purified with Protein A
(GE Healthcare, Chicago, IL, USA) affinity chromatography. The EGFRvIII mAb amino
acid sequence was identical to that of the 806 mAb (CN102405235A). All the recombinant
antibodies were dialyzed overnight into phosphate buffer saline (PBS) and sterilized by
0.22 µM filtration.

2.3. Optimization of the Condition of the “BAPTS” Reaction

After being captured and purified via standard Protein L affinity chromatography, frag-
ment A and fragment B were fused to form the BsAb by the trans-splicing reaction. In the
absence or presence of reducing agents DTT (10708984001; Sigma-Aldrich, St. Louis, MO,
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USA) or TCEP (C4706-2G, Sigma-Aldrich, St. Louis, MO, USA) at various concentrations
(0 mM, 0.01 mM, 0.05 mM, 0.1 mM, 0.5 mM, 1 mM, 2 mM, and 5 mM), the trans-splicing
reaction occurred through the two fragments at a 1 mg/mL concentration and 37 ◦C for
2 h. SDS-PAGE was used to monitor the reaction progress. Upon the completion of the
trans-splicing reaction, the product was dialyzed into PBS buffer, followed by an oxidiza-
tion reaction in the presence of DHAA (D8132; Sigma-Aldrich, St. Louis, MO, USA) in a
20-molar excess (eq.) over TCEP at 37 ◦C for 3 h. The process of the oxidization reaction
was also monitored by SDS-PAGE analysis.

2.4. EGFRvIII-BsAb Characterization

The purified EGFRvIII-BsAb was characterized with LC/MS, SEC-HPLC, and other
methods. The molecular weight of the produced EGFRvIII-BsAb was determined with an
LC/MS method. A sample of 0.5–1 mg was concentrated to 10 mg/mL and dialyzed into
N-glycan excision buffer (5 mM NH4HCO3, 40867; Fluka, Charlotte, N.C., USA) and mixed
with 1 µL PNGase F (500 U/µL, P0704S; New England Biolab, Ipswich, MA, USA) at 37 °C
for 24 h to remove the N-glycan. Then, the components in the sample were separated with
the ACQUITY UPLC Protein BEH C4 Column (186004495; Waters, Etten-Leur, Netherlands).
A Waters Acquity VION IMS Q-Tof mass spectrometer (Milford, MA, USA) was coupled
with the UPLC (Milford, MA, USA) to determine the mass of the target protein. The data
were collected and processed with UNIFI 1.8 software (Waters, Milford, MA, USA). Purity
of the EGFRvIII-BsAb was determined by the SEC-HPLC method (Agilent, Santa Clara,
CA, USA).

2.5. Flow Cytometry

Flow cytometry was used to evaluate the EGFRvIII antigen expression level of GBM
cell lines, the binding of the EGFRvIII-BsAb with the target tumor cell lines, and the
binding of the EGFRvIII-BsAb to CD3+ Jurkat cells. An operating procedure following
the manufacturer’s protocol (RRID AB_465926 and RRID AB_2565789) was followed to
achieve the best results.

2.6. Binding of EGFRvIII-BsAb to EGFRvIII+ U87MG.∆EGFR Cells

The GBM cell lines U87MG and U87MG.∆EGFR, which were in a logarithmic growth
phase, were harvested and incubated with EGFRvIII mAb and EGFRvIII-BsAb at a 1 ug/mL
concentration on ice for 30 min and then washed twice with FACS buffer (PBS + 2% FBS)
for the analysis of antigen expression. For the binding affinity analysis of the EGFRvIII-
BsAb to U87MG.∆EGFR and U87MG, cells were prepared with the same procedure, but
with different antibody concentrations. Then, the PE-conjugated goat antihuman IgG-Fc
antibody (12-4998-82; eBioscienceTM, San Diego, CA, USA) was added and incubated on
ice for 30 min. After being washed twice, samples were resuspended with FACS buffer,
followed by analysis with a CytoFLEX cytometer (BECKMAN COULTER, Brea, CA, USA).

