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Abstract: Improving the tumor targeting of docetaxel (DTX) would not only be favored for the 

chemotherapeutic efficacy, but also reduce its side effects. However, the regulation of the tumor 

microenvironment could further inhibit the growth of tumors. In this study, we introduced a system 

consisting of hypoxia-engineered bone marrow mesenchymal stem cells (H-bMSCs) and DTX mi-

celles (DTX-M) for breast cancer treatment. First, the stem cell chemotherapy complex system 

(DTX@H-bMSCs) with tumor-targeting ability was constructed according to the uptake of DTX-M 

by hypoxia-induced bMSCs (H-bMSCs). DTX micellization improved the uptake efficiency of DTX 

by H-bMSCs, which equipped DTX@H-bMSCs with satisfactory drug loading and stability. Fur-

thermore, the migration of DTX@H-bMSCs revealed that it could effectively target the tumor site 

and facilitate the drug transport between cells. Moreover, in vitro and in vivo pharmacodynamics 

of DTX@H-bMSCs exhibited a superior antitumor effect, which could promote the apoptosis of 4T1 

cells and upregulate the expression of inflammatory factors at the tumor site. In brief, DTX@H-

bMSCs enhanced the chemotherapeutic effect in breast cancer treatment. 

Keywords: DTX@H-bMSCs; chemotherapy; tumor targeting; inflammatory regulation; combina-

tion therapy 

 

1. Introduction 

Docetaxel (DTX) as the first-line chemotherapy drug has been widely used in cancer 

therapy [1,2]. However, although DTX has a significant antitumor effect, its side effects 

cause great pain in cancer patients [3]. Surprisingly, with the development of nanotech-

nology, the targeting drug delivery system has demonstrated some success in certain can-

cer types of clinical setting and could increase the accumulation of the drug at the tumor 

site [4]. Moreover, based on special tumor microenvironment (TME), such as low pH, glu-

tathione (GSH) overexpression, hypoxia, and inflammation, the controlled release behav-

ior of DTX was realized by a series of intelligent response materials [5]. These excellent 

achievements not only increase the therapeutic effect, but also decrease the side effects of 

chemotherapy [6]. However, the biocompatibilities of the exogenous materials have been 

evaluated, and unexpected opsonization by reticuloendothelial system (RES) could also 
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result in the clearance of most drugs during systemic circulation [7]. The metabolism and 

biosafety of drug carriers are still the main challenge for nanomedicine [8], furthermore, 

due to the limitation of dose threshold, passive tumor targeting based on the enhanced 

permeability and retention (EPR) effect cannot significantly improve the tumor growth 

inhibition by nanomedicines [9]. Moreover, since cancer is a complex disease, targeted 

enhancement and multitarget synergistic therapy have become the research trend of cur-

rent treatment programs [10]. Therefore, natural cells with hypo-immunogenicity, inher-

ent tumor-tropic, and migratory properties have attracted an increasing amount of atten-

tion as drug delivery systems [11,12]. 

Over the past few years, stem cells have not only achieved great success in regenera-

tive medicine but have also shown huge potential for drug delivery [13,14]. Recent studies 

have suggested that in some treatments, such as cancer [15], central nervous system injury 

[16], or cardiovascular diseases [17], stem cells could deliver drugs [18] to the lesions, and 

could also act as the carrier of oncolytic virus [19] and tumor-related apoptosis-inducing 

factors [20] to tumor sites, and further promote the therapeutic effect by self-secretion 

[21,22]. Therefore, a stem cells targeting system would be a candidate for cancer therapy. 

In addition, the homing ability of stem cells is based on a special signal from the lesions. 

Accordingly, upregulating the expression of the homing-relative chemokine receptor 

could improve the homing ability of stem cells [23]. Results from TME research have in-

dicated that hypoxia stimulation may improve the migration of stem cells to tumor 

through the C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α 

(SDF-1α) axis [24,25]. Therefore, it would be feasible to enhance the homing effect of stem 

cells by hypoxic pretreatment. Conversely, several challenges are presented by these treat-

ments, such as drug-loading, stability, and cytotoxicity of anticancer drugs to stem cells 

[26]. Fortunately, as we have described earlier, nanotechnology could significantly im-

prove cellular efficiency, and maintain the chemical structure and activity of the drug 

molecule [27,28]. Therefore, incorporating nanoparticles instead of free chemotherapeutic 

drugs into the stem cells could avoid direct exposure, slow down the release behavior 

during systemic circulation, and improve the transferred dose of the drugs. 

In addition, in cancer therapy, stem cells could be used as functional cells for TME 

regulation in the inhibition of tumor growth [29]. Recent developments have indicated 

that stem cells play an important role in immune balance regulation [30]. As an important 

immune mechanism, inflammation regulated tumor growth, metastasis and apoptosis 

[31]. Inflammation is one of the special phenomena in the TME. Therefore, the regulation 

of inflammatory factor expression in the TME might favor cancer therapy [32]. Conse-

quently, targeted delivery of DTX nanoparticles by hypoxia-induced stem cells would not 

only provide an effective way to improve chemotherapy efficiency and reduce side effects, 

but also elucidate the regulation of the TME, which has not been investigated in detail. 

Moreover, the combination therapy with DTX for tumors could be realized. 

In this study, as shown in Scheme 1, bone mesenchymal stem cells (bMSCs) are a type 

of tissue stem cell with cross embryonic differentiation potential and high self-replication, 

which are easily isolated and have low immunogenicity [30,33]. Therefore, we first upreg-

ulated CXCR4 expression in bMSCs to increase homing ability to tumors by hypoxia in-

duction. DTX was encapsulated into the amphipathic polymer poly (ethylene oxide) 

monomethyl ether-poly(lactide-co-glycolide) (mPEG-PLGA) to prepare DTX micelles 

(DTX-M). Then, DTX@H-bMSCs were constructed by the incorporation of DTX-M and 

hypoxia-induced bMSCs (H-bMSCs). The drug loading, drug-transfer process, and phar-

macodynamics of DTX@H-bMSCs were investigated in vitro. Moreover, we explored the 

effect of DTX@H-bMSCs on inflammatory regulation in the TME. Finally, the homing abil-

ity and the antitumor effect of DTX@H-bMSCs were evaluated in a subcutaneous tumor 

model of breast cancer in mice, and the relevant pathological indices were used to further 

investigate the mechanism. 
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Scheme 1. Scheme of the preparation pathway and the synergistic mechanism of DTX@H-bMSCs targeted system for 

enhanced chemotherapy of breast cancer. The hypoxia engineered bMSCs would not only be used as the DTX carriers 

targeting tumor tissue based on CXCR4/SDF-1α, but also regulate inflammation in TME. As a result, the superior proper-

ties of DTX@H-bMSCs, including homing ability, regulation of TME and chemotherapy efficient inhibited the growth of 

breast tumor. 

