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Abstract: Abdominal aortic aneurysm (AAA) is a prevalent aortic disease that causes high mortality
due to asymptomatic gradual expansion and sudden rupture. The underlying molecular mecha-
nisms and effective pharmaceutical therapy for preventing AAA progression have not been fully
identified. In this study, we identified the key modules and hub genes involved in AAA growth
from the GSE17901 dataset in the Gene Expression Omnibus (GEO) database through the weighted
gene co-expression network analysis (WGCNA). Key genes were further selected and validated in
the mouse dataset (GSE12591) and human datasets (GSE7084, GSE47472, and GSE57691). Finally,
we predicted drug candidates targeting key genes using the Drug-Gene Interaction database. Over-
all, we identified key modules enriched in the mitotic cell cycle, GTPase activity, and several meta-
bolic processes. Seven key genes (CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, UCP3) related
to AAA progression were identified. A total of 35 drugs/compounds targeting the key genes were
predicted, which may have the potential to prevent AAA progression.

Keywords: abdominal aortic aneurysm; weighted gene co-expression network; key module; hub
gene; functional enrichment; drug-gene prediction

1. Introduction

Abdominal aortic aneurysm (AAA) is a localized dilation or bulging of the ab-
dominal aorta, commonly occurring in the infrarenal region [1]. Most patients with AAA
remain asymptomatic for years or even decades. It is estimated that around 200,000 AAA
rupture cases are diagnosed worldwide annually, and the mortality after rupture remains
around 80% [2—4].

Currently, AAA requiring intervention, e.g., large aneurysms with a diameter more
than 5.5 cm, aneurysms that expand rapidly in a short period, or aneurysms that compro-
mise the perfusion to distant organs are indicated for open surgical or endovascular aortic
repair. However, the outcomes from these measures are not so satisfactory [5,6]. For pa-
tients with small AAAs or those who are not eligible for AAA repair, close aneurysm
surveillance and adjuvant therapy are recommended [5]. So far, no effective pharmaco-
logical treatments have been developed to prevent AAA growth or rupture [7,8]. Hence,
there is a need to elucidate the possible mechanisms of AAA progression and explore
corresponding pharmaceutical treatments.
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A number of preclinical mouse AAA models have been developed to understand the
pathogenesis of AAA [9,10]. Among these models, angiotensin II-infused ApoE~- mice are
the commonly used [11-15]. Although the inherent pathology of aneurysm is different
between mice and humans, it shares some of the important properties of human AAA,
like pronounced inflammatory responses and aortic rupture [11-15]. Based on the find-
ings from mouse models and human samples, AAA is currently accepted as an inflamma-
tion-driven disease, as many related processes (such as infiltration of macrophages, neu-
trophils, B cells and T cells, and activation of inflammatory pathways) were found both in
humans and mice [16-19]. Overactivation of the inflammatory response leads to the de-
struction of aortic media through the release of proteolytic enzymes and the death of vas-
cular smooth muscle cells, which further promote AAA development [20].

Several studies based on the high-throughput microarray profiling further confirmed
the involvement of the above biological processes in AAA, including the immune re-
sponse, chronic inflammation, and reactive oxygen species [21-23]. Dozens of genes re-
lated to AAA development were identified through gene expression profiles [24-26].
However, these studies exclusively focused on the differentially expressed genes (DEGs)
between AAA and control groups, which ignored some key genes that are highly corre-
lated to specific sample traits of AAA. Weighted gene co-expression network analysis
(WGCNA) is a bioinformatics algorithm developed by Horvath et al. [27]. By constructing
a scale-free weighted network, WGCNA can investigate biologically meaningful gene sets
connected to sample features and explore inner module hub genes that are highly associ-
ated inside the co-expression module. WGCNA has been successfully used to identify key
modules and hub genes related to cardiovascular diseases, such as atherosclerosis, heart
failure, and acute myocardial infarction [28-30]. So far, data collected at different time
points of AAA progression have not been subjected to WGCNA analysis to identify the
critical modules and hub genes.