2.7. Binding of EGFRvIII-BsAb to CD3+ Jurkat Cells

Jurkat cells were resuspended in FACS buffer on ice and incubated with the CD3 mAb
or the EGFRvIII-BsAb at a series of concentrations, followed by APC-conjugated antihuman
IgG-Fc antibody (409305; Biolegend, San Diego, CA, USA). Samples were analyzed with a
CytoFLEX cytometer using CytExpert software (BECKMAN COULTER, Brea, CA, USA).

2.8. Affinity Measurement of EGFRvIII-BsAb with Surface Plasmon Resonance (SPR)

The binding affinities of the antibodies were determined using SPR (Biacore 8K; GE
Healthcare, Chicago, IL, USA). The EGFRvIII antigen (AVI10494; R&D System, Minneapolis,
MN, USA) and extracellular domain of human CD3D/CD3E heterodimer (CT038-H2508H;
Sino Biological, Beijing, China) were immobilized to a CM5 chip (29149603; GE Healthcare,
Chicago, IL, USA) surface using standard protocols with 1-ethyl-3 (3-dimethylaminopropyl)
carbodiimide (EDC)/N-hydroxysuccinimide (NHS) amine. The concentration series were
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fit to a 1:1 binding model to determine the equilibrium dissociation constant (KD) and
association (Ka) and dissociation (Kd) rate constants. Surfaces were regenerated using
injections of 0.1 M glycine (pH 1.5). EGFRvIII mAb and CD3 mAb were used as controls.

2.9. CD3+ Jurkat Cells Recruited to EGFRvIII+ Tumor Cells

EGFRvIII-positive U87MG.∆EGFR cells were labeled with CFSE (65-0850-84; In-
vitrogen, Carlsbad, CA, USA) and CD3-positive Jurkat cells were labeled with PKH26
(PKH26GL; Sigma-Aldrich, St. Louis, MO, USA), according to the manufacturers’ protocols.
The stained cells were mixed at a ratio of 1:1 and incubated with EGFRvIII-BsAb on ice
for 1 h. EGFRvIII mAb was added as control. After the samples were washed twice and
resuspended with FACS buffer, CFSE/PKH26 signals were analyzed with a CytoFLEX
cytometer using Cyto-Expert software.

2.10. T-Cell Activation and Cytotoxic Cytokine Release in the Presence of Tumor Cells

Fresh human PBMCs were separated from healthy donors with Ficoll-Paque Plus
density gradient media (17144003; GE Healthcare, Chicago, IL, USA) according to the
manufacturer’s protocol, and then were incubated with 1 ug/mL EGFRvIII-BsAb in the
presence of U87MG.∆EGFR (EGFRvIII-positive cells) or U87MG (EGFRvIII-negative cells),
respectively, with an effector-to-target (E/T) ratio of 10:1 for 28 h. Then, early signs of T-cell
activation (CD69) were detected by FACS within CD4+ and CD8+ T-cell subsets. Cells
were harvested and analyzed for T-cell activation with antihuman CD4 (10400-M001-P;
Sino Biological, Beijing, China), antihuman CD8 (10980-MM28-F; Sino Biological, Beijing,
China), and antihuman CD69 antibodies (560967; BD Biosciences, Franklin Lakes, NJ, USA).
The culture supernatants at different incubation time points were also collected to detect
the secreted level of IFN-γ (DY285; R&D System, Minneapolis, MN, USA) and IL-2 (DY202;
R&D System, Minneapolis, MN, USA) by ELISA, according to the manufacturer’s protocol.

2.11. EGFRvIII-BsAb Mediated Cytotoxicity against GBM Cells

Target cells U87MG.∆EGFR and control cells U87MG were seeded on a 96-well cell
culture plate. After the cells adhered to the bottom of the plate, antibodies at different
concentrations were preincubated at 37 ◦C in cell culture medium (no phenol RPMI
1640 + 10% FBS) for 30 min before adding the human PBMCs at an E/T ratio of 5:1. After
coincubation for 75 h, the cell culture supernatant was collected, and the cytotoxicity was
mediated by the EGFRvIII-BsAb or its parental EGFRvIII mAb, and the CD3 mAb was
quantified via a CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit (G1780; Promega,
Madison, WI, USA), following the standard procedure. All measurements were performed
in triplicate. The percentage of cytotoxicity was calculated as follows:

%cytotoxicity =
experimental lysis − spontaneous effector lysis − spontaneous target lysis

maximum target lysis − spontaneous target lysis
× 100 (1)

2.12. Pharmacokinetics Analysis

Ten SPF-grade BALB/c male mice aged 8 weeks and weighing 20–26 g were selected
and randomly divided into two groups to ensure that mouse status was basically the same
between the two groups. The EGFRvIII-BsAb and the control antibody EGFRvIII mAb were
single-intraperitoneally (i.p.) injected into mice at 5 mg/kg. The day of injection was d 0,
and the blood samples were collected from the orbit at different time points: 15 min, 6 h,
1 d, 2 d, 4 d, 7 d, 10 d, 15 d, 21 d, and 28 d. The antibody concentration of serum samples
was quantified by ELISA and PK parameters were determined with a noncompartmental
analysis model using WinNonlin.

2.13. Xenograft Studies

To verify the antitumor effect of the EGFRvIII-BsAb and the existence of huPBMCs,
female NOD/SCID mice aged 8 weeks (3/group) were subcutaneously implanted with
the mixture of 3 × 106 U87MG.∆EGFR cells and 6 × 106 or 3 × 106 unstimulated human
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PBMCs (E/T 1:1 and E/T 2:1) on day 0. Treatments with the EGFRvIII-BsAb at 5 mg/kg
and PBS started from the second day after inoculation, with 6 consecutive administrations
to the mice every 3 days by intraperitoneal injection. To evaluate the dose-dependent
prevention efficacy of the EGFRvIII-BsAb, another in vivo experiment was performed.
Female NOD/SCID mice aged 8 weeks (5/group) were subcutaneously implanted with the
mixture of 2.25 × 106 U87MG.∆EGFR cells and 3 × 106 unstimulated human PBMCs on day
0. In order to compare with the control of EGFRvIII mAb on antitumor efficacy, EGFRvIII
mAb at 1.5 mg/kg was also administrated. The drugs or controls (3 mg/kg EGFRvIII-BsAb,
1 mg/kg EGFRvIII-BsAb, 0.33 mg/kg EGFRvIII-BsAb, 1.5 mg/kg EGFRvIII mAb, or PBS)
were administered from the same day of the inoculation, and 8 consecutive treatments
were administered to the mice every three days by intraperitoneal injection. The tumor
volume was detected every three days with a vernier caliper and calculated using the
formula below:

approximated formula V =
length × width × width

2
(2)

After the mice were sacrificed, photographs of the stripped tumors were taken.

2.14. Animal Experiment Statement

All methods were conducted in accordance with guidelines from the Institutional
Animal Care and Use Committee of the School of Pharmacy of SJTU, and all experimen-
tal protocols were approved by the Institutional Animal Care and Use Committee of
the School of Pharmacy of SJTU. PBMCs were obtained from donators who signed an
informed consent.

2.15. Statistical Analysis

Differences between samples indicated in the figures were tested for statistical signifi-
cance by the Student’s t-test, and p < 0.05 was considered statistically significant.