2. Materials and Methods 

2.1. Materials 

Docetaxel was supplied by Sichuan Xieli Pharmaceutical Co., Ltd. (Sichuan Xieli 

Pharmaceutical, Chengdu, China). The block copolymer mPEG-PLGA (Da: 2k-2k) was 

provided by Xi’an ruixi Biological Technology Co., Ltd. (Xi’an ruixi Biological Technol-

ogy, Xi’an, China). 4′,6-Diamidino-2-phenylindole (DAPI), 5-Bromo-2-deoxyUridine 

(BrdU), and Coumarin-6 (C6) were obtained from Sigma-Aldrich (Sigma-Aldrich, St.Saint 

Louis, MO, USA). Cyanine 7 NHS ester near-infrared fluorescent dye (Cy7) was supplied 

by Biotium (Biotium, Hayward, CA, USA). Acetonitrile and acetic acid were purchased 

from Sigma-Aldrich (Sigma-Aldrich, Darmstadt, Germany). Annexin V-FITC/PI apopto-

sis detection kit and Calcein/PI cell viability/cytotoxicity assay kit were purchased from 

Jiangsu KeyGEN BioTECH Co., Ltd. (Jiangsu KeyGEN BioTECH, Jiangsu, China). 

For Western blot and immunofluorescent staining assay, antibodies against CXCR-4, 

GAPDH, and horseradish peroxidase (HRP) conjugated secondary antibodies were pur-
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chased from Wuhan Servicebio Technology Co. Ltd. (Wuhan Servicebio Technology, Wu-

han, China). SDF-1α, TNF-α, BrdU mouse McAb antibody and Ki67 rabbit monoclonal 

antibody were obtained from Affinity Biosciences (Affinity Biosciences, Cincinnati, OH, 

USA). 

4T1 tumor cell line was available from the American Type Culture Collection (ATCC, 

Rockville, MD, USA) and grown in Roswell Park Memorial culture media (RPMI 1640, 

Gibco, CA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, CA, USA) and 

1% penicillin-streptomycin (RPMI 1640, Gibco, CA, USA). The cell culture was maintained 

in a 37 °C incubator with a humidified 5% CO2 atmosphere. 

Five-week-old female BALB/c mice used for antitumor tests were purchased from 

Dashuo Bio-Technology Co., Ltd. (Dashuo Bio-Technology, Chengdu, China) throughout 

the experiment, and were housed at a temperature of 20 ± 2 °C relative humidity of 50–

60%, and with 12 h light–dark cycles. bMSCs were extracted from the bone marrow of 

tibia and femur of 4-6 weeks old male BALB/c mice. The protocol was authorized by the 

Institutional Animal Care and Use Committee of Chengdu Military General Hospital. 

2.2. Preparation and Characterization of DTX-M 

The mPEG–PLGA was purchased from Xi’an ruixi Biological Technology Co., Ltd. 

(Sichuan Xieli Pharmaceutical, Chengdu, China), and which was synthesized by ring-

open polymerization of ε-lactic and ε-glycolic acid on mPEG by using Sn(Oct)2 as a cata-

lyst. DTX-M was prepared by thin-film hydration method as described previously [34]. 

First, 10 mg of DTX and 190 mg mPEG-PLGA were codissolved in 4 mL dehydrated alco-

hol in a round-bottomed flask. The solvent was evaporated in rotator evaporator at 60 °C 

with mixing, and a thin layer of homogenous film. The mixture was hydrated with normal 

saline at 60 °C under moderate shaking. In this condition, the amphiphilic copolymers 

self-assembled into micelles with DTX encapsulated in, and the suspension was filtered 

through a 0.22 μm syringe filter (Millipore Co., Darmstadt, Germany). Freeze-dried mi-

celles were reconstructed with normal saline, and the DTX micelles were redissolved un-

der mild stirring at an appropriate temperature. The experiments were performed accord-

ing to previous research. 

The surface charge distributions, and particle size distributions were determined by 

dynamic light scattering (DLS) (Malvern Panalytical, London, UK), and the morphology 

was observed by transmission electron microscopy (TEM) (JEOL, Tokyo, Japan). X-ray 

diffraction (XRD) (Empyrean, Almelo, Netherlands) spectra of DTX powder, DTX-M, and 

the physical mixture of DTX and copolymers were obtained using Bruker D2 Phaser Dif-

fractometer (Bruker, Tübingen, Germany). The sampling parameter was the step range of 

5–50° at a speed of 2 °/min. 

2.3. Drug Loading and Encapsulation Efficiency of DTX-M 

The drug loading (DL) and entrapment efficiency (EE) of the micelles were deter-

mined using HPLC (Agilent, Palo Alto, CA, USA) with a C18 column (4.6 × 150 mm × 5 

μm, Grace Analusis Column). The composition of the mobile phase was acetonitrile/am-

monium (45/55, v/v) at a flow rate of 1 mL/min. Detection was recorded on a diode array 

detector (1260 DAD VL) at a wavelength of 232 nm. Before measurement, the samples 

were diluted with the mobile phase [4]. The results were calculated using the following 

equations: 

DL% = amount of DTX determined in micelle/(amount of DTX determined + copoly-

mer) × 100% 

EE% = amount of DTX determined in micelle/amount of DTX in feed × 100% 

2.4. The In Vitro Release Behavior of DTX-M 

The in vitro release kinetics of DTX from micelles or free DTX were performed using 

a dialysis method [35]. In this study, 0.5 mL of DTX micelles or free DTX solution with 500 
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μg DTX was placed in a dialysis bag (molecular mass cut-off 8 kDa). The dialysis bags 

were incubated in 40 mL of phosphate buffer (pH = 7.4) containing 0.5% polysorbate 80 at 

37 °C with gentle shaking (100 rpm). Polysorbate 80 in the release media is used as the 

solubilizer to improve the solubility of DTX in media, facilitating the release of DTX into 

dissolution medium from the dialysis bags. At predetermined intervals, 2 mL aliquots 

were withdrawn, and the dissolution medium was replaced with prewarmed fresh me-

dium. The released DTX was quantified using the HPLC method as described previously, 

and the cumulative release profile over time was demonstrated. 

2.5. Isolation and Identification of bMSCs 

The bMSCs were extracted from the bone marrow cavity of 4-6 weeks old female 

BALB/c mice as previously reported. The bMSCs were cultured in low-glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 10% FBS, 1% penicillin and streptomycin 

at 37 °C in an incubator with 5% CO2. Cells from the third to sixth passages were used for 

all experiments. The expression of cellular surface markers CD 29, CD 45, and CD 90 was 

determined by flow cytometry BD Biosciences, Franklin Lakes, NJ, USA) to identify the 

type of isolated bMSCs [36,37]. 

2.6. Hypoxia Induction of bMSCs 

The H-bMSCs were engineered by culturing bMSCs under hypoxic conditions for 12, 

24, 48 or 72 h, the oxygen volume fraction is 2 %. The expression of CXCR4 on H-bMSCs 

was used as an index for the screening of the induction process. CXCR4 was detected on 

the surface of H-bMSCs using immunofluorescence and Western blot. 

2.7. Construction and Characterization of DTX@H-bMSCs 

Since DTX@H-bMSCs were constructed by the uptake of DTX-M by H-bMSCs, the 

hydrophobic fluorescent probe Coumarin-6 (C6) was used to replace DTX and encapsu-

lated into the micelles for the intuitive optimization of the preparation process. The H-

bMSCs were incubated in 6-well plates (3 × 104 cells/well) for 24 h at 37 °C, and the free 

C6 and C6-M (concentration of C6 was 200 ng/well) were added to each plate. After incu-

bation for different times (1, 2, 4, and 6 h), the samples were harvested for observation 

under laser confocal fluorescence microscopy (Nikon, Tokyo, Japan), and fluorescence in-

tensity was detected using flow cytometry. Moreover, the optimized process was used to 

construct DTX@H-bMSCs, and the DL of per cell was detected using HPLC as follows: the 

samples were collected after 4 h incubation, DTX feeding from 10 to 40 μM, and 1.5 mL 

anhydrous methanol was added for resuspension. The supernatant was obtained after cell 

disruption for 5 min (8 w), ultrasonic treatment for 15 min, vortex for 10 min, and centrif-

ugation for 10 min (1000 rpm). The drug contents in the supernatant were detected by 

HPLC, and the chromatographic conditions are described in the previous section. 