In this study, WGCNA analysis was performed using the explore dataset GSE17901
in the Gene Expression Omnibus (GEO) database. Key modules of AAA development and
hub genes in each module were identified. Gene functional enrichment analysis of key
modules was applied to show their potential biological activities. Hub genes were
screened in the STRING database and further selected in the Cytoscape software (San Di-
ego, CA, USA). Key genes from hub genes were validated using mouse AAA model
GSE12591 dataset and human AAA sample GSE7084, GSE47472, and GSE57691 datasets.
Candidate drugs for AAA treatment were screened in the Drug Gene Interaction Database
(DGIdb) based on the above-identified key genes.

2. Materials and Methods
2.1. Data Sources and Preprocessing

The workflow of this study is shown in Figure 1. Datasets related to AAA—
GSE17901, GSE12591, GSE7084, GSE47472 and GSE57691 (Table 1) were downloaded
from the GEO  database  (accessed on 01  April 2020 from
https://www.ncbi.nlm.nih.gov/geo/). In the explore dataset GSE17901 [26], aortic samples
were taken on day 7, day 14, and day 28 from ApoE7 mice treated by angiotensin II or
saline. The diameters of the treated aortas increased throughout the 28-day course, which
we defined as the progression of AAA, so samples with AAA (n = 18) were selected for
weighted gene co-expression network (WGCNA) analysis. Mouse dataset (GSE12591) and
human datasets (GSE7084, GSE47472, and GSE57691) were used to validate the hub genes.
The GSE12591 dataset included 18 mouse aortas exposed to saline (1 = 6) or angiotensin
II (n = 12) infusion [25]. The GSE7084 included control samples (n = 10) and AAA samples
from patients (n = 9) [24]. The GSE47472 contained AAA neck specimen (1 = 14) and nor-
mal aortic tissue from organ donors (1 = 8). The GSE57691 included AAA samples (1 = 49)
and normal aortic specimens of organ donors (n = 10) [31]. Each dataset was processed by
background correction, including removal of batch effect using the sva R package (version
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3.12) and quantile normalization with the limma R package (version 3.38.3) [32] for further
analysis.

Abdominal Aortic Aneurysm
Explore Dataset

ApoE" Mouse
with AAA
(GSE17901)

Weighted Gene
Co-expression Network
Analysis

\

Validation
Key Modules
of AAA
DGIdb Database
A 3

STRING & CYTOSCAPE

Functional Enrichment

Figure 1. Flowchart of analysis in the study. GSE17901 was a mouse dataset containing AAA sam-
ples collected on day 7, day 14 and day 28, which was used for exploring the key modules and
hub genes related to AAA progression. Hub genes were identified through the STRING database
and Cytoscape software (San Diego, CA, USA). Key genes were further selected from the hub
genes and validated in the mouse (GSE12591) and human (GSE7084, GSE47472 and GSE57691)
AAA datasets. Finally, potential drugs or compounds targeting these key genes were screened in
the DGIdb database. AAA: abdominal aortic aneurysm. The flowchart was created with BioRen-
der.com (accessed on 11 April 2021).

Table 1. GSE datasets included in the study.

Catalog. GSE Dataset Organism Sample Number* PMID
AAA day7:7,
Explore dataset GSE17901 Mouse AAA dayl4: 5, 21712436
AAA day28: 6
GSE12591 Mouse Control: 6, AAA: 5 19580648
Validate dataset GSE7084 Human Donor: 10, AAA: 9 17634102
GSE47472 Human Donor: 8, AAA: 14 NA
GSE57691 Human Donor: 10, AAA: 49 NA

*: Number of samples (control or AAA) used in this study; NA: not applicable.

2.2. Construction of WGCNA

The WGCNA R package (version 1.69) was used to perform the weighted co-expres-
sion network analysis. Genes with the top 25% variance from the explore dataset
GSE17901 were selected for the following analysis step. Using the pick Soft Threshold
function, the soft-thresholding power was determined and used to construct a scale-free
network. Thereafter, gene co-expression modules were identified using the one-step net-
work construction method and labeled with different colors. The reassign threshold was
set at 0.25, and the minimum number of genes in each module was 30.

2.3. Selection of Key Modules Corresponding to Sample Traits

To explore the key modules that are significantly associated with sample traits of
AAA, we calculated the relevancy between module eigengene (ME), which summarizes
each module’s expression profiles. The correlation results were shown using the ggcor-
rplot R package (version 0.1.3) [33]. Furthermore, Gene Significance (GS) was quantified
by the absolute value of the association between the gene expression and sample trait. In
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every module, measurement of module membership (MM) was defined as the correlation
of the ME and gene expression profile. Modules with high significance (p-value < 0.05)
and relationships (correlation >0.6 or <-0.6) were defined as key modules of AAA and
used for hub gene selection.