3. Results
3.1. Preparation and Purification of the EGFRvIII-BsAb with the BAPTS Platform

We adapted the BAPTS platform to generate an IgG-like bispecific antibody targeting
EGFRvIII and CD3 with minimum light/heavy chain mispairings, as reported by our
lab [18,20]. In this method, two antibody fragments were expressed and purified, followed
by the autocatalytic “protein trans-splicing” (PTS) reaction to conjugate the two fragments
together (Figure 1). We selected an antibody CDR region from 806 humanized mAb with
proven preclinical efficacy and clinical safety. Following the BAPTS procedure, one frag-
ment with anti-EGFRvIII and another fragment with anti-CD3 mAb were constructed and
expressed by CHO cells. Both fragments were purified by Protein L affinity chromatog-
raphy (Figure 2a, left). Fragment A was composed of three peptides, CD3Lc, CD3Hc,
and CD3-IntC. Similarly, fragment B was composed of two peptides, EGFRvIII-IntN and
EGFRvIII-Lc (Figure 2a, right). A newly generated band was generated by SDS-PAGE
analysis in the corresponding molecular weight, with a decreasing amount of antibody
fragments as starting materials (Figure 2b). Since the reducing agent needed in the PTS
reaction may interfere with correct folding and antibody structure, the proper reducing con-
dition was screened for generating EGFRvIII-BsAb (Figure 2c). SDS-PAGE analysis showed
that the reaction reached a plateau with the least fragment B residue under an optimal
reaction condition of 0.5 mM TCEP at 37 °C for 2 h. Then, DHAA was used to neutralize
extra reducing agent TCEP, as previously reported [26] (Figure 2c, left). The final product of
EGFRvIII-BsAb was polished with an MMC ImpRes Multimodal Chromatography Column
(Figure 2e), and was characterized with LC/MS and SPR. Ion mobility quadrupole time-of-
flight (IMS Q-Tof) mass spectrometry was utilized to identify the molecular mass of the
BsAb. After deglycosylation, the mass of the BsAb was 145,360 Da (Figure 2f). SEC-HPLC
analysis showed a high purity of EGFRvIII-BsAb (Figure 2h), with a minimum amount
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of aggregation, half antibody, or hole–hole homodimer. EGFRvIII mAb was purified by
Protein A affinity chromatography (Figure 2d).
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Figure 1. Schematic process of EGFRvIII-BsAb synthesis by the BAPTS platform. In this method,
under 4–25 ◦C and reduced conditions, fragment A and fragment B were fused into a complete
bispecific antibody, and the intein was dropped.

3.2. In Vitro Activity of the EGFRvIII-BsAb
3.2.1. Cellular Binding of the EGFRvIII-BsAb

The ability of EGFRvIII-BsAb to bind to target cells was verified by flow cytometry.
We confirmed EGFRvIII-specific expression on the de2-7 mutant cell line U87MG.∆EGFR
(Figure 3a, left), but were not able to detect EGFRvIII on the surface of wild-type GBM cell
line U87MG (Figure 3a, left). From the cellular binding experiment, the flow cytometry
result showed that the EGFRvIII-BsAb specifically targeted EGFRvIII-positive cells without
off-target binding to EGFRvIII-negative U87MG cells (Figure 3a, right), which indicated
the superior specificity by the BsAb toward the EGFRvIII. The EGFRvIII-BsAb did bind
with the CD3-positive Jurkat cell line, as well as the EGFRvIII-positive U87MG.∆EGFR
cell line, in a dose-dependent manner (Figure 3b). The affinities of EGFRvIII-BsAb with
the antigens EGFRvIII and CD3 were determined by a Biacore assay (Figure 2g). It was
previously reported that T-cell-dependent BsAbs with high affinity toward the CD3 antigen
would lead to the biodistribution to T-cell-rich tissues and the fast elimination of the
BsAbs [27]. Thus, we adapted the sequence of anti-CD3 antibody whose affinity to the CD3
was low, according to a previous report (US20130289127A1). The result confirmed that the
EGFRvIII-BsAb had a lower affinity with the CD3 antigen compared with the parental CD3
mAb (1.95 × 10-7 M vs. 2.82 × 10-8 M), as designed. For binding to the EGFRvIII antigen,
the BsAb appeared to have a lower affinity compared with the parental EGFRvIII mAb
(1.60 × 10-8 M vs. 7.40 × 10-10 M, partly due to its monovalent structure.