2.8. Cytotoxicity of DTX Micelles for bMSCs 

The cytotoxicity of DTX micelles for bMSCs and H-bMSCs was evaluated using MTT 

assay. First, the cells (3 × 103 cells/well) were cultured in 96-well plates and incubated for 

24 h at 37 °C. Micelles of different concentrations were added, and cultivation continued 

for 24 h. MTT solution (5 mg/mL, 20 μL) was added to each well. Thereafter, the MTT 

solution was removed and replaced with DMSO (160 μL/well) after 3 h. The absorbance 

was measured at a wavelength of 490 nm using a 680-model microplate reader from Infi-

nite M200 PRO Multimode Microplate Reader (Tecan Trading, Männedorf, Switzerland). 

2.9. The In Vitro Release Behavior of DTX@H-bMSCs 

C6 was evaluated instead of DTX for in vitro release behavior and tested in transwell 

plates with a 0.4 μm pore membrane (Corning 24 mm Transwell®) that would only allow 

the passage of released micelles or drug molecules. The C6@H-bMSCs (4 × 104 cells/cm2) 
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were planted in the upper chamber, and the samples were harvested at the set time point. 

The results were analyzed using flow cytometry. In addition, we planted the 4T1 cells (1 

× 104 cells/cm2) in the lower chamber to uptake C6 or C6-M, which would be harvested at 

the set time and detected using flow cytometry. The release behavior of C6@H-bMSCs and 

the uptake of 4T1 reflect the drug transfer rate between cells. 

2.10. Drug Delivery from DTX@H-bMSCs to 4T1 Cells 

Similar to the previous section, C6 was chosen, instead of DTX, for further study as 

a fluorescent probe. The C6@H-bMSCs (2 × 104 cells/well) and the BrdU-labeled 4T1 cells 

(2 × 104 cells/ well) were cocultured in 6-well plates, allowing the C6-M or C6 that was 

released from the C6@H-bMSCs to be taken up by 4T1 cells. At the set time point, fluores-

cence images of the cells were observed by laser confocal fluorescence microscopy. 

2.11. Inhibition of DTX@H-bMSCs on Tumor Growth In Vitro 

First, 4T1 cells transfected with luciferase (Luc-4T1) were used to evaluate the anti-

tumor effect of DTX@H-bMSCs. The DTX@H-bMSCs and Luc-4T1 were cocultured in 6-

well plates, and the total number of cells was 4 × 104. The setting range of DTX@H-

bMSCs:Luc-4T1 was from 1:5 to 1:1. After 12, 24 and 48 h incubation, the luciferin solution 

(150 μg/mL, 100 μL) was added, and luciferase expression was measured by the 680-

model microplate reader to further calculate the survival rate of Luc-4T1 cells in each 

group. 

2.12. Live/Dead Cell Staining Assay 

The DTX-M (3 μg/mL), bMSCs (2 × 104 cells/well), H-bMSCs (2 × 104 cells/well), and 

DTX@H- bMSCs (2 × 104 cells/well) were placed in the upper chamber with a 8 μm pore 

membrane (Corning 6.5 mm Transwell®), and DTX in each group measured 3 μg. Then, 

the 4T1 cells (2 × 104 cells/well) were seeded in the lower chamber. After incubation for 24 

h, cells in the lower chamber were washed thrice with PBS, 200 μL working solution (10 

mL containing 2 μM Calcein AM, 8 μM PI) was added, and the cells were further incu-

bated for 30 min at 25 °C away from light. Finally, the cells were washed thrice with PBS, 

and observed under fluorescence microscope. 

2.13. Evaluation of Apoptosis 

Similar to the live/dead cell staining assay, the therapeutic systems were placed in 

the upper chamber of the transwell plates, and the 4T1 cells (2 × 104 cells/well) were seeded 

in the lower chamber. Apoptosis was investigated with an Annexin V-FITC Apoptosis 

Detection kit according to the manufacturer’s protocol. After 24 h incubation, the cells of 

different groups were treated accordingly, and trypsinised, and harvested by centrifuga-

tion at 200 × g at 4 °C for 15 min. The cell aggregate was suspended in 0.1 mL Annexin-V 

binding buffer and then incubated with FITC-conjugated Annexin-V for 15 min at room 

temperature, avoiding light. Propidium iodide (PI, 1 μg/mL) was added to the samples 

immediately prior to flow cytometry analysis. The stained samples were analyzed using 

flow cytometry, and the percentage of apoptotic cells was determined by the Annexin 

V/PI ratio. Enzyme linked immunosorbent assay was used to determine the concentration 

of TNF-α in the medium of each group. 

2.14. In Vitro Migration Assay 

Migration of the different engineered bMSCs to the targets were conducted using 8.0 

μm pore membranes (Corning 6.5 mm Transwell®). bMSCs or H-bMSCs (1×104 cells/well) 

were seeded in the upper chamber, and NS, 4T1 cells, or SDF-1α medium were placed 

into the lower chamber, respectively. After 24 h incubation, the cells on the lower surface 

of the membrane were fixed with methanol and stained with 0.1% crystal violet for 30 



Biomedicines 2021, 9, 575 7 of 24 
 

 

min. Cells that had migrated were observed and counted in three randomly selected mi-

croscopic fields (400×) using an Olympus microscope (Olympus, Tokyo, Japan). 

2.15. Biodistribution Evaluation of DTX@H-bMSCs In Vivo 

In this section, the near-infrared fluorescent dye Cy7 was used as the fluorescent 

probe instead of DTX. 4T1 cells (1 × 106 cells/0.1 mL) were incubated in the right flank of 

the athymic female BALB/c mice by subcutaneous injection. The bMSCs or H-bMSCs were 

coincubated with Cy7-M (0.1mL, 1 mg/mL) for 4 h before injection. The mice were ran-

domly divided into Control, Cy7-M, Cy7@bMSCs, and Cy7@H-bMSCs group until the tu-

mor diameter was approximately 8 mm. Each mouse was injected with 1×106 Cy7@H-

bMSCs or Cy7@bMSCs, and Cy7 in each group measured 100 μg. The mice were anesthe-

tized with 1% pentobarbital sodium (50 mg/kg,) before near-infrared imaging at predeter-

mined time points. Real-time monitoring was detected using a fluorescence imaging sys-

tem (PerkinElmer, Waltham, MA, USA; excitation = 740 nm, emission = 790 nm long pass) 

at the time intervals of 4, 12, 24, 48, and 72 h. At the 24 h post-injection, the mice were 

sacrificed, and the heart, liver, spleen, lung, kidney, and tumor were harvested to evaluate 

the fluorescence intensity of the ex vivo organs. The quantitative fluorescence intensity 

was acquired using onboard software. 

2.16. BrdU for the In Vivo Trace of bMSCs 

BrdU (10 μg/mL) was incubated with bMSCs, H-bMSCs for fluorescence labeling. 