2.4. Functional Enrichment Analysis of the Key Modules

To understand the biological activities of genes in key modules, we conducted Gene
Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis with the clusterProfiler R package (version 3.10) [34].
Adjusted p-value < 0.05 was considered a statistically significant difference in enrichment
analysis, and the top 10 of each analysis were extracted for visualization.

2.5. Identification of Hub Genes in the Key Modules

Hub genes are those that have a high degree of intramodular connectivity. In this
study, hub genes were defined as the top 10% of genes from key modules with the highest
connectivity. We uploaded them into the search tool for the retrieval of the interacting
genes (STRING) website (accessed on 1 May 2020 from www.string-db.org) for protein—
protein interaction analysis, choosing the confidence >0.4 [35]. Cytoscape software (San
Diego, CA, USA) was used for network visualization and hub gene selection [36]. The top
10 hub genes in each module were selected with the maximal clique centrality (MCC)
method using cytoHubba plugin software in Cytoscape (San Diego, CA, USA) [37].

2.6. Hub Genes Validation and Key Genes Selection

The validation of hub genes was performed by comparing the normalized gene ex-
pression value between control and AAA groups. The validated datasets GSE12591,
GSE7084, GSE47472, and GSE57691 were downloaded from the GEO database, and data
were preprocessed as mentioned before. In the GSE12591 mouse dataset, the gene expres-
sion of the selected hub genes in AAA and controls were compared, and genes with p <
0.05 were confirmed as the key genes. In the GSE7084, GSE47472, and GSE57691 human
datasets, genes were extracted as described for dataset GSE12591. Genes with p <0.05 were
confirmed as the key genes. Common genes in both the mouse dataset and human da-
tasets were defined as the final key genes.

2.7. Predication of Drug—Gene Interaction

The Drug-Gene Interaction Database (DGIdb) (accessed on 8 June 2020 from
http://www.dgidb.org/) is an online database of drug—gene interaction data aggregated
from various sources, including several drug databases (DrugBank, PharmGKB,
ChEMBL), clinical trial databases, and literature from PubMed [38]. The selected key
genes that were considered the potential pharmaceutical targets for AAA treatment were
imported into DGIdb to explore existing drugs or small organic compounds. Results were
displayed using the R packages ggplot2 (version 3.2.1) [39] and ggalluvial (version 0.11.1)
[40].

2.8. Statistical Analysis

To define the statistical significance of differences between the two groups, we per-
formed analysis using a non-parametric test or t-test based on data distribution character-
istics. All analyses were conducted with R software (version 3.5.5). p-value < 0.05 was as-
signed statistical significance.

3. Results
3.1. Construction of Weighted Gene Co-Expression Network

After cleaning the data in the explore dataset GSE17901 by WGCNA, 5408 genes from
17 samples were analyzed for co-expression network construction. A scale-free network
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was constructed with a soft-threshold at nine, and a correlation coefficient threshold set
at 0.85 (Figure 2A), and 15 related co-expression modules were obtained (Figure 2B). Four
main clusters were observed. The turquoise module (1394 genes) was the biggest cluster,
followed by the blue module (897 genes), brown module (793 genes), and yellow module
(586 genes). All the ungrouped genes (199 genes) were included in the grey module.
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Figure 2. Construction of gene co-expression network by WGCNA. (A) Determination of soft-
thresholding power for scale-free network construction. Here, we set the coefficient threshold at
0.85, and the soft-threshold was 9; (B) cluster analysis of the dendrogram and identification of co-
expressed modules. In this study, we got 15 related co-expression modules.