3.2.2. EGFRvIII-BsAb Redirected T Cells to Tumor Cells

To investigate the killing mechanism against the GBM cell mediated by BsAb, we
evaluated the EGFRvIII-BsAb from the perspective of recruiting T cells to tumor cells.
Under a light microscope, it was apparent that T cells were redirected to the tumor cell
site in the presence of EGFRvIII-BsAb (Figure 3c). To further quantify recruitment ability,
an FACS assessment was performed to evaluate the percentage of CD3- and EGFRvIII-
positive cell clusters (Figure 3d). CD3-positive Jurkat cells were labeled with PKH26, and
EGFRvIII-positive U87MG.∆EGFR cells were labeled with CFSE. U87MG cells were labeled
with CFSE as control. The result from the flow cytometry assessment demonstrated that
the EGFRvIII-BsAb specifically redirected T cells to the EGFRvIII-positive cell line, and did
not appear to affect the behavior of T cells against the EGFRvIII antigen-negative cell line
U87MG (CFSE + /PKH26+ cell ratio was 20.86% vs. 2.05%). In contrast, no redirection
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ability of the EGFRvIII mAb was detected (CFSE+/PKH26+ cell ratio was 3.85%). This
result indicated that the redirection of T cells was target-dependent.
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PAGE analysis of BAPTS reaction. Bands 1,5—EGFRvIII-2F (fragment B); bands 2,6—CD3-3F (frag-
ment A); bands 3,7—BAPTS reaction catalyzed by reduction agent; bands 4,8—complete bispecific
antibody obtained by the BAPTS reaction, and followed by oxidization reagent reconstitution.
(c) Reduced SDS-PAGE analysis of BAPTS reaction condition optimization. Bands 1–10 represent
EGFRvIII-2F, CD3-3F, the mixture of 2F and 3F in the presence of 0 mM, 0.01 mM, 0.05 mM, 0.1 mM,
0.5 mM, 1 mM, 2 mM, and 5 mM reduction agent. (d) Nonreduced (upper) and reduced (lower) SDS-
PAGE analysis of purification products of EGFRvIII mAb. (e) Nonreduced (left) and reduced (right)
SDS-PAGE analysis of purification products of EGFRvIII-BsAb with an MMC ImpRes Multimodal
Chromatography Column. (f) LC/MS analysis of deglycosylated nonreduced BsAb. (g) SPR assay of
the dissociation constant of EGFRvIII-BsAb and its control mAbs against recombinant target antigens.
(h) SEC-HPLC analysis of EGFRvIII-BsAb.
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Figure 3. (a) EGFRvIII antigen expression level on mutant GBM cell line U87MG.∆EGFR and wild-
type GBM cell line U87MG. (b) A binding activity comparison of EGFRvIII-BsAb and CD3 mAb with
Jurkat cells (CD3-positive) (upper), as well as a binding activity comparison of the EGFRvIII-BsAb
and the EGFRvIII mAb with U87MG.∆EGFR cells (EGFRvIII-positive) (lower). (c) Photographs of
the redirection of T cells to cancer cells by 0.01 ng/mL EGFRvIII-BsAb or EGFRvIII mAb. (d) FACS
analysis of the redirection of CD3+ Jurkat cells to cancer cells by EGFRvIII-BsAb. Jurkat (CD3+) cells
labeled by PKH26 (PE-A), as well as U87MG.∆EGFR cells labeled by CFSE (FITC-A).
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3.2.3. The EGFRvIII-BsAb Activated T Cells to Release Cytotoxic Cytokines

Next, we tested the activation of T cells by EGFRvIII-BsAb in vitro. The T-cell ac-
tivation marker CD69 in CD4+ and CD8+ T cells was analyzed when target cells were
incubated with the EGFRvIII-BsAb (Figure 4a). The CD4+CD69+ T cells in PBMCs were
increased from 0.93% to 2.80%, and CD8+CD69+ T cells were increased from 0.18% to
3.94% with target cells only, showing that target cells had more influence on CD8+ T-
cell activation. Interestingly, the CD4+ and CD69+ cells were increased from 0.93% to
19.33%, while the CD8+ and CD69+ positive cells were increased from 0.16% to 5.48%
with EGFRvIII-BsAb only, indicating EGFRvIII-BsAb could activate both CD4+ and CD8+
T cells independently. In the presence of both target cells and the EGFRvIII-BsAb, the
percentages of CD4+CD69+ and CD8+CD69+ cells reached 31.94% and 12.54%, respec-
tively. These results demonstrated that CD4+ T-cell activation was mainly dependent on
the EGFRvIII-BsAb, while CD8+ T-cell activation relied on the combined action of target
cells and EGFRvIII-BsAb. Furthermore, this also supported the theory that CD8+ T cells
were the main effector cells during the lymphocyte-mediated killing of tumors. To assess
whether additional favorable cytokines were released in the process of T-cell activation
by the EGFRvIII-BsAb, we measured the IFN-γ and IL-2 levels in the cell culture super-
natant when effector cells were incubated with target cells and the EGFRvIII-BsAb or the
EGFRvIII mAb. The cytokine release was barely detectable with the EGFRvIII mAb and
the CD3 mAb, while the cytokines were remarkably increased with the EGFRvIII-BsAb
(Figure 4b). A time- and antibody-concentration-dependent release of IFN-γ and IL-2 was
also observed. In the earlier stage, IL-2 release rapidly reached a peak around 50 h after
EGFRvIII-BsAb treatment. However, the IFN-γ release showed a continuous increase. In
conclusion, EGFRvIII-BsAb did activate T cells, which led to cytokine release.

3.2.4. EGFRvIII-BsAb Mediated T Cells to Lyse Tumor Cells In Vitro

To evaluate the cytotoxicity of the EGFRvIII-BsAb, we incubated tumor cells, effector
cell PBMCs, and antibodies together, and then collected the cell culture to test the lactate
dehydrogenase (LDH) release level (Figure 4c,d). Among all experimental groups, the
EGFRvIII-BsAb showed potent cytotoxicity compared to its parental antibodies, EGFRvIII
mAb and CD3 mAb, even at a low dosage of 0.01 ug/mL. Furthermore, the BsAb was
superior in killing tumor cells compared with combo treatment with the EGFRvIII mAb and
the CD3 mAb. This demonstrated that cytotoxicity was mediated through the synergistic
effect by recruiting immune cells, rather than through a simple combined effect of the
CD3 mAb and the EGFRvIII mAb (Figure 4c,d). In addition, the EGFRvIII-BsAb showed
higher maximum killing activity and lower EC50 compared with parental EGFRvIII mAb
(Figure 4d,e) in the dose–response cytotoxicity experiment. We also observed that the
antitumor killing activity of the EGFRvIII mAb was mainly due to its Fc domain that binds
to FcγRIII positive effector cells, including NK cells and macrophages (Figure 4c). Once
ADCC and CDC function was depleted, no cytotoxicity of the EGFRvIII mAb was observed.
This observation further proved that the killing ability of EGFRvIII-BsAb solely relied on
its effect on T cells. This is highly advantageous for controllable T-cell activation without
other immune effector cells being activated.
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Figure 4. T-cell activation by EGFRvIII-BsAb. (a) CD69 expression on CD4+ and CD8+ T cells’
surface in response to target tumor cells or the EGFRvIII-BsAb. (b) The secreted levels of IFN-γ
and IL-2 in culture supernatant detected after treatment with different EGFRvIII-BsAb concentra-
tions by ELISA. (c) The cytotoxicity measurement of the EGFRvIII-BsAb and its parental antibod-
ies or their combo treatment under low and middle antibody concentration by the LDH method
(p < 0.0002 (***), p < 0.0001 (****)). (d) Dose-dependent antitumor activity evaluation of the EGFRvIII-
BsAb on U87MG.∆EGFR or U87MG (left). Dose-dependent antitumor activity evaluation of the
EGFRvIII-BsAb compared with the EGFRvIII mAb and the CD3 mAb on U87MG.∆EGFR cells (right).
(e) Maximum cytotoxicity and EC50 comparison among EGFRvIII-BsAb and EGFRvIII mAb or
ADCC-attenuated EGFRvIII mAb counterpart. Cytotoxicity measurement by LDH release assay.
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3.3. In Vivo Activity of the EGFRvIII-BsAb
3.3.1. Tumor Growth Inhibition in Immunocompromised Mice by the EGFRvIII-BsAb