Cells (1 × 105) were injected into tumor-bearing mice. At 24 and 72 h of post-injection, the 

tumor tissues were collected and the BrdU fluorescence images were observed under a 

fluorescence microscope. Moreover, the CXCR4/SDF-1α axis represents mechanism, mi-

gration of H-bMSCs, and the expression of SDF-1α in tumors was detected by immuno-

fluorescence staining. Tumor tissues were prepared into sections with a thickness of 7 μm 

and fixed with tetramethyl benzidine. The sections were then incubated with the corre-

sponding primary and secondary antibodies and observed under fluorescence micro-

scope. 

2.17. Antitumor Effect of DTX@H-bMSCs In Vivo 

The antitumor activity of DTX@H-bMSCs was evaluated in a 4T1 cell breast ortho-

topic implantation tumor model. The mice were injected with cell suspension (100 μL) 

containing 1 × 105 4T1 cells per mouse. When the tumor volume approached 100 mm3, the 

mice were randomly divided into control, DTX-M, DTX@bMSCs and DTX@H-bMSCs 

group in a double-blinded manner, which were intravenously injected with NS (Control), 

DTX-M (dose of DTX, 3 mg/kg), DTX@bMSCs (dose of DTX, 3 mg/kg) and DTX@H-bMSCs 

(dose of DTX, 3 mg/kg) every four days. Tumor size and body weight were measured 

every other day during the experimental period and the tumor volume was calculated 

using the formula: volume (mm3) = length × width2 × 0.5. The mice were sacrificed when 

the tumor diameter reached 20 mm, and the tissues were excised for further analysis. In 

addition, the survival time of the mice was observed, and the mice were considered dead 

when tumor volume reached 4000 mm3. 

2.18. Histopathological Test 

Tumor and normal tissues were fixed and post-fixed in 4% paraformaldehyde for at 

least 24 h. Then, the samples were embedded in paraffin and coronally sectioned at ap-

proximately 7 μm for a series of detection experiments. Sections were stained with hema-

toxylin and eosin (HE). The histomorphology of tumor tissues and normal tissues was 

observed under a microscope. To further investigate the therapeutic effect, apoptosis of 

tumor cells was detected using terminal deoxynucleotidyl transferase-mediated nick-end 

labeling (TUNEL) (Promega, Madison, WI, USA) staining assay, and tumor cell prolifera-

tion was analyzed by immunohistochemical Ki 67 staining (Lab Vision & NEOMARKERS, 
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Waltham, MA, USA). Tumor tissues were fixed in 15%wt formaldehyde once the mice 

were sacrificed. The TUNEL method was performed according to the manufacturer’s in-

structions, and the Ki 67 staining was processed using the labeled streptavidin-biotin 

method. The apoptosis and proliferation of tumor cells were detected using the fluores-

cence microscope (Olympus, Tokyo, Japan). In addition, since inflammation is an im-

portant mechanism for tumor growth, we investigated the expression of inflammatory 

factors in each group. The immunofluorescence antibodies were specially connected to 

the target protein, and the methods provided by the manufacturer were followed. Fluo-

rescence was observed under a fluorescence microscope. 

2.19. Western Blot for CXCR4 Expression Characterization 

The expression levels of CXCR4 were identified by Western blot. Western blot anal-

yses were performed according to the protocols for the routine with antibodies against 

CXCR4. 

2.20. RNA Extraction and qPCR 

The miRNA transcriptional expression of CXCR4 in H-bMSCs was investigated us-

ing qPCR. Total mRNA was extracted from cells using TRIZOL extraction. Both the 

amount and purity of the RNA were confirmed by measuring the absorbance ratio at 

260/280 nm. Total RNA (1 μg) was converted to cDNA using a PrimeScript TM RT reagent 

kit with gDNA Eraser and PCR amplification followed by an ABI Step One Plus instru-

ment and software (Applied Biosystems, Foster City, CA, USA) using SYBR Green PCR 

Master Mix. The RNA levels of the target genes were normalized by GAPDH according 

to the ∆∆Ct method. Each procedure was independently performed in triplicate to ensure 

minimal bias. The primers used in this study were as follows: 

CXCR4:5′-CGTGAATGAGTGTCTAGGCAGG-3′, 

5′-GGCTTTGGTTTTAAGTGCCATC-3′; 

GAPDH:5′-GGCACAGTCAAGGCTGAGAATG-3′, 

5′ATGGTGGTGAAGACGCCAGTA-3′; 

2.21. Immunofluorescence Staining 

Immunofluorescence staining was used to observe the expression of relative pro-

teins. For in vitro evaluation, the cells were rinsed with PBS and fixed with 4 % paraform-

aldehyde for 15 min, followed by permeabilization for 30 min. After blocking with 3 % 

BSA for 1 h, the cells were incubated with a primary antibody against GAPDH or CXCR4 

at 4 °C overnight. After rinsing, the cells were incubated with a secondary antibody for 2 

h at room temperature. The nuclei were stained with DAPI (0.5 μg/mL, Vector Laborato-

ries, Burlingame, CA, USA) for 5 min. For the in vivo experiments, the tissues were pre-

pared as 7 μm sections, washed twice in PBS, permeabilized (in PBS with 0.1% Triton X-

100), and blocked (in PBS containing 1 % BSA and 0.3 % Triton X100) for 1 h at room 

temperature. The sections were then incubated with the specific primary antibodies, as 

follows: rabbit anti-SDF-1α, TNF-α, for 3 d at 4 °C. After being rinsed with PBS, the sec-

tions were incubated with appropriate secondary antibodies overnight at 4 °C. After rins-

ing with PBS, sections were mounted on slides with Vectashield (Vector Laboratories, Inc., 

Burlingame, CA, USA). Immunofluorescence confocal microscopy was performed using 

confocal laser scanning microscope. 

2.22. Statistical Analysis 

The comparison of each group was evaluated by statistical analysis using SPSS soft-

ware with one-way analysis of variance (ANOVA). All statistical results are expressed as 

the mean ± standard deviation (SD), with an alpha level of 0.05. 
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3. Results 

3.1. Preparation and Characterization of DTX-M 

To our knowledge, nano-formulations could improve cellular uptake efficiency. Con-

sidering its biocompatibility, the amphiphilic block copolymer mPEG-PLGA has been 

shown to be a favorable carrier of micelles, which could improve the dispersion of hydro-

phobic drugs in water and prolong the internal circulation time [38,39]. Furthermore, in 

our previous study, mPEG-PLGA was used as a carrier to deliver the natural active drug 

luteolin for ischemic stroke therapy, which improved the neuroprotective effect [34]. 

Thus, in this study, mPEG-PLGA was chosen to form the DTX micelles and exhibited su-

perior stability and drug loading capacity. DTX micelles were prepared by the thin film 

hydration method. As shown in Figure 1A, DTX-M was clear and transparent, with a light 

blue milky solution. Compared with water, the obvious Tyndall effect appeared in DTX-

M. The mean particle size of DTX-M and the black micelles was around 30 nm (Figure 1B). 

The zeta potential of DTX-M was approximately 0 mV (Figure S2). The morphology of 

DTX-M was observed under TEM, which was shown a homogeneous spheroid, and the 

size was consistent with measurements (Figure 1B). Furthermore, crystallographic anal-

yses were performed using XRD, and the result is shown in Figure 1C. In comparison with 

blank mPEG-PLGA and DTX, the graph of DTX-M lacked the characteristic diffraction 

peaks, indicating that DTX was completely encapsulated in the micelles. The DL and EE 

of DTX-M with different drug feeding were detected using HPLC. The properties of DTX-

M as displayed in Table 1, indicated increased drug feeding from 2% to 5%, while DL 

increased from 1.91± 0.032% to 4.82 ± 0.174%, EE maintained above 95%, and particle size 

measured approximately 30 nm with a narrow PDI value, indicating that the morphology 

was relatively homogeneous. A further increase of drug feeding to 12% was observed and 

DL increased to 8.27 ± 0.925%, while EE decreased to only 68.92 ± 7.71%. The results sug-

gested the use of DTX-M with 5% DL for further exploration. 

 

Figure 1. Preparation and characterization of DTX-M. The drug loading (DL) of DTX-M was 5%, and the concentration of 

DTX was 1 mg/mL (Table 1); photo of DTX-M, blank micelles and N.S (A); TEM and size distribution of micelles (B); XRD 

spectra of DTX, DTX with blank micelles, and DTX-M (C); the drug release behavior in vitro (D); micellar stability in 

different media by the evaluation of the PDI (E) and particle size (F) change. (Experiments were performed in triplicate 

and values were mean ± SEM.) 
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Table 1. Properties of DTX-M with different drug feeding. 

Drug Feeding 

(wt%) 

DL 

(%) 

EE 

(%) 

Mean Size 

(nm) 
PDI 

2 1.91 ± 0.032 95.50 ± 1.60 29 ± 3 0.13 ± 0.02 

5 4.82 ± 0.174 96.40 ± 3.84 28 ± 2 0.15 ± 0.03 

8 6.43 ± 0.546 80.36 ± 6.83 36 ± 7 0.24 ± 0.09 

10 7.85 ± 1.272 78.50 ± 12.72 44 ± 13 0.27 ± 0.09 

12 8.27 ± 0.925 68.92 ± 7.71 62 ± 16 0.38 ± 0.1 

These samples in each group and the values were mean ± SEM. DL: drug loading, EE: entrapment efficiency, PDI: poly-

dispersity index. 

Moreover, the in vitro release behavior of the micelles is shown in Figure 1D. In the 

free DTX group, 94.9% DTX was released into the media within 24 h, and the micelle 

group released approximately 18.4%. With the prolongation of release time, 63% DTX was 

released from the micelles after 72 h. This suggested that the micelles could not only pre-

vent burst release, but also sustain drug release. In addition, due to the special microen-

vironment of tumor tissues, we explored the stability of DTX-M under normal physiolog-

ical conditions (pH 7.4) and in a weak acidic environment (pH 6.5). As shown in Figure 

1E,F, the particle size in both pH 7.4 media and pH 6.5 media were maintained at about 

30 nm during the first 12 h. However, when the storage time longer than 24 h, the particle 

size in pH 6.5 increased dramatically while that in pH 7.4 media remained stable. It is 

generally known that the pH value of the cytoplasm is similar to the physiological condi-

tions (approximately pH 7.4), thus, DTX-M could retain stability in bMSCs. Furthermore, 

the instability of micelles in pH 6.5 indicated that the DTX micelle responded to micro-

acid environment, which induced the release of DTX from the micelles. These results il-

lustrated that DTX-M was stable in bMSCs, but accelerated drug release at the tumor site 

due to its slightly acidic TME. In conclusion, DTX-M was successfully produced. 

3.2. DTX@H-bMSCs Construction 

The bMSCs were isolated from the tibial bone marrow cavity of BALB/c mice (4-6 

weeks old), and cell type was verified by detection of cell surface antigens. As shown in 

Figure S3, special antigens, CD90 and CD29 were highly expressed in about 90% of the 

cells, whereas CD45 was not. This result indicated that bMSCs were isolated from the 

tibial bone marrow cavity. Next, we investigated the effect of hypoxia condition on regu-

lating CXCR4 expression in bMSCs. As shown in Figure 2A, the transcriptional expression 

of CXCR4 increased remarkably after 6 h of hypoxia. The fold change of CXCR4 miRNA 

transcriptional expression during 24 and 48 h hypoxia was 5.4 and 5.8 times higher than 

that of the control, respectively. Furthermore, the protein expression of CXCR4 could be 

upregulated by hypoxia condition, this was particularly observed with the prolongation 

of hypoxia condition at 48 h, which was more significant. In addition, CXCR4 expression 

at 72 h hypoxia was not significantly higher than that at 48 h (Figure 2B,C). Western blot 

and immunofluorescence staining of CXCR4 exhibited a consistent phenomenon (Figure 

2D). While hypoxic condition lasted for 48 h, the viability of bMSCs decreased to 60% in 

Figure 2E. Therefore, hypoxia induction for 24 h would be a feasible method to prepare 

engineered bMSCs overexpressing CXCR4. 
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Figure 2. Construction and characterization of hypoxia-engineered bMSCs. mRNA detection of CXCR4 in H-bMSCs at 

various hypoxia times (A); expression of CXCR4 in H-bMSCs at different hypoxia times (B); the quantitative analysis of 

CXCR4 (C); immunofluorescence images of CXCR4 (D); cell viability of bMSCs at different hypoxia times (E). (** p < 0.01). 

Furthermore, the DTX@H-bMSCs complex system was constructed via the cellular 

uptake of DTX-M. First, the cytotoxicity of DTX-M for bMSCs and H-bMSCs was evalu-

ated. As shown in Figure 3A,B, the cell viability showed the same tendency in the bMSCs 

and H-bMSCs group. In comparison with free DTX, the cytotoxicity of DTX-M decreased 

significantly. The cell viability of the free group decreased with an increase in the dosage 

of DTX. Moreover, the cell viability of the free group was only 40%, while that of the DTX-

M group was still about 80% at DTX concentration of 40 μM. In addition, with further 

increases in the dosage, the cell viability decreased sharply. It can be concluded that the 

cytotoxicity of DTX to bMSCs and H-bMSCs was lower than that to 4T1, which may be 

due to the nonproliferative fibroblastic state adopted by bMSCs [40]. Thus, these results 

suggested that 40 μM might be the highest concentration for DTX-M to construct the 

DTX@bMSCs and DTX@H-bMSCs complexes. To observe the uptake of DTX and DTX-M 

by bMSCs and H-bMSCs directly, C6 was used as a fluorescence indicator to replace DTX 

to be loaded into the micelles. As shown in Figure 3C, the fluorescence of the C6-M group 

was brighter than that of the free C6 group at each time point. To quantify the cellular 

uptake of the C6, the intensity of bMSCs and H-bMSCs treated with different formula-

tions, was detected using flow cytometer, and the results are shown in Figure 3D and 

Figure S4, respectively, which is consistent with the fluorescence images. Moreover, the 

fluorescence intensity of bMSCs and H-bMSCs remarkably increased within 4 h, and there 

is no significant difference between them. Upon incubation for a further 6 h, the fluores-

cence intensity does not increase significantly. Therefore, these results showed that DTX-

M was more suitable than free DTX, and 4 h coincubation would be used for the construc-

tion of DTX@H-bMSCs. Furthermore, we detected the drug-loading of DTX@H-bMSCs 

using HPLC. The results are displayed in Figure 3E and Table S1. With drug feeding from 