3.2. Construction of Module-Trait Relationships and Detection of Key Modules

The related sample traits (time—day 7, day 14, day 28; dissection of abdominal aorta)
were obtained from the sample information in the GSE17901 dataset (Figure S1A). The
relationships between these traits and each module were defined by the correlation be-
tween ME and sample traits (Figure 3, Figure S1B). These results indicated that three mod-
ules (blue, green, and brown) were strongly related to the time trait, representing the pro-
gression of AAA (Figure 3, Figure S2A-C). Blue and green modules also significantly cor-
related with the dissection sample trait (Figure 3, Figure S2D-E). Thus, the blue (897
genes), green (436 genes), and brown (793 genes) modules were defined as the key mod-
ules that were highly correlated with AAA.
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Figure 3. Identification of the key modules associated with AAA progression. Green, blue and
brown modules were highly correlated (correlation > 0.6 or —0.6 and p-value < 0.01) to the time of
sample collecting which stands for AAA progression. Besides, green and blue modules were also
related to the dissection happening in the AAA sample (correlation > 0.6 or —0.6 and p-value <
0.01). AAA: abdominal aortic aneurysm.

3.3. Functional Enrichment Analysis of Genes in the Module

To investigate the biological functions of key modules related to sample traits, we
conducted GO and KEGG enrichment analysis for genes in every key module. The GO
analysis showed that genes in the blue modules were mainly involved in the organelle
fission, regulation of mitotic cell cycle, and nuclear division related to cell development
or differentiation (Figure 4A). The green module was involved in GTPase activity (Figure
4B), and the brown module was clustered in cellular metabolic processes, especially co-
factor metabolism, purine-containing compound metabolism, and purine nucleotide me-
tabolism (Figure 4C). The results of the KEGG analysis revealed that the blue module was
enriched in fluid shear stress and atherosclerosis pathway, highly related to the progres-
sion of AAA (Figure 5A). Genes in the green module were enriched in the regulation of
lipolysis in the adipocyte pathway and the pancreatic secretion pathway (Figure 5B). The
brown module was enriched in the citrate cycle (TCA cycle) pathway (Figure 5C).
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Figure 4. Gene ontology enrichment analysis of key modules of AAA progression. (A) blue module; (B) green module; (C)
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Figure 5. KEGG pathway enrichment analysis of key modules. (A) blue module; (B) green module; (C) brown module.
Count—the number of genes in the given KEGG pathway. Rich factor —the ratio of the number of genes annotated in a

pathway to the number of all genes annotated in this pathway.

3.4. Identification of Hub Genes in the Key Modules

To explore the hub genes that regulate AAA development, we imported the top 10%
of genes with the highest connectivity into the String online database for protein—protein
interaction detection, and networks were formed in Cytoscape (San Diego, CA, USA) (the
PPI networks were stored in the NDEx: accessed on 11 December 2020 from
https://bit.ly/37XZZWh; https://bit.ly/3a7Q2sc; https://bit.ly/38fyckz). With the cyto-
Hubba plugin using the MCC method, the top 10 hub genes were identified in the key
modules, namely, in the blue module (Ccr5, Fpr2, Ccr2, Fprl, P2ry12, Hcarl, Ppbp, Aifl,
Sirpblb, Clec4n), green module (Gnail, Adcy5, Adcy3, Rnase2a, Cxcl13, Clcal, Ear10,
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Earl, Nprl, Ccl11), and brown module (Lpl, Dgat2, Fasn, Acacb, Lpinl, Acsll, Mogatl,
Lep, Ucp3, Pdk4) (Table 2).

Table 2. Top 10 ranked genes in key modules with the MCC method in cytoHubba.

Catalog Key Modules
Blue Green Brown
Cer5 Gnail Lpl
Fpr2 Adcy5 Dgat?2
Top 10 Gene Cer2 Adcy3 Fasn
Fprl Rnase2a Acacb
P2ry12 Cxcl13 Lpinl
Hcarl Clcal Acsll
Ppbp Ear10 Mogatl
Aifl Earl Lep
Sirpblb Nprl Ucp3
Clec4n Ccll1 Pdk4