To evaluate the in vivo activity of the EGFRvIII-BsAb in NOD/SCID mice, we first
explored the effect of the E/T ratio on the tumor growth. The U87MG.∆EGFR cells ex-
pressing EGFRvIII, together with huPBMCs from a healthy donor at an E/T ratio of 1:1
and 2:1, were subcutaneously implanted into immunodeficient mice. The EGFRvIII-BsAb
or placebo at 5 mg/kg were intraperitoneally administered every three days from the
second day of tumor implantation (Figure 5a). Compared with the placebo group, the
EGFRvIII-BsAb significantly inhibited U87MG.∆EGFR-derived tumor growth. Under a
high E/T ratio of 2:1, the average tumor volume was smaller, indicating that the exis-
tence of huPBMCs contributed to tumor inhibition. The most effective tumor inhibition
was observed in the EGFRvIII-BsAb E/T 2:1 group. Further results demonstrated that
complete tumor elimination was the synergetic effect of the EGFRvIII-BsAb and immune
cells (Figure 5b–d). Then, in another subsequent in vivo experiment, an antitumor ability
assessment of EGFRvIII-BsAb under a series of dosages (3 mg/kg, 1 mg/kg, 0.33 mg/kg)
and EGFRvIII mAb (1.5 mg/kg) was carried out with PBS as a placebo (Figure 5e). From
the result, the EGFRvIII-BsAb showed an initial inhibitory effect toward tumor growth at a
concentration as low as 0.33 mg/kg, which was 5 times lower than the control EGFRvIII
mAb (Figure 5f,g). At a high dose of 3 mg/kg, the EGFRvIII-BsAb was able to eliminate
tumor cells completely, without an observed recurrence (Figure 5g). In addition, no body-
weight decrease was observed among any of the groups. Interestingly, mice treated with
the EGFRvIII mAb suffered from beard shedding, while this side effect was not observed in
the groups treated with PBS buffer (placebo) or EGFRvIII-BsAb. To recap, EGFRvIII-BsAb
showed promising therapeutic efficacy in vivo, with no obvious side effects observed.

3.3.2. Pharmacokinetic (PK) Analysis

The PK parameters of EGFRvIII-BsAb and EGFRvIII mAb were evaluated in male
BALB/c mice after a single intraperitoneal (i.p.) administration of 5 mg/kg. A noncom-
partment model was applied, and data showed that both EGFRvIII-BsAb and EGFRvIII
mAb displayed a biphasic disposition (Figure 6). Interestingly, an long half-life was unex-
pectedly observed in the EGFRvIII-BsAb group (13.90 days) compared to the group that
was administered the parental EGFRvIII mAb (3.56 days) (Figure 5h). The long circulation
time of EGFRvIII-BsAb may be attributed to its lower affinity with the CD3 antigen, as
previously documented [27]. This merit is especially advantageous in clinical treatments.
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Figure 5. EGFRvIII-expression of tumor growth inhibition in vivo by EGFRvIII-BsAb. (a) Schematic
schedule of tumor inoculation and treatment. (b) Time course of U87MG.∆EGFR tumor-growing.
Data are presented as mean ± SEM (p < 0.0332 (*), p < 0.0001 (****)). (c) Images of stripped tumors.
(d) U87MG.∆EGFR tumor-growing time course under various E/T ratios. Data are presented as
measured tumor volumes from individual mice. (e) Schematic schedule of tumor inoculation and
treatment. (f) Tumor-growing time course(p < 0.0021 (**), p < 0.0001 (****)). (g) Morbidity time course.
(h) Body-weight time course.
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4. Discussion

Within the past 20 years, limited progress has been made in combatting GBM. Po-
tential reasons include a highly heterogeneous brain tumor microenvironment, an imper-
meable BBB, and lack of T-cell infiltration. There have been many frustrating moments
in the development of therapeutic antibodies and vaccines, including ABT-414 [28,29],
an antibody–drug conjugate (ADC) against the EGFRvIII; Rindopepimut [30,31], a tumor
vaccine against EGFRvIII; and mAb treatment in Phase III clinical trials [32]. According to
disclosed clinical data, ABT-414 failed to show a survival benefit for patients compared
with a placebo, with a severe corneal side effect caused by ADC’s on-target or off-target
cytotoxicity [33]. Although several BsAbs against EGFRvIII have been developed, they
have not progressed beyond preclinical studies [34,35]. Here, an IgG-like BsAb with low
immunogenicity, excellent GBM tumor inhibition, and a long circulation half-life was
reported to provide a potential approach for treating GBM. The high-quality material
of the BsAb was generated through the BAPTS platform and multimodal BioProcess™
chromatography steps [36]. Compared with the most advanced hEGFRvIII-CD3 bi-scFv
and TandAb [35,37], the IgG-like BsAb proved to have superior antitumor ability in vitro
under a lower E/T ratio and EC50, and a much longer circulation time in vivo (13.90 days
vs. 2.8 h [35]).