10 to 40 μM, the DL of DTX@H-bMSCs increased from 10.01 ± 2.15 to 145.91 ± 5.54 pg/cell, 

and the DTX@bMSCs increased from 11.11 ± 0.35 to 152.90 ± 0.47 pg/cell. In addition, with 

the further increase in drug feeding, the DL of the complexes increased but did not change 

significantly. The intracellular DTX with 40 μM drug feeding was also measured after 

incubation for different times (0.5, 1, 2, 4, 6, and 8 h), as shown in Figure S1 and Table S2, 

it could be found the same tendency between C6 (Figure 3D) and DTX. Considering the 

cytotoxicity of DTX, the 4 h coincubation time and 40 μM drug feeding would be the op-

timal process for DTX@H-bMSCs construction. In brief, the DTX@H-bMSCs complex sys-

tem with highly efficient cargo loading properties was constructed successfully. 
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Figure 3. Construction of DTX@H-bMSCs and DTX@bMSCs. The cytotoxicity of DTX-M or free DTX to bMSCs (A) and H-

bMSCs (B), respectively. The fluorescence images (C) and the quantification (D) of C6 or C6-M uptake by H-bMSCs and 

bMSCs with different incubation times. The drug loading detection of DTX@H-bMSCs and DTX@bMSCs with different 

DTX-M concentrations (E). (* p < 0.05) (** p < 0.01). 

3.3. Drug Transferred In Vitro 

The drug transfer efficiency between cells is an important ability of this cellular drug 

delivery system. First, the drug release behavior and drug delivery of DTX@H-bMSCs in 

vitro were evaluated using flow cytometry. In this study, C6 was replaced with DTX for 

entrapment in the micelles. As shown in Figures 4A and S5, about 48% and 42% C6 were 

released from C6@bMSCs and C6@H-bMSCs within 2 h respectively, while 72 h incuba-

tion was required for more than 90% C6 release. This suggested that DTX would be re-

leased continuously from both C6@bMSCs and C6@H-bMSCs within 72 h. Next, to inves-

tigate drug delivery in vitro, the C6@bMSCs and C6@H-bMSCs were independently dis-

played in the upper chamber of the transwell plate, and 4T1 cells were cultured in the 

lower chamber. As shown in Figure 4B, the fluorescence intensity of 4T1 cells increased 

significantly within 12 h, and then slowly. Similar to the results of in vitro release, the 

trend of fluorescence intensity of 4T1 cells was consistent with that of C6@bMSCs and 

C6@H-bMSCs. Therefore, the drugs could be released from the complex and taken up by 

target cells. We further incubated the C6@H-bMSCs with the BrdU-labeled 4T1 cells, and 

the fluorescence distribution in cells was observed using laser confocal microscopy. As 

shown in Figure 4C, both green and red were observed in the same cells, which indicated 

that C6 could be transferred between the cells. In addition, the green fluorescence density 

in the C6@H-bMSCs group was greater than that in the C6@bMSCs group, which might 

be attributed to the change in migration of the engineered bMSCs. 
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Figure 4. The drug delivery behavior in vitro. The drug release behavior of the complexes (A); the cellular uptake of 4T1 

cells from bMSCs or H-bMSCs (B); the images of drug delivery from bMSCs or H-bMSCs to 4T1 cells (C), red fluorescence 

indicates BrdU labeled 4T1 cells, blue fluorescence indicates DAPI and green fluorescence indicates C6 or C6-M. 

As the classical mechanism of homing, the expression regulation of the CXCR4/SDF-

1α transfer axis is considered a major mechanism of migration for H-bMSCs. To demon-

strate this conjecture, transwell migration assays were used for evaluation. In Figure 5A,B, 

compared with bMSCs, the number of H-bMSCs in the SDF-1α (+) group was higher than 

that in the bMSCs group. Furthermore, it could be easily found that H-bMSCs had a 

stronger tendency to 4T1 cells than bMSCs. These results suggested that CXCR4 overex-

pression could enhance the migration of H-bMSCs to 4T1 cells. In brief, the engineered 

bMSCs exposed to hypoxia could effectively transfer the drug to the tumor cells based on 

the CXCR4/SDF-1α axis. 



Biomedicines 2021, 9, 575 14 of 24 
 

 

 

Figure 5. Evaluation of H-bMSCs migration in vitro. Images of the migrated bMSCs or H-bMSCs (in purple) through a 

membrane with 8 μm pore size preformed in transwell (A); quantitative analysis of the in vitro migration of bMSCs or H-

bMSCs (B). (** p < 0.01). 

3.4. Inhibition of Tumor Growth In Vitro 

First, Luc expression from the Luc-4T1 cells was used to evaluate the inhibition of 

DTX@H-bMSCs to tumor cells in vitro. As shown in Figure 6A, cell viability of 4T1 cells 

decreased with increased bMSCs or H-bMSCs. It was revealed that bMSCs and H-bMSCs 

inhibited the growth of 4T1 cells in vitro and enhanced the chemotherapeutic effect of 

DTX. Moreover, the inhibitory effect of DTX@H-bMSCs was superior to that of 

DTX@bMSCs, which might be attributed to their affinity for 4T1 cells. Furthermore, as 

shown in Figure 6B, the live/dead cell image demonstrated the effect of DTX@H-bMSCs 

on 4T1 cells. Compared to the control group, the number of dead 4T1 cells increased sig-

nificantly (from 12% to 45%) in the bMSCs, H-bMSCs, DTX-M, DTX@bMSCs, and 

DTX@H-bMSCs group. Moreover, the number of dead cells in each group was as follows: 

DTX@H-bMSCs group > DTX-M group > DTX@bMSCs group > H-bMSCs > bMSCs. These 

results suggested that DTX and bMSCs have a synergistic inhibitory effect on the growth 

of 4T1 cells. In addition, the migration of the H-bMSCs to 4T1 cells based on the 

CXCR4/SDF-1α axis might be the reason that the antitumor effect of DTX@H-bMSCs was 

superior to that of DTX@bMSCs. Flow cytometry was used to evaluate apoptosis of 4T1 

cells in each group. As shown in Figure 6D, the apoptosis rate in the treatment groups 

was higher than that in the control group. Similar to the live and dead cell assays, the 

apoptosis rate was as follows: DTX@H-bMSCs group > DTX@bMSCs group > DTX-M 

group > H-bMSCs > bMSCs, and the rate of late apoptosis was higher than that of early 

apoptosis. In addition, few necrotic cells could be found in each group, which suggested 

that the cytotoxicity of both single DTX and DTX@H-bMSCs on 4T1 cells was due to apop-

tosis rather than necrosis. The flow cytometry results were consistent with the MTT and 

live/dead cell assays, suggesting that the DTX@H-bMSCs group could effectively sup-

press the proliferation of 4T1 cells in vitro. 
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Figure 6. Pharmacodynamic investigation of DTX@H-bMSCs in vitro. Antitumor effect of DTX@H-bMSCs against 4T1 

cells (A); fluorescence live/dead cell images and quantitative analysis of 4T1 cells in each group were studied in transwell 

plates (B); the concentration of TNF-α of 4T1 cells in each group (C); flow cytometry analysis of 4T1 cells apoptosis induced 

by different treatments (D). (* p < 0.05) (** p < 0.01). 

Surprisingly, the bMSCs or H-bMSCs could not only inhibit the growth of 4T1 cells 

in vitro, but also exert synergistic effect with DTX-M. Research has indicated that regula-

tion of inflammatory factor expression is an important mechanism for stem cells in disease 

treatment. Inflammation expression in the TME is higher than that in normal tissue, which 

regulates tumor growth and metastasis [31]. Moreover, the overexpression of inflamma-

tory factors could induce tumor immune response and apoptosis. Therefore, the inhibi-

tory effect of bMSCs or H-bMSCs on 4T1 cells might be due to the regulation of inflam-

matory factor expression in the TME. In this study, the inflammatory factor TNF-α was 

used as a detection index. As shown in Figure 6C, after coculture for 24 h, the concentra-

tions of TNF-α in the bMSCs and H-bMSCs group were significantly higher than that in 

the control and DTX-M groups, demonstrating the up-regulatory effect of bMSCs and H-

bMSCs on inflammatory factor expression in the TME. Consequently, we concluded that 

DTX@H-bMSCs or DTX@bMSCs inhibited 4T1 cell growth via regulation of inflammatory 

expression in the TEM. 

3.5. Biodistribution of DTX@H-bMSC In Vivo 

The in vivo targeting ability of DTX@H-bMSCs for 4T1 cell tumor engraftment was 

investigated in BALB/c mice. The subcutaneous tumor model mice were randomly di-

vided into four groups: control, Cy7 micelles (Cy7-M), Cy7@bMSCs, and Cy7@H-bMSCs. 

The Cy7 fluorescence chromogenic agent replaced DTX for exploration in vivo, and the 

results are displayed in Figure 7A–C. At 4 h post-injection, using the same dose of Cy7, 

fluorescence signals could be detected in experimental groups, and the fluorescence began 

to concentrate at the tumor sites. As incubation time increased, tumor site accumulation 

of the fluorescent signals in the Cy7-M group reached a peak level at 12 h, which was 

stronger than that in the bMSCs group. After 12 h, the fluorescence intensity in the Cy7-

M group weakened, whereas its intensity increased in the bMSCs group at the tumor site. 

These results indicated that micelles could be concentrated at the tumor site according to 

the EPR effect [41], but clearance during systemic circulation was higher than that of the 
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bMSCs carriers. Furthermore, the fluorescence intensity of the Cy7@H-bMSCs group was 

significantly higher than that of the Cy7@bMSCs group, which suggests that the 

CXCR4/SDF-1α axis could improve migration of bMSCs to tumor tissues. The fluores-

cence intensity in the Cy7@bMSCs and Cy7@H-bMSCs group decreased gradually at 48 

and 72 h post-injection and could not be detected in the Cy7-M group. This phenomenon 

could be attributed to the fact that the non-antigenic bMSCs could prevent rapid clearance 

of the drug to maintain extended circulation in vivo. In addition, the peak fluorescence 

value in the bMSCs group was observed 24 h post-administration. Therefore, to further 

observe the biodistribution in major organs, the mice were sacrificed 24 h post-injection, 

and the fluorescence signals in ex vivo tissues are displayed in Figure 7B–D. Consistent 

with the live images, fluorescence intensity at the tumor site was observed as follows: 

Cy7@H-bMSCs group > Cy7@bMSCs group > Cy7-M group > control. Fluorescence inten-

sity was stronger in tumor compared with in normal tissues. Further, the fluorescence 

intensity of tumors in the Cy7@H-bMSCs group was significantly higher than that of nor-

mal tissues, which indicates superior tumor homing ability. 

 

Figure 7. In vivo biodistribution of Control 1, Cy7 micelles (Cy7-M) 2, Cy7@bMSCs 3 and Cy7@H-bMSCs 4. Real-time 

fluorescence images of subcutaneous 4T1 cell tumor bearing mice after intravenous injection at set time point (A); the 

fluorescence images of ex vivo tissues at 24 h post-injection (B); the quantitative analysis of the fluorescence intensity in 

mice and in tissues are shown in (C,D), respectively. The distribution of H-bMSCs and bMSCs at tumor sites (green fluo-

rescence) at one day and three days after intravenous injection, the SDF-1α were labeled with red fluorescence (E). (** p < 

0.01). 

Moreover, bMSCs and H-bMSCs labeled with BrdU were injected into subcutaneous 

tumor model mice to study their precise concentration at tumor sites at 24 and 72 h. At 

the same time, SDF-1α at the tumor site was labeled with red fluorescence. As displayed 

in Figure 7E, we found that SDF-1α was widely expressed at tumor sites, and both H-
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bMSCs and bMSCs could be observed. Moreover, the fluorescence intensity of BrdU after 

three days was higher than that after one day. This might be due to the proliferation of 

bMSCs and H-bMSCs at the tumor site. Furthermore, compared with the bMSCs group, 

the fluorescence intensity of BrdU in H-bMSCs group was much stronger, suggesting that 

hypoxia induction could promote accumulation of bMSCs at the tumor site. Importantly, 

it was found that the distribution of H-bMSCs at the tumor site was consistent with that 

of SDF-1α. Currently, the promotion of bMSCs migration to tumor is mainly achieved 

through the CXCR4/SDF-1α axis, which are thought to be the most important pair of cy-

tokines [25]. These results revealed that the CXCR4/SDF-1α axis is not only related to the 

tumor-homing ability of H-bMSCs, but also affected its distribution at the tumor site. Con-

sequently, H-bMSCs could achieve tumor-targeted delivery and retention of drugs. 

3.6. Therapeutic Effect In Vivo 

Encouraged by the favorable therapeutic effect in vitro and the satisfactory accumu-

lation at the tumor site, the antitumor effect of DTX@H-bMSCs was further explored in 

vivo. The mouse model of breast cancer in situ construction and the administration route 

are shown in Figure 8A. The tumor growth curves and the image of mice at real-time 

points showed the same trend (Figure 8B,C). Compared with the DTX-M group, 

DTX@bMSCs and DTX@H-bMSCs showed better inhibition of tumor growth, with an in-

hibitory rate of approximately 65% and 80%, respectively. Moreover, the antitumor effect 

of DTX@H-bMSCs is superior to that of DTX@bMSCs, which might be due to improved 

tumor homing ability. Furthermore, the isolated tumors were harvested 16 days post-in-

oculation, and the volume and weight of the tumors in each group showed that DTX and 

bMSCs exerted a synergistic effect on tumor growth inhibition, which would be further 

improved by the hypoxia engineering of bMSCs (Figure 8D). We further observed the 

survival time of tumor-bearing mice, and the results are shown in Figure 8E. Mice in the 

control group treated with NS began to die at 16 days post-administration, and the re-

maining mice died within 32 days. Compared with the control group, the treatment group 

could extend the survival time of 4T1 tumor bearing mice. In addition, 20% of mice in the 

DTX-M group, 50% in DTX@bMSCs, and 80% in DTX@H-bMSCs survived 36 days after 

administration. These results suggested that bMSCs combined with chemotherapy could 

effectively improve the survival rate and time. 
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Figure 8. Antitumor activity of DTX@H-bMSCs in vivo. Administration route of DTX@H-bMSCs 

in mice model of in situ tumor transplantation of 4T1 cells (A); photographs of mice with different 

treatments at 4, 8, 12, and 16 days after administration (B); tumor growth curve of each group (C); 

weights and images of the tumors at 16 days after administration (D); survival curves after differ-

ent treatments (E). (** p < 0.01). 

Moreover, the mechanisms of the antitumor effect were investigated by histopatho-

logical analysis. First, the HE staining was used to detect tumor cell damage (Figure 9A). 

From the eosin distribution in the tumor slides, a large number of dead cells could be 

observed in the DTX@H-bMSCs group. Compared with the DTX-M group, the dead cells 

in the DTX@H-bMSCs group were more concentrated in the depth of the tumor tissue. 