3.5. Hub Genes Validation and Key Genes Selection

To further validate and evaluate the hub genes identified through the above analysis,
the mouse dataset GSE12591 was checked using the same mouse angiotensin II-induced
AAA model as GSE17901. In the blue module, Ccr5 and P2ry12 were significantly upreg-
ulated in the AAA group (Figure 6A), and Hcarl was significantly down-regulated in the
AAA group (Figure 6A). In the green module, Adcy5 and Adcy3 were the two signifi-
cantly expressed genes (Figure 6B). All significantly expressed genes (Dgat2, Fasn, Acacb,
Lpin1, Acsll, Mogatl, Ucp3, Pdk4) in the brown module were down-regulated in the AAA
group (Figure 6C). In the human AAA datasets GSE7084, GSE47472, and GSE57691, all of
the significantly expressed genes were identified by comparing organ donors and AAA
patients (Table 3). Considering the individual differences within each sample, genes ex-
pressed significantly in every human dataset were defined as human key genes. Finally,
CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, and UCP3 were the common genes that
showed up both in the mouse AAA dataset and human AAA datasets and these were
selected as the key genes in AAA progression.
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Figure 6. Validation of gene expression from hub genes in mouse dataset GSE12591. (A) Ccr5,
P2ry12 and Hcarl were differentially expressed in the blue module; (B) Adcy5 and Adcy3 were
differentially expressed in the green module; (C) Dgat2, Fasn, Acacb, Lpinl, Acsll, Mogatl, Ucp3
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and Pdk4 were differentially expressed in the brown module. *: p <0.05, **: p<0.01, ***: p<0.001

(Wilcoxon rank-sum test).

Table 3. Significantly expressed hub genes in human AAA datasets.

Dataset Key Modules
atasets Blue Green Brown
CCRS5, CCR2,
GSE7084 FPR2, FPR1, AIF1 GNAII, RNASE2, NPR1 NA
GSE47472 CCR2, FPR2, PPBP GNALII, RNASE2, CLCA1, LYVE1 LPIN1, UCP3
GSE57691 CCR2, FPR2, PPBP, CLEC6A, SIRPB1 ADCY5, ADCYC:%C'E ﬁCLB' CLCAL ACACB, LPIN1, ACSL1, LEP
CCRS, CCR2, FPR2, PPBP, AIF1, CLEC6A, Gl RNASE2 NPRL CLCAL =\ ¢\ o 1 pin1, ACSLI, LEP,
Human LYVEL, ADCY5, ADCY3, CXCL13,
SIRPB1, FPR1 ucr3
CCL11
3.6. Predication of Drug-Gene Interaction
The seven key genes CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, and UCP3
were used as the potential druggable targets for AAA treatment. The drug-gene interac-
tion results from the DGIdb database revealed 35 potential target drugs/compounds for
AAA treatment. Of these, 23 drugs targeted CCR5, among which maraviroc had the high-
est score of prediction; seven drugs targeted ACACB, two drugs each targeted ACSL1 and
ADCYS5, and one drug targeted LPIN1 (Figure 7, Table S1). No potential drugs could be
identified for ADCY3 and UCP3
Drug Gene Module
ACACB
[ Aplaviroc |
Aurothioglucose '_
! 4
‘ ADCY5 S
CHEMBL207004 .(
CHEMBL208943 PN
CHEMBL378186 =
s
CHEMBL495654
Colforsin ’
Firsocostat
| Ibalizumab
NCB-9471
Leronlimab 2855
| Maraviroc
Mavorixafor
Metformin
Nifeviroc Brown
PF-232798
Variecolin T
Vicriviroc Green
Vicriviroc Maleate LPIN1

Figure 7. Drug—gene interaction prediction of key genes. Five key genes—ACACB, ACSL1, ADCY5, CCR5 and LPIN1
were targeted in the DGIdb database. A total of 35 potential target drugs/compounds were predicted from the database.
AMP: Adenosine monophosphate; ATP: Adenosine triphosphate.
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4. Discussion

In the present study, we used WGCNA analysis to identify the key genes involved
in AAA progression and the drugs that target these genes, which could be potentially
effective for the repression of AAA growth. WGCNA was performed on the available
mouse dataset (GSE17901), where AAA samples were obtained at day 7, day 14, and day
28 from ApoE7 mice treated by angiotensin II or saline. We identified three modules
(blue, green, and brown) as key modules that correlated closely with AAA growth. In
these three modules, we further identified hub genes using Cytoscape software (San Di-
ego, CA, USA) and validated the model in mouse and human datasets. Seven genes—
CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, and UCP3 were identified as the key
genes in AAA progression. Finally, using the DGIdb database, we identified 35 drugs as
potential candidates/compounds that could target the key genes and yield beneficial ef-
fects in treating AAA.

WGCNA is a systematic biological method that describes the gene co-expression pat-
tern between different samples. It identifies gene sets with highly coordinated variations.
The candidate biomarkers or targets of the disease are based on the connectivity between
gene modules and sample traits. Compared to the traditional differential gene expression
analyses, which focus solely on genes characterizing the difference between groups,
WGCNA groups co-expressed genes in an unbiased manner into modules that can be con-
nected to sample traits.