In our in vivo animal experiments, we used immunodeficient mice to imitate the
immune-cell-infiltrating tumor microenvironment by reestablishing their immune sys-
tems with mixed huPBMCs and tumor cells, based on previous studies [28,37,38]. The
tumor inhibitory ability of EGFRvIII-BsAb was verified. Human immune cells usually
have a limited half-life in the murine background, which might limit the immune cells’
exertion when exhibiting full antitumor ability [19,39]. In the future, we will evaluate the
efficacy and biodistribution of EGFRvIII-BsAb in an orthotopic tumor model with a hu-
manized mouse model and/or a patient-derived GBM model to evaluate the full potential
of EGFRvIII-BsAb. In addition, we observed beard shedding as a side effect in mice in the
parental EGFRvIII mAb treatment group. This side effect may be due to the cross-reaction
between EGFRvIII mAb and highly endogenously expressed EGF in skin, as previously
reported [38]. However, no severe toxicities were observed in the EGFRvIII-BsAb treatment
groups, even with a long circulation in vivo.

When we looked into the details of T-cell-dependent cytotoxicity mediated by EGFRvIII-
BsAb, we found that the BsAb activated T cells and killed tumor cells in a dose-dependent
manner. Moreover, according to the IFN-γ and IL-2 release assay, we depicted a cytokine-
release surface diagram. The results indicated a time-dependent cytokine release in re-
sponse to EGFRvIII-BsAb treatment, and implied that the immune function of the EGFRvIII-
BsAb was controllable. Furthermore, a controlled cytokine release could assist in the design
of a clinically safe starting dose, which would be based on a minimum anticipated biolog-
ical effect level (“MABEL”) approach [40]. It is notable that EGFRvIII-BsAb mediated a
potent killing effect against tumor cells at an E/T ratio as low as 5:1, and that it showed
prolonged cytotoxicity against tumor cells compared with parental EGFRvIII mAb. As
expected, once the ADCC and CDC functions were knocked out, EGFRvIII mAb was
unable to inhibit tumor growth. EGFRvIII mAb’s antitumor efficacy largely relied on the Fc
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domain to bind with the FcγIIIR to kill cancer cells in the early stages, while EGFRvIII-BsAb
activated T cells to proliferate and consistently present antitumor efficacy.

Solid tumors are characterized by the immune suppressive microenvironment, with
the existence of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs),
tumor-associated macrophages (TAM), and cancer-associated fibroblast (CAF), negatively
hampering the killing of cytotoxic T cells [41]. However, the application of immune
check point inhibitors recuperates tumor inhibition and changes a “cold tumor” into “hot
tumor” [42,43]. It is noticeable that oncolytic virus and gene therapies have been widely
tested in clinical trials for the treatment of GBM, with significant immune-cell infiltration
and tolerance [44,45]. Preconditioning the tumor microenvironment with an oncolytic
virus also proved to be an effective strategy for enhancing CD3-BsAb in immune-silent
solid tumors [46]. Therefore, combination treatment consisting of immune checkpoint
blockades or oncolytic virus and EGFRvIII-BsAb would show further applicable potential
in the treatment of GBM.

5. Conclusions

We have demonstrated that EGFRvIII-BsAb redirected T cells to GBM cells and stim-
ulated T cells to release cytotoxic cytokines to kill tumor cells. Both in vitro and in vivo
experiments showed that EGFRvIII-BsAb was superior to the parental EGFRvIII mAb in
antitumor efficacy and circulation time. This BsAb appeared as a potentially promising
therapeutic reagent for GBM treatment in clinical applications.
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