Next, Ki 67 and TUNEL staining were used to evaluate proliferation and apoptosis in each 

group, respectively. Similar to the results of HE staining, the greatest number of apoptotic 

cells were observed in the DTX@H-bMSCs group (Figure 9B). Surprisingly, more TUNEL 

positive cells were observed in the interior of the tissue rather than the surface in the 

DTX@H-bMSCs group compared with the DTX-M group (Figure 9C). This may be due to 

overexpression of SDF-1α in tumor tissue, which mediated the migration of DTX@H-

bMSCs into the interior for chemotherapy. 



Biomedicines 2021, 9, 575 19 of 24 
 

 

 

Figure 9. Histopathological analysis of tumor tissues after administration. The histopathological 

section including HE stain, Ki 67 stain, and TUNEL stain in each group (A–C) indicate quantifica-

tion of Ki 67 and TUNEL stain, respectively. (** p < 0.01) (values are mean ± SEM, and there were 

five samples in each group.). 

Inflammatory infiltration is an important factor in tumorigenesis and apoptosis [42], 

and inflammation in the TME can initiate the tumor immune response [43,44]. Fortu-

nately, bMSCs have been shown to regulate inflammation in previous in vitro investiga-

tions. Therefore, we further observed the distribution of the inflammatory factors in the 

tumor in each group. As shown in Figure 10, a large amount of TNF-α was detected in the 

control group, and the deeper the tumor, the higher the density of TNF-α. Compared to 

the DTX-M group, inflammation in the bMSCs group was more obvious, which is con-

sistent with in vitro experimentation. Therefore, the antitumor effect of the bMSCs may 

be due to the upregulation of inflammatory factors in the TME. Surprisingly, when we 

observed the tumor tissue of each group, the expression of TNF-α in the DTX@H-bMSCs 

group was significantly higher than that in other groups, which suggests that hypoxia 

engineering of bMSCs improved the upregulation of inflammatory expression in the TME. 

In addition, the phenomenon of the DTX@H-bMSCs group from the previous pathological 

images might also be due to the homing of the CXCR4 receptor on the surface of H-bMSCs 

to SDF-1α in the dense inflammatory area in the tumor. In brief, these results illustrated 

that the DTX@H-bMSCs targeting system with TME regulation could enhance the chemo-

therapeutic effect on breast cancer in vivo. 
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Figure 10. Representative immune-fluorescence imaging (A) and IOD analysis (B); TNF-α levels in tumor tissue measured 

by quantitative ELISA (C). Red fluorescence indicates TNF-α and blue indicates DAPI. (* p < 0.05) (**p < 0.01). 

3.7. Safety and Biocompatibility Evaluation 

Surprisingly, the weight of mice in the DTX@bMSCs and DTX@H-bMSCs group re-

mained normal throughout the treatment period (Figure 11A) and did not appear to pro-

duce side effects. The biocompatibility was evaluated by HE staining of major tissues (Fig-

ure 11B), which indicates that the DTX@H-bMSCs did not cause any histological damage 

to the heart, liver, spleen, lung, and kidney of mice. These results suggested that the 

DTX@H-bMSCs did not show obvious toxicity or side effects during tumor treatment. 

Figure 11. Safety and biocompatibility evaluation. Body weight of mice in each group (A); histological characterization 

of the heart, liver, kidney, and spleen tissues obtained from mice of different treatment groups (B). 

4. Discussion and Prospect 

MSCs with low immunogenicity, inherent tumor eosinophilic and migration charac-

teristics have become a research hotspot in regenerative medicine and as drug delivery 
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[33,45]. Moreover, the studies of tumor microenviroment have shown that the homing 

ability of stem cells is established on the basis of special signals of lesions, such as TNF-α, 

TGF-β and other cytokines secreted in tumor microenvironment [46], as well as soluble 

factors secreted by tumors [47]. Currently, the promotion of stem cells migration to tumor 

is mainly achieved through the CXCR4/ SDF-1α axis, and the expression of CXCR4 in stem 

cells can be further enhanced by hypoxia induction [48,49]. Therefore, there is potential to 

upregulate the expression of CXCR4 for promoting the migration of stem cells to tumor 

sites. In addition, the homing effect of MSCs is believed to occur in a chemokine-oriented 

manner under the condition of continuous inflammation [50,51], and the proinflammatory 

cytokines in tumors can upregulate the adhesion proteins required for the chemotactic 

movement of MSCs [52]. Therefore, regulation of the expression of inflammatory cyto-

kines in TME may be beneficial to cancer treatment [32]. However, there are still many 

technical bottlenecks to be overcome. Such as, the large-scale and standardized prepara-

tion process of the stability stem cells need to be further developed [45]. For the tumor 

therapy, the mechanism of the stem cells was still controversial [53]. Therefore, there is 

still a long way to go before stem cell therapies would be converted to large scale clinical 

trials. For another part of the synergistic system, DTX micelles have shown great potential 

in market, such as the Genexol-PM [54] in South Korea. Therefore, we could have a pre-

diction that if the industrialized technical bottlenecks of stem cells could be overcome, the 

clinical transformation of DTX@H-bMSC would be realized. 

5. Conclusions 

In summary, we constructed and characterized a novel targeted chemotherapy sys-

tem based on hypoxia-engineered bMSCs. The pharmacodynamics of this system have 

been investigated in detail using mouse models of breast cancer. In this study, the H-

bMSCs exhibited tumor homing ability based on the CXCR4/SDF-1α axis and the effect of 

inflammatory regulation in the TME. Moreover, as a drug delivery system, H-bMSCs 

could efficiently and accurately transfer DTX nano-medicine to the interior of tumor tis-

sues, which improved the enrichment and retention of DTX and bMSCs. Importantly, 

DTX@H-bMSCs effectively prolonged the survival time of breast cancer model mice, ow-

ing to its superior tumor inhibition effect and low side effects. Overall, this synergistic 

strategy for pairing a chemotherapeutic drug with engineered bMSCs exhibited potential 

for clinical transformation and application, presenting strong implications and future re-

search directions for breast cancer treatment. 
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Abbreviations 

DTX Docetaxe 

DTX-M Docetaxel micelles 

bMSCs Bone mesenchymal stem cells 

H-bMSCs Hypoxia-engineered bone marrow mesenchymal stem cells 

TME Tumor microenvironment 

GSH Glutathione 

RES Reticuloendothelial system 

CXCR4 C-X-C chemokine receptor type 4 

SDF-1α Stromal cell-derived factor-1α 

mPGE-PLGA 
Polymer poly (ethylene oxide) monomethyl ether-poly(lactide-co-gly-

colide) 

DAPI 4′,6-Diamidino-2-phenylindole, dihydrochlorideDocetaxel micelles 

BrdU 5-Bromo-2-deoxyUridine 

C6 Coumarin-6 

Cy7 Cyanine 7 NHS ester near-infrared fluorescent dye 

HRP Horseradish peroxidase 

DL Drug loading 

EE Entrapment efficiency 

DLS Dynamic light scattering 

TEM Transmission electron microscopy 

XRD X-ray diffractometer 

HPLC High performance liquid chromatography 

TUNEL Terminal deoxynucleotidyl transferase-mediated nick end labeling 

Ki67 Rat anti-mouse monoclonal antibody 

HE stain Hematoxylin-eosin staining’ 
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