Among the 15 co-expression modules obtained by WGCNA, the blue, green, and
brown modules were mostly related to the AAA progression. The enrichment analysis of
these key modules’ biological functions and pathways revealed that genes in the blue
module were mainly enriched in the cellular process, particularly the regulation of the
mitotic cell cycle. This has also been reported in several studies. For instance, Butt et al.
performed peripheral blood transcriptome profiling of individuals with AAA and healthy
donors. They described that significantly expressed genes were enriched in this GO term
[41]. Another study showed that the mitotic cell cycle was also significantly associated
with dilated aortic perivascular adipose tissue [16]. The most enriched pathway of the
blue module in KEGG was fluid shear stress and atherosclerosis. Several studies have
shown the association of atherosclerosis disease with AAA [1,42]. Shear stress induced by
abnormal blood flow was also previously reported to contribute to the growth or rupture
of AAA [43,44]. The GO analysis of the green module showed that the biological process
of GTPase activity was involved in AAA development. Dysregulation of GTPase activity
would influence normal functions of endothelial cells and vascular smooth cells, includ-
ing re-endothelialization, cell migration, and proliferation [45,46]. KEGG pathway enrich-
ment of genes in the green module demonstrated that the regulation of lipolysis in the
adipocyte pathway is also engaged in AAA growth. Adventitia of the aorta which con-
tains the mass of adipocytes is a new direction of AAA research. One recent study re-
vealed the key regulatory factors in perivascular adipose tissue of AAA [19]. Another
study further proved that the increase in AAA diameter was correlated with lipid-related
processes in the adventitia [18]. Results from functional enrichment analysis of the brown
module indicated that some metabolic processes or pathways are also involved in AAA
progression. In our study, cofactor metabolism was the most enriched process. This is in
agreement with previously published studies that have shown that cofactors like cobala-
min (vitamin B12) and glutathione could slow down the progression of AAA to some ex-
tent [47,48]. These findings confirm the involvement of the mitotic cell cycle, GTPase ac-
tivity, and metabolic process in the pathogenesis of AAA.

The hub genes in the present study were selected by a combined analysis of gene
intramodular connectivity and protein—protein interaction in the STRING database and
Cytoscape software (San Diego, CA, USA). These selected hub genes were further con-
firmed in mouse and human datasets with gene differential expression analysis. Seven
key genes were eventually identified —CCRS5 from the blue module, ADCY5 and ADCY3
from the green module, ACACB, LPIN1, ACSL1, and UCP3 from the brown module. The
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vital role of CCR5, C-C motif chemokine receptor 5, in HIV-1 infection has been accepted
since the discovery of this receptor [49]. It is expressed in many immune cells, including
macrophages, T cells, and natural killer cells. CCR5 and its ligands regulate the inflam-
matory response by affecting the biological activities of the above-mentioned immune
cells [50]. The results from GSE12591 identifying Ccr5 as a differential gene upregulated
in the mouse aortas with aneurysms [25]. CCR5 signaling in the macrophage pathway was
enriched by functional analyses of differential genes in GSE7084 [24]. Furthermore, pa-
tients with AAA frequently have CCR5 Delta 32 deletion mutations and are vulnerable to
rupture of aneurysms [51]. Thus, CCR5 may be a potential biomarker for AAA progres-
sion and an indication of rupture. The hub gene ADCY5 (mouse—Adcy5) in the green
module was related to mouse AAA progression and dissection. This was consistent with
the findings by Phillips et al. which showed Adcy5 was one of the differentially expressed
genes in the murine dissecting AAA [52]. ADCY3 is an enzyme that regulates the cyclic
adenosine monophosphate (cCAMP). Besides its role in AAA progression, loss of ADCY3
increases the risk of obesity and type 2 diabetes [53], and the single nucleotide polymor-
phisms of this gene are related to hypertension [54], which are the risk factors leading to
the initiation of AAA [55]. LPIN1, ACSL1, and UCP3 were related to adipocyte differen-
tiation and muscle growth [56-60], so dysregulation of these three genes may lead to AAA
initiation, growth or rupture, as adipocytes residing in the perivascular tissue, and vascu-
lar smooth muscle cells play an important role in the development of AAA [19,60]. Ac-
cording to the reviewed literature, the remaining key gene ACACB had no apparent con-
nection with AAA. This, however, requires further investigation to clarify its function in
AAA progression.

So far, there is no effective drug therapy for the prevention of AAA progression or
rupture. In this study, seven key genes were identified and used for predicting drug-gene
interactions. A total of potential 35 drugs or compounds were presented in the DGIdb
database. Most of these targeted the CCR5 gene. We checked these 35 candidates from the
literature and ClinicalTrials.gov (accessed on 18 July 2020 from https://clinicaltrials.gov/),
the largest clinical trials database containing over 329,000 trials worldwide. Five targeta-
ble drugs (PF-05175157, firsocostat, and metformin targeting ACACB; maraviroc targeting
CCRS; rosiglitazone targeting LPIN1) were found to be used for AAA treatment. PF-
05175157 and firsocostat are two novel acetyl-CoA carboxylase (ACC) inhibitors for lipid
disorders [61,62], which could potentially rebalance dysregulated lipid metabolism in
AAA to limit the development of the disease. Metformin is the first-line oral antidiabetic
drug [63]. It also has proven effects on cardiovascular diseases through the reduction of
inflammation and oxidative stress [64-66]. Several epidemiological studies have indicated
that the use of metformin use could decrease yearly AAA growth [67,68]. Though mara-
viroc is a CCR5 antagonist prescribed for HIV-1 treatment, it could also be applied for
AAA treatment since it was reported that maraviroc could reduce cardiovascular risk by
modulation of atherosclerotic progression in vivo and in vitro [69,70]. Rosiglitazone (RGZ)
is a potent peroxisome proliferator-activated receptor-y (PPAR-y) agonist that can protect
against ischemia/reperfusion injury due to its anti-inflammatory effects [71]. It has been
reported that RGZ reduces stent-induced neointimal formation by decreasing the inflam-
matory responses and vascular smooth muscle hyperplasia [72]. Through the same anti-
inflammatory effect, RGZ could also inhibit the growth and rupture of mouse aortic an-
eurysms induced by angiotensin II and high cholesterol [73]. No drugs could be predicted
for the ADCY3 and UCP3 genes. These two gene candidates will have to be evaluated as
potential targets in AAA treatment in further studies.

Though our study is the first that performed WGCNA analysis with samples col-
lected at different points of time in AAA growth, this study still has some limitations.
Firstly, upon screening of the public database mouse dataset, GSE17901 was the only da-
taset available that allowed us to follow gene function over time and was used as an ex-
ploration dataset for WGCNA analysis. As a result, the sample size used for WGCNA
analysis (n = 17) just passed the minimum official criteria (n = 15), therefore there may be
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noise for the biological network construction. The angiotensin II-induced AAA in mice
may share similar features with human AAA, but the inherent pathology is different and
thus, our results should be interpreted with caution. This study has indeed predicted in-
teresting key genes involved in the progression of AAA and potentially useful drugs,
however these findings should be validated further with in vitro and in vivo models of
AAA.

In summary, this study identified key co-expression modules, key genes, and several
critical biological processes related to AAA progression. With drug-gene interaction pre-
diction, target drugs or compounds may provide the possibility of developing a medical
treatment for AAA.

5. Conclusions

Our study using WGCNA analyses revealed seven key genes (CCR5, ADCYS5,
ADCY3, ACACB, LPIN1, ACSL1, UCP3) in three modules correlated to AAA progression.
Mitotic cell cycle, GTPase activity, and metabolic process were involved in the pathogen-
esis of AAA. The therapeutic potential of several predicted drugs for the treatment of
AAA could be further explored.
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drogram and trait heatmap. The color intensity of time was proportional to the day of the sample
collected. The red color in dissected represents the occurrence of dissection in the sample; (B) Mod-
ule trait relationships. Each row corresponds to a module eigengene (ME) and each column to a
sample trait, Figure S2: Correlation of the module membership and the gene significance. (A-C) The
relationship between gene significance of time and module membership; (D-E) The relationship
between gene significance of dissection and module membership. The color indicates the module,
and the dot indicates the gene within the module., Table S1: Potential target agents identified based
on drug-gene interaction in DGIdb database.
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