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Abstract: Learning and environmental adaptation increase the likelihood of survival and improve
the quality of life. However, it is often difficult to judge optimal behaviors in real life due to highly
complex social dynamics and environment. Consequentially, many different brain regions and
neuronal circuits are involved in decision-making. Many neurobiological studies on decision-making
show that behaviors are chosen through coordination among multiple neural network systems, each
implementing a distinct set of computational algorithms. Although these processes are commonly
abnormal in neurological and psychiatric disorders, the underlying causes remain incompletely
elucidated. Machine learning approaches with multidimensional data sets have the potential to not
only pathologically redefine mental illnesses but also better improve therapeutic outcomes than
DSM/ICD diagnoses. Furthermore, measurable endophenotypes could allow for early disease
detection, prognosis, and optimal treatment regime for individuals. In this review, decision-making
in real life and psychiatric disorders and the applications of machine learning in brain imaging studies
on psychiatric disorders are summarized, and considerations for the future clinical translation are
outlined. This review also aims to introduce clinicians, scientists, and engineers to the opportunities
and challenges in bringing artificial intelligence into psychiatric practice.

Keywords: psychiatric disorder; machine learning; neural network; antipsychotics; schizophrenia;
bipolar disorder; depression; precision medicine; endophenotype; decision making

1. Introduction

Living organisms have self-sustaining properties that are absent in purely physical
systems. They acquire energy from food for sustenance, growth, and reproduction. An-
other self-sustaining ability of animals is the adaptive behavior. Behavioral strategies
that improve their ability to acquire energy and produce successful offspring to help each
species proliferating evolutionarily through the process of natural selection [1]. Three
essential principles for biological behaviors have been proposed as materiality (an embod-
ied brain embedded in the world), agency (action-perception closed loops and purpose),
and historicity (individuality and historical contingencies) [2]. The three principles are ar-
guably unique to life and imperative for neuroscience. We believe that these considerations
will shed light on our typical approaches to address not only the conundrum of animal
behaviors but also the nature of mental disorders.

The complexity of environment and social dynamics often make it difficult to identify
optimal behaviors in the real world. Decision-making in this process involves many differ-
ent brain areas and circuits that are exacerbated in numerous neurological and psychiatric
disorders [3]. Traditional approaches have dominated the studies on optimal behaviors.
Among these, a prescriptive approach addresses the question of what is the best choice for
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a given challenge. For instance, economists and game theorists describe how self-interested
rationales should behave individually or in a group [4,5]. However, the real behaviors
of animals and humans seldom follow the predictions of such prescriptive theories. In-
deed, prospect theory can predict the decision-making of animals as well as humans more
accurately than the prescriptive theories [6–8]. Likewise, humans often behave altruis-
tically and thus deviate from the predictions of the game theory [9,10]. Recently, these
traditional approaches have merged with neuroscientific theories, in which learning plays
a crucial role in choosing optimal behaviors and decisions. Particularly, reinforcement
learning theory presents a worthwhile framework to model how an individual’s behaviors
are tuned by experience [11,12]. Neuroscientists have begun to uncover numerous core
mechanisms in the brain responsible for various computational processes of learning and
decision-making. Their findings are now frequently featured in the literatures in many
disciplines, such as ethics [13], law [14], politics [15], marketing [16], and economic and
financial decisions [17,18].

A distinct set of computational algorithms evoked through coordination among myr-
iad brain systems are abnormal in many types of neurological and psychiatric disorders,
leading to aberrant and maladaptive behaviors [19–24]. Notwithstanding, psychiatric
status is still diagnosed and treated according to the experiential schemes based on symp-
tomatic phenotypes. The definitions of many mental disorders described in the DSM and
ICD manuals do not always match well with neuroscientific, psychopathological, and
genetic evidences [25,26]. Thus, there is a greater desire to redefine mental illness as a
discrete disease. To satisfy this aspect, the Research Domain Criteria (RDoC) initiative
has been launched to reconceptualize mental disorders as a dimensional approach that
incorporates many different levels of data from molecular factors to social determinants
and linked more precisely to interventions for a given individual [27–29]. This approach is
more likely to be compatible with the facts that psychiatric patients comprise of clusters
of psychopathological symptoms and that many symptoms are shared among different
mental disorders. Machine learning approaches are well suited to achieve this goal.

Machine learning approaches for psychiatry feature statistical learning functions from
multidimensional data sets to unveil general principles underlying a series of observa-
tions without definite guidance. Machine learning algorithms can be generally classified
into three categories, namely supervised, unsupervised, and reinforcement learning meth-
ods [30,31]. Supervised learning models, such as support vector machines (SVM) and
neural-network algorithms, are designed to predict a discrete outcome (e.g., healthy group
vs. psychiatric group), or continuous outcome (e.g., psychiatric severity degrees) from
the qualitative data on behaviors (e. g., questionnaire), genetics (e. g., single nucleotide
polymorphisms, gene expressions), or brain function (e. g., neural activity). Unsupervised
learning describes models to discover unknown statistical configurations across subjects
without reference to a specific outcome. Reinforcement learning investigates how actions
in one’s environment (such as treatment) change behaviors [31]. Among these algorithms,
supervised learning, especially SVM, is most widely used in psychiatry to classify indi-
viduals into groups within a statistical framework. This approach has already shown
promising results in neuroimaging-based psychosis prediction and treatment-response
estimation [32–34]. With increasing digitized phenotypic data, improved computing power,
and less expensive data storage, machine learning, as well as deep learning that is the
artificial neural network algorithms to learn complex representations of high-dimensional
data patterns such as images and language, would offer findings with important implica-
tions for the development of therapeutic interