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Abstract: Bioabsorbable materials made from polymeric compounds have been used in many fields
of regenerative medicine to promote tissue regeneration. These materials replace autologous tissue
and, due to their growth potential, make excellent substitutes for cardiovascular applications in
the treatment of congenital heart disease. However, there remains a sizable gap between their
theoretical advantages and actual clinical application within pediatric cardiovascular surgery. This
review will focus on four areas of regenerative medicine in which bioabsorbable materials have the
potential to alleviate the burden where current treatment options have been unable to within the
field of pediatric cardiovascular surgery. These four areas include tissue-engineered pulmonary
valves, tissue-engineered patches, regenerative medicine options for treatment of pulmonary vein
stenosis and tissue-engineered vascular grafts. We will discuss the research and development of
biocompatible materials reported to date, the evaluation of materials in vitro, and the results of
studies that have progressed to clinical trials.

Keywords: tissue engineering; large animal model; pulmonary valve; aortic patch; pulmonary vein

1. Introduction

Congenital heart disease (CHD) accounts for approximately one-third of all congenital
anomalies worldwide affecting approximately 40,000 newborns in the United States each
year [1,2]. Despite advances in management, CHD remains a leading cause of death in
newborns and can lead to lifelong morbidity in survivors [1]. A significant portion of
cardiac surgery morbidity and mortality is attributed to the synthetic conduits and patches
frequently used for cardiac repair. Made from materials such as polytetrafluoroethylene
(PTFE or Gore-Tex), these artificial materials are susceptible to thrombogenicity, stenosis,
iatrogenic calcification, immune rejection, and infection [3,4]. Grafts constructed from these
materials also lack growth potential, contributing to one of the greatest causes of morbidity
in pediatric patients—somatic overgrowth, or the process by which patients outgrow their
grafts. Alternative material choices have largely revolved around allografts, xenografts,
and autologous tissues such as pericardium or saphenous vein; however, each of these have
varying degrees of complications and still do not address the need for growth potential [5].

Regenerative medicine provides a potential solution to the use of these various mate-
rials, allowing for the added benefit of avoiding issues such as immune rejection, somatic
overgrowth, infection, and calcification [6,7]. This is made possible through the strategy
of implanting a bioabsorbable scaffold that degrades over time which is replaced with
autologous vascular tissue that can repair, reform, and even grow with the patient [8].
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Many groups have sought to create different surgical materials [9,10], but have been met
with numerous obstacles that must be addressed in order for these materials to be ac-
ceptable for clinical practice. For this reason, very few cardiovascular materials utilizing
regenerative medicine principles have made it to the clinical trial stage [11]. It is our sense
that there is an unintended disconnect between the materials being studied by materials
science experts/engineers and those found most useful by surgeons implanting them. In
this article, we will discuss the real needs of regenerative medicine from the standpoint of
pediatric cardiovascular surgery, focusing on the current status of regenerative engineering
valves, regenerative engineering patches, and regenerative medicine for pulmonary vein
stenosis using bioabsorbable materials [12,13].

2. Tissue-Engineered Pulmonary Valve

The pulmonary valve (PV) is the most commonly affected valve in CHD. Separating
the right ventricle (RV) and pulmonary trunk, the PV is a tri-leaflet structure leading to
the lower pressure pulmonary system. It serves to facilitate forward blood flow during
systole and prevent retrograde blood flow during diastole. The regulation of flow is a
function of its geometric shape, cellular composition, and extracellular matrix (ECM).
Geometrically, leaflet alignment via the commissures and annulus determines appropriate
coaptation of the PV and thus prevention of regurgitation. Valve leaflets are complex
structures composed of various cells types that create and maintain an intricate ECM based
on environmental stimuli [14]. As such, conditions (congenital or iatrogenic) affecting
these valvular components place the patient at increased risk of significant morbidity and
mortality, often times necessitating PV replacement (PVR) [15–19].

Isolated PVR in a CHD patient is much less common than a PVR that is a result of
sequelae from right ventricular outflow tract (RVOT) modification during initial repair of
the CHD lesion [20]. In fact, the majority of two-chamber endocardial repairs for CHD
involve repair of a dysfunctional RVOT using a valved conduit or bioprosthetic pulmonary
valve (Table 1). Some of the most commonly used conduits are decellularized homografts,
conduits with valves made of e-PTFE, or the glutaraldehyde-fixed, bovine-jugular vein-
derived Contegra® valved conduit. Long-term complications related to modification of the
RVOT during endocardial repair are the leading cause of catheterization and/or reoperation
in the distant postoperative period for these patients [21]. These complications include
potential for infection due to non-autologous tissue, deterioration of valve function from
calcification, associated pulmonary valve stenosis, and right heart failure due to pulmonary
valve regurgitation. Ideally, the goal of the initial RVOT reconstruction and conduit
placement in CHD patients would be avoidance of repeat surgical or transcatheterization
intervention. However, this is limited by current treatment options and materials. To
prevent right heart failure from PV regurgitation, it is important to perform either surgical
or transcatheter PVR before the right ventricular function is irreversibly compromised.

Table 1. CHD requiring treatment with RVOT valved conduit or pulmonary valve [22]. CHD: Congenital heart disease;
RVOT: Right ventricular outflow tract; VSD: ventricular septal defect; TGA: transposition of the great arteries; DORV:
double outlet right ventricle.

Classification of Diseases Examples of Diagnoses

RVOT Congenital Defect

Stenosis
Tetralogy of Fallot +/− absent pulmonary valve syndrome

Isolated pulmonary stenosis

Atresia
Pulmonary atresia +/− VSD

Truncus Arteriosus
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Table 1. Cont.

Classification of Diseases Examples of Diagnoses

RVOT Iatrogenic Defect

Rastelli Procedure

DORV + VSD + sub-pulmonary stenosis

TGA or
Corrected TGA + sub-pulmonary stenosis

Ross Procedure
Aortic Stenosis (congenital or acquired)

Aortic Regurgitation (congenital or acquired)

Secondary Pulmonary
Regurgitation

PR after repair of Tetralogy of Fallot

PR after pulmonary valvuloplasty

PVR traditionally involves either surgical or transcatheter approaches using an array
of different mechanical, allo-/xenogenic, or synthetic valve substitutes each with their
own varying levels of success. For surgical PVR, bioprosthetic (mainly decellularized)
homograft valves have been a widely utilized valve choice due to their decreased throm-
bogenicity and the lack of required lifelong anticoagulation associated with mechanical
valves. However, their apparent short lifespan and tendency to calcify/degenerate has
been a known issue for many years, requiring multiple reinterventions throughout a pedi-
atric patient’s lifetime [23,24]. The more recently accepted approach for PVR emerged in
2000 as Bonhoeffer performed the first transcatheter valve replacement. A native, valved
bovine jugular vein sewn onto a stent was implanted into the conduit of a 12-year-old boy
with repaired pulmonary atresia and a ventricular septal defect [25]. Since then, the field
of transcatheter PVR has grown substantially with the two most common transcatheter
PV being the Melody® Transcatheter Pulmonary Valve (Medtronic, Minneapolis, MN,
USA) [26,27] and the Sapien Transcatheter Heart Valve (Edwards Lifesciences, Irvine, CA,
USA) [28]. The Melody® valve is constructed from a bovine jugular vein, whereas the
Sapien valve is constructed with bovine pericardium. Both valves are secured within
balloon-expandable stents to facilitate deployment. The strengths and weaknesses of these
valves are beyond the scope of this review; however, the selection largely depends on the
patient’s anatomy [19,29]. Though effective at relieving PV insufficiency, bioprosthetic
transcatheter valves (both surgical and transcatheter) have long-term complications re-
lated to somatic overgrowth, degeneration, calcification, rejection, the need for long-term
anticoagulation and may lead to eventual replacement [18,30–32].

Tissue engineering offers a promising alternative as it has the potential to mitigate
these complications due to the ability to create living, native tissue that grows with the
patient [33]. Initial work using tissue-engineering strategies for PVR focused on decellular-
ized xeno- and homografts seeded with various cell populations [34,35]. Despite relatively
encouraging results, lengthy incubation periods required for in vitro cell culture rendered
these tissue-engineered pulmonary valves (TEPVs) less than ideal, and has pushed groups
to develop constructs without the need of cell seeding prior to implantation [36,37]. Further
work in this field has sought to define an ideal PVR, with the goal of creating an “off-
the-shelf” TEPV capable of self-renewal and growth within pediatric patients. While the
concept of tissue engineering encompasses advantages over current technology [38], this
section will focus solely on select studies regarding synthetic, bioabsorbable TEPV scaffolds.

The benefits of creating cardiac valves using tissue-engineering principles and syn-
thetic, bioabsorbable biomaterials are remarkable [39]. Using synthetic, bioabsorbable
materials alleviates the issue of limited material supply that many non-synthetic TEPVs
constructs encounter. Additionally, as the body degrades the scaffolds and replaces it with
its own tissue, the neo-valve has the potential to grow with the patient. This bypasses
the need for additional replacement procedures secondary to PV insufficiency from so-
matic overgrowth. Synthetic materials also lend themselves to being more customizable as
medicine continues to search for patient-specific solutions (Figure 1). Nonetheless, chal-
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lenges remain in constructing a synthetic, fully resorbable TEPV limiting its widespread
clinical use.
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Figure 1. Pros and cons of current existing PVR options and a theoretical TEPV for PVR. The image in the top left is from an
editorial on a PTFE RV-PA conduit [40]. The images in the bottom left box are of different views of the Xeltis biodegradable
pulmonary valve conduit [41] from a bioabsorbable metal stent PVR from Zakko et al., 2020 [42]. PVR: Pulmonary valve
replacement; PV: pulmonary valve; RV: Right ventricle; the green and red squares are to emphasize.

Just as current treatment options are delivered via transcatheter or surgical approaches,
TEPVs have also been studied through both delivery modalities. In the transcatheter
approach, the leaflets are completely degradable; however, current metal stents that house
the valve are permanent. One manufacturing approach involves creating the structure ex
vivo using autologous cells seeded onto a scaffold, culturing these constructs in a bioreactor
to allow for ECM production, followed by decellularization and subsequent implantation.
An example of this is the polyglycolic acid (PGA) and poly(4-hydroxybutyrate) PV that has
undergone several changes to its design with positive large animal model results [43–45].
Another strategy avoided ex vivo culture altogether, using the TEPV recipient’s own
immune system, along with a bioresorbable polymer bisurea-modified poly-carbonate
scaffold, to assist with remodeling [46,47]. Although these valve designs have seen some
exciting preclinical success, the long-term efficacy remains to be seen as animal models
developed pulmonary regurgitation at earlier timepoints secondary to inappropriate valve
regeneration, calcification or contracture. This is likely due to the complex structure of the
native PV and the need for an equally complex TEPV in order to competently assume its
role in controlling blood flow.

Regenerating such a structure involves an understanding of the delicate balance
between cellular and molecular mechanisms as well as mechanical forces driving the
regenerative process. Further studies aimed at elucidating the mechanisms driving the
tissue regeneration process are needed before more effective clinical translation of TEPVs
can occur. A mouse model of PV transplantation may assist in evaluating these mechanisms
through the power of transgenic mice [48], albeit downsizing such mechanically complex
structures may prove to be a separate but equally challenging hurdle. Furthermore, the role
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of long-term stent placement in this pediatric population is unknown. Studies evaluating
stent placement in pulmonary stenosis not requiring PVR have complication rates ranging
from 10 to 33%, and require frequent reinterventions [49]. The risk of damage to the valve
in the event of a stent complication or to the stent in the case of a valvular intervention has
yet to be fully described. Still in its beginning stages, a zinc–aluminum alloy degradable
metal stent housing a synthetic, electrospun polycaprolactone valve is being used in a
fetal transcatheter ovine model and may provide an alternative solution to the issue of
long-term stent placement [42]. Despite zinc being an essential metal for many cellular
processes, there are still only limited in vitro and in vivo data demonstrating its impact
within the cardiovascular system and tissue regeneration pathway [50,51].

Although transcatheter approaches are an arguably more clinically attractive approach
due to the decreased morbidity for the patient, surgically implanted synthetic TEPVs have
seen the most success to date. Perhaps the most successful surgically implanted TEPV is
that from Xeltis (Zurich, Switzerland). Made from a ureido-pyrimidinone supramolecular
polymer, this valve-conduit structure has seen promising preclinical results with adequate
hemodynamic profiles in sheep up to two years after implantation [52]. Currently, clinical
trials are underway evaluating two different types of this TEPV in the Xplore-1 and Xplore-
2 trials. Data presented at the International Conference of Tissue Engineered Heart Valves
2020 revealed that 11 out of 12 patients had severe pulmonary regurgitation at two years in
the Xplore-1 trial. In the Xplore-2 trial, there were no signs of severe regurgitation; however,
out of the 6 enrolled patients, 1 developed valve stenosis and 1 required reoperation at one
year [53]. A similar issue is raised over the surgically placed biodegradable scaffolds, as
severe pulmonary regurgitation would require reintervention and possibly additional PV
replacement. Further work targeting the mechanisms driving regeneration would again be
ideal to help guide additional modifications to scaffold design.

Regardless of the delivery method, tissue regeneration relies on a complex cell-
mediated remodeling process inherent in many bioengineering approaches. The major
obstacle for TEPVs is leaflet retraction and valvular insufficiency. Computational modeling
offers a potential solution for this as a powerful tool that allows for consideration of many
different mechanical and biological factors affecting valve design and performance. Simon
Hoerstrup’s group has validated this concept, demonstrating that computational modeling
could improve their PGA-based TEPV scaffold design and guide tissue remodeling for
improved long-term performance and in vivo imaging results in sheep up to one year [54].
Though the logistical and technical challenges that come with validation of a computational
modeling approach are many, this type of modeling is important for advancing the field of
TEPVs in the search for a viable, bioabsorbable pulmonary valve replacement capable of
self-repair, growth and remodeling. Nonetheless, we await continued studies in the field
and are excited for the future of synthetic, bioabsorbable TEPVs.

3. Tissue-Engineered Patch

Patches are essential for repair of CHD when repairing congenital defects or stenosis.
They are commonly used for tissue repair and reconstruction in congenital heart surgeries
such as pulmonary angioplasty, aortic arch reconstruction, right ventricular outflow tract
patch repair, valvular augmentation, and repair of the coronary sinus [55]. A variety of
materials are used for the patch depending on the location and desired handling character-
istics. Such materials include: decellularized homograft, autologous pericardium (fresh or
glutaraldehyde treated), Dacron, Hemashield®, expanded polytetrafluoroethylene (ePTFE),
as well as RVOT conduits [56,57]. These materials are essentially non-growing, resulting in
the surgeon performing cardiac reconstruction with the hope that there will be sufficient
growth of nearby autologous tissue to avoid the need for reoperation [57]. The decision
of which patch type to use is commonly based on the area to be repaired and pressures
the material will face in those locations. For example, in areas under high pressure loads,
patches made from artificial materials such as Dacron and Hemashield® are often used. In
this case, however, the patient needs to be closely monitored during the acute postopera-
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tive period as significant hemolysis can occur from the blood flow jet interacting with the
exposed patch. Long-term issues are mainly degeneration and calcification of the patch.
In particular, patches made of heterogeneous pericardium can calcify and cause stenosis.
There are high hopes that bioabsorbable graft materials combined with autologous tissue
regeneration will be developed into a patch material able to handle high pressure loads
without degeneration [58,59].

Repair of aortic arch hypoplasia or aortic arch coarctation is one of the most com-
mon congenital heart disease procedures requiring reintervention [60]. Reconstruction
of the aortic arch involves many different operative techniques including resection with
end-to-end anastomosis of the stenosis, patch augmentation of the hypoplastic aortic arch,
subclavian flap repair, and artificial vessel replacement [61,62]. Complications related to
this procedure include restenosis, aortic aneurysm formation, aortic dissection, rupture,
residual hypertension, early onset of atherosclerotic lesions (cerebrovascular disease and
coronary artery disease), and infective endocarditis [63,64]. The most common of these
being re-development of aortic stenosis or coarctation. Even after repair of the stenosis, life
expectancy does not normalize. Patients treated surgically at an average age of 16 years
have reported 10, 20 and 30 years’ survival rates of 91%, 84%, and 72%, respectively [65].
Early surgical treatment is believed to improve long-term prognosis [66–68]; though surgi-
cal treatment at an average age of 5 years results in 20-year and 40–50-year survival rates
of 91% and 50%, respectively. It has been reported that 70% of remote deaths are due to
cardiac complications [69]. The creation of tissue-engineered arterial patches with growth
potential can potentially eliminate the need for reoperation and improve the quality of life
and survival rates in these patients.

Based on a decellularized porcine small intestinal mucosa, the CorMatrix® patch
technology demonstrates tissue remodeling and regenerative potential in preclinical ex-
periments [70–72]. However, it fails to remodel into native-like tissue at 9 months after
implantation in patients with congenital heart failure [73]. These non-native structures,
under the intense physiological loads of the cardiovascular system, are limited in their
long-term effectiveness. The development of a viable biodegradable material that has the
mechanical strength to withstand fluctuating pressures during degradation and remodeling
is central to the successful fabrication of a tissue-engineered vascular patch. Development
of such a biodegradable material could pave the way for many other tissue-engineered
bioproducts useful in cardiac surgery and would likely spur the development of various
pre-clinical and clinical trials [11]. One group developed a tissue-engineered vascular patch
from decellularized extracellular matrix (ECM) obtained during surgical removal of the
human aorta and seeding it with bone marrow stem cells from pediatric patients [74,75].
This material was validated in canine abdominal aorta and showed excellent pressure resis-
tance. However, even though it demonstrated formation of new endothelium and smooth
muscle, it has yet to be determined if this patch material has significant growth potential.

Another group utilized a synthetic polymer approach to produce a hybrid biodegrad-
able polymer scaffold from polylactide-co-epsilon-caprolactone (PLCL) copolymer rein-
forced with PGA fibers. Additionally, they took advantage of in vitro cell programing by
inducing canine bone marrow mononuclear cells to differentiate into either vascular or
endothelial cells, seeding them onto the scaffolds and subsequent implantation into the
inferior vena cava of bone marrow donor dogs to create tissue-engineered vascular patches
15 mm wide × 30 mm long [76,77]. This study demonstrated that, compared to PLCL scaf-
folds, PGA/PLCL scaffolds exhibited tensile mechanical properties close to those exhibited
by native canine inferior vena cava vessels. Furthermore, the investigators also confirmed
that hybrid bioabsorbable polymer scaffold implanted bone marrow mononuclear cells
survived after implantation and contributed to regeneration of endothelium and vascular
smooth muscle in the implanted vascular patches.

A group led by Ichihara developed a novel fully biodegradable polymeric scaffold
consisting of epsilon-caprolactone and lactide acid copolymer [P(CL/LA)] and poly-L-
lactide acid (PLLA) that was transplanted as a 30 × 15 mm oval patch into the descending
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aorta of 12 dogs without any cell seeding (Figure 2) [78]. Cell proliferation was evaluated
by histological and immunohistochemical methods (Figure 2D), and there was no macro-
scopic evidence of patch rupture or aneurysm formation up to 6 months (Figure 2A–C).
This suggested that their bioabsorbable polymeric scaffold could be used as an alternative
vascular material for high-pressure systems, and since the material is completely degrad-
able, it may also have the desirable potential to grow. While only a few studies focused
specifically on larger arterial patches, there may be helpful clues to be gained from the
study of small diameter arterial grafts that can be translated to large patch materials in
similar high-pressure arterial environments [11].
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Figure 2. Data originally from Ichihara et al., 2015 demonstrating the macroscopic and histologic evaluation of a tissue-
engineered arterial patch (TEAP) [78]. Macroscopic findings of each explanted tissue-engineered arterial patch at 1 month
(A), 3 months (B) and 6 months (C) after implantation, showing no intimal hyperplasia and no aneurysm formation. No
thrombus was observed. All inner sides of the patch were covered with native intima-like tissue with a smooth surface.
Scale bar, 10 mm. (D) Hematoxylin–eosin (HE) and Masson staining (MS) at each observation end-point of bioabsorbable
aortic patch. White and blank spaces (residual sponge polymer, arrowhead), which were observed in the TEAP at 1 month,
were occupied by cellular components (red) and extracellular matrices (blue) in MS at 3 and 6 months after implantation.
These findings showed good cell and tissue proliferation in the TEAP over time. Immunohistochemical staining for vWF,
VEGF and αSMA (lower) is also shown. The luminal surfaces of the TEAPs were covered with a single layer of endothelial
cells stained with antibodies to vWF at 1 month. The vWF-positive cells accumulated more clearly on the luminal surfaces
of TEAP at 6 months. VEGF-positive cells in the patches were observed more on both the luminal surfaces and within the
media 1 month after implantation; however, no VEGF expression was detected at 3 and 6 months. αSMA-positive cells were
observed in the media of the regenerated tissue, and gradually increased over time. Original magnification HE, MS, vWF
and αSMA ×200, VEGF ×100; scale bar, 100 µm. HE: haematoxylin–eosin; MS: Masson staining; TEAPs: tissue-engineered
arterial patches; vWF: von Willebrand factor; VEGF: vascular endothelial growth factor; αSMA: alpha-smooth muscle actin.

4. Regenerative Medicine Solutions for Pulmonary Vein Stenosis

Pulmonary vein stenosis (PVS) can either be congenital or a postoperative complica-
tion of total anomalous pulmonary venous connection (TAPVC) repair (9-18%) and has a
poor prognosis (Figure 3) [79,80]. The most severe form of PVS is pulmonary vein obstruc-
tion. Though the exact mechanism of PVS remains unclear, the histopathological changes
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related to development of PVS include intimal thickening at the surgical anastomosis sites
and extension of the anastomosis into the pulmonary veins of the lung parenchyma [81].
Surgery is considered the preferred approach in most cases of congenital or acquired PVS
with severe symptoms [82]. Specifically, (1) endarterectomy (resection of the stenotic ring
and anastomosis of the pulmonary vein directly to the left atrial endocardium) and (2) peri-
cardial patch venoplasty (resection of the stenotic tissue and anastomosis of the patch to
enlarge the stenotic segment) are the most common traditional techniques (Figure 3A).
Newer, suture-less marsupialization techniques providing direct adhesion of the peri-
cardium surrounding the affected pulmonary vein to the left atrium (thus avoiding direct
suturing of the cut end of the vessel) have been reported to help reduce the risk of restenosis
by preventing suture line deformation and reducing tissue growth stimulation [80]. Overall,
published surgical outcomes are moderate, with only half of cases being free of restenosis
or death after several years [83,84]. Furthermore, pneumonectomy may be indicated in
cases of severe or uncontrolled hemoptysis, and lung transplantation has been performed
in patients with severe pulmonary hypertension resulting from PVS [85].
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Figure 3. Treatment modalities for pulmonary vein stenosis/obstruction. The middle image is a clinical CT reconstruction
from a pediatric patient who had pulmonary vein obstruction. (A) Describes surgical treatment options for pulmonary
vein stenosis/obstruction and lists two potential tissue-engineering strategies for surgical management. Image is from
Shi et al., 2015 [83]. (B) Clinical CT image from the patient who underwent stent placements for treatment of pulmonary
vein obstruction. (C) Medications that have been studied to help in the treatment of pulmonary vein stenosis/obstruction.
In 2018, the ethics committee at Nationwide Children’s Hospital approved the percutaneous intervention of pulmonary
vein obstruction in human subjects. Informed consent was obtained from each patient, or from the parent/guardian if the
patient was a minor, before proceeding.

Another treatment modality for PVS is transcatheter balloon angioplasty and stent
implantation (Figure 3B). This approach is challenging as it can require high-pressure
balloons, and stents which can be eventually expanded to an adult size of >12 mm as the
patient grows. Results from these types of interventions are suboptimal, requiring frequent
re-dilation due to high rates of restenosis [86]. Early study of bare metal stents (BMS) in
patients with PVS and CHD showed that freedom from occlusion or severe in-stent stenosis
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at 1 year was 37%. In an effort to alleviate this complication, drug-eluting stents (DES)
have been increasingly utilized for the treatment of PVS [87]. In addition, DES have been
shown to be more effective in treating PVS than BMS. Stented pulmonary veins are at risk
for somatic overgrowth requiring reintervention which has led to further studies to avoid
this process [88].

Several groups are conducting translational research to solve the mechanism of PVS
in an effort to find new solutions using known drugs for this challenging disease process
(Figure 3C). Saiki et al. have created an animal model of postoperative PVS in pigs and con-
ducted several studies to elucidate the mechanism of intimal thickening in the pulmonary
veins of the lung parenchyma [89]. They confirmed the proliferation of secretory smooth
muscle-like cells as the main change in the pulmonary veins within the lung parenchyma.
Activation of the mTOR pathway was observed in the pulmonary veins within the lung
parenchyma, suggesting that this pathway may also contribute to proliferation. To further
investigate this, extravascular application of a sustained-release film of rapamycin (an
immunosuppressive agent) to the anastomosis demonstrated inhibition of intimal thick-
ening at the anastomosis and mTOR activity. This suggests a possible new therapeutic
strategy for PVS prevention. Zhu et al. have previously reported a piglet model of PVS
with progressive diffuse obstructive intimal hyperplasia in the upstream pulmonary veins,
recapitulating the clinical pathogenesis of PVS [90,91]. Specimens from the upstream
zonal pulmonary veins of the pig model and human PVS patients were associated with
robust expression of transforming growth factor-β (TGF-β). Systemic administration of
losartan, a known TGF-β inhibitor, ameliorated the pulmonary hypertension and intimal
hyperplasia associated with PVS. This indicates the medication’s potential usefulness as a
prophylactic treatment for patients at high risk of developing PVS after pulmonary vein
surgery. Similarly, Rehman et al. reported a study of vinblastine and methotrexate as thera-
pies for infants and children with progressive multivessel PVS, targeting the presence of
myo-fibroblasts within the lesion [92]. Quinonenz et al. also mentioned the effectiveness of
chemotherapeutic agents that target neointimal proliferation being used to treat PVS [93,94].
A prospective, open-label clinical study of the use of bevacizumab and imatinib has shown
an overall improvement in disease progression and patient survival in patients with multi-
vessel PVS [95]. Taken together, these findings suggest that the prognosis of pulmonary
vein stenosis may be improved by controlling excessive intimal thickening associated with
post-anastomotic inflammation and rapid somatic growth in children.

Replacing materials such as conventional stents, patches, and suture with bioab-
sorbable materials would be very beneficial in preventing PVS. For example, the current
generation of bioabsorbable drug-eluting platforms have been evaluated in coronary artery
disease and have shown strong results. In the future, there may be a crossover to the
treatment of pediatric PVS. Bioabsorbable stents are designed to support the body conduit
only during its healing process, the mass and strength of the stent decreases with time, and
the mechanical load is gradually transferred to the surrounding tissue. The bioabsorbable
stent also allows for longer term delivery of drugs from the internal reservoir to the conduit
wall, eliminating the need for a second surgery to remove the device [96]. The development
of bioabsorbable suture may also inhibit intimal thickening of the anastomosis, similar to
stents. Padmakumar has developed a biodegradable, drug-releasing suture that prevents
intimal thickening [97].

Since bioabsorbable materials such as patches are associated with excessive inflamma-
tion and material thickening during the process of new tissue formation [85], the inhibition
of intimal thickening by the addition of biological inhibitors may also play a significant role
in resolving this phenomenon. We have created a vascular patch with sustained release of
rapamycin and are currently testing its efficacy in a sheep model. The patch is still the first
choice for neonatal TAPVC repair, and we hope that the development of this research will
change the prognosis of pediatric patients.
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5. Tissue-Engineered Vascular Graft

Modified Fontan surgery for the treatment of single ventricle anomalies is still pal-
liative and not curative [98]. Commonly cited complications associated with the use of
synthetic conduits in extracardiac total cavopulmonary connection include thromboem-
bolic events and stenosis development [3,4,99,100]. Traditionally, surgeons have used
various materials and techniques such as Dacron, ePTFE, homografts, autologous peri-
cardium, and heterologous pericardium for extracardiac Fontan surgery. Many studies
have reported strong mid-term results up to 10 years using some of these extracardiac
Fontan conduits [101,102]. However, since there is no long-term follow-up of these ma-
terials nor precise data on how many patients end up with revision surgery, etc., there
are high expectations for tissue-engineered grafts to fill the void left from the previously
listed materials.

Tissue-engineered vascular grafts (TEVGs) able to mimic native tissue and grow with
a patient have been highly studied for more than a decade now and have been extensively
reviewed over that period as well. Figure 4 highlights the growth potential of TEVGs as it
presents unpublished data from the original Shinoka et al., 2005 study that shows the same
patient’s pulmonary artery, graft and IVC measurements at 1 year (Figure 4A), 8 years
(Figure 4B), and 11 years old (Figure 4C) [103]. More recently, Bockeria et al. in Switzerland
has provided human data on their clinical experience with a new bioresorbable vascular
graft based on electrospun polycaprolactone (PCL) in the Fontan circulation [104]. Inter-
estingly, histology at 1-year post-implant from an ovine model showed that a significant
amount of polymeric material still remained in the vascular tissue, leaving the less-than-
ideal possibility that a long-term foreign body reaction (similar to that of Gore-Tex) from a
slowly degrading material may occur.

In collaboration with a Japanese textile company, our group has created a scaffold by
inserting a sponge layer made of PLCL into the PGA skeleton, producing a bioabsorbable
and biocompatible scaffold. Early clinical trials in human patients have shown no aneurysm
formation, graft rupture, graft infection, or calcification. Of note, 7 out of 25 patients
developed stenosis and underwent at least one balloon angioplasty, with none of the
patients requiring surgical revision or replacement of the graft [105,106]. Subsequently,
our design received FDA approval for implantation in four patients in the United States
with each showing gradual growth of the conduit without severe complications such as
death. Despite the clinical success, we again observed a high rate of graft stenosis in
the first 6 months. To elucidate the mechanism of this early stenosis, we developed a
computational model for our TEVG using a data-driven design (Figure 5). Our model
predicted the early stenosis as observed in clinical trials, but surprisingly it suggested
that the stenosis would spontaneously reverse though an inflammatory-driven, mechano-
mediated mechanism [107]. Further validation of this model occurred through implanting
TEVGs in a sheep inferior vena cava interposition graft model, which confirmed the
prediction that TEVG stenosis would resolve spontaneously [108]. These results suggested
that although the need for appropriate medical monitoring remains important, angioplasty
could have been safely avoided in patients with asymptomatic initial stenosis. Going one
step further, the simulations also predicted that the degree of reversible stenosis could
be mitigated through modification of the scaffold design to attenuate early inflammation,
suggesting a new paradigm for optimizing the next generation of TEVGs. Based on these
results, a new and improved second-generation graft has been created and FDA approval
obtained for a new single institute Phase 2 clinical trial.
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Figure 4. Three angiographic images in the same patient at different ages demonstrating growth
of TEVG. (A) 1 year old, (B) 8 years old, (C) 11 years old. Arrows denote extracardiac TCPC graft.
PA: Pulmonary artery; IVC: inferior vena cava. In 2001, the ethics committee at Tokyo Women’s
Medical University approved the implantation of TEVGs in human subjects (IRB#198). The following
inclusion criteria were used for patient screening elective surgery: age younger than 30 years, full
understanding of the procedure by the patient or family, and minimal extracardiac disease burden.
Informed consent was obtained from each patient, or from the parent/guardian if the patient was a
minor, before proceeding.

Despite the increasing success of this TEVG, there are still a few problems that have
yet to be addressed. In particular, there is the issue of the Fontan procedure itself and
its elimination of hypoxemia via the creation of a passive blood flow from the systemic
venous system to the pulmonary circulation. Patients live in a state of preload deprived
cardiac output due to these hemodynamic changes, resulting in increased systemic ve-
nous pressure. Increased venous pressure can lead to complications such as heart failure,
arrhythmias, protein losing gastroenteropathy, pulmonary arteriovenous fistulas, and cir-
rhosis [103]. These complications ultimately contribute to increased morbidity and reduced
long-term survival. Next-generation technology using “smart materials” that respond
to physical or chemical stimuli may prove essential in compensating for these abnormal
hemodynamics by creating grafts that can pulse or beat to assist with musculature and/or
vascular contraction. Through the attachment of cardiomyocyte-induced pluripotent stem
cells to the graft [109], or via liquid crystalline elastomers that create movement in response
to a chemical stimulus [110], contractile grafts able to contribute to the hemodynamic
improvement of Fontan patients are expected to appear in the future.
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Figure 5. TEVG stenosis spontaneously reverses in an ovine model [108]. (A) Serial angiographic
images of a representative ovine TEVG 1 week, 6 weeks, 6 months, and 1 year after implantation.
Anastomoses are identified with white arrowheads, and the TEVG is identified by a white dotted
outline. White arrow indicates direction of blood flow. (B) Image reconstructions of serial IVUS and
angiographic measurements of luminal area, wall thickness, and length of the TEVG, confirming the
development of stenosis at 6 weeks but spontaneous resolution by 6 months after implantation. White
arrow indicates direction of blood flow. When based on lamb data, the model simulations (solid
lines) for the midgraft. (C) Luminal diameter and (D) wall thickness fit well the hydraulic diameters
calculated from the IVUS measurements (symbols) over the 1-year study. Ovine IVUS measurements
are represented as means ± SD (n = 22 at 1 week, n = 22 at 6 weeks, n = 20 at 6 months, n = 15 at 1 year).
The Institutional Animal Care and Use Committee of Nationwide Children’s Hospital (Columbus,
OH, USA) reviewed and approved the protocol for the ovine study (AR13- 00079 approval date:
7 October 2020). Representatives of the animal care staff monitored all animals intraoperatively and
during their postoperative courses. Animal care was within the humane guidelines published by the
Public Health Service, National Institutes of Health (Bethesda, MD) in the care and use of laboratory
animals (2011), as well as within U.S. Department of Agriculture regulations set forth in the Animal
Welfare Act (Washington, DC, USA).

6. Conclusions

This review offers a unique and up-to-date interpretation of the real regenerative
medicine needs in the treatment of congenital heart disease by highlighting important
studies within 4 domains from a pediatric cardiovascular surgery perspective. Indeed,
there have been many advancements towards application of tissue engineering in the
field of pediatric cardiovascular surgery, thus it is important for future research studies to
continue to demonstrate the efficacy and safety of these materials prior to human trials.
This commonly occurs through the utilization of small and large animal models; however,
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these studies must do their best to utilize the 3 Rs of animal use (reduction, refinement,
and replacement) in order to protect the animals. In studying these materials, the goal
from a pediatric cardiovascular surgery perspective is to offer growth potential while being
resistant to the development of thrombosis, stenosis, calcification, and infection. At the
same time, the structure should have minimal to no effect on the cardiovascular system’s
hemodynamics. Although further mechanistic and preclinical work is required, there is
great promise in the use of bioabsorbable, synthetic materials as conduits, vascular patches,
pulmonary artery valves, and in the treatment of pulmonary vein stenosis.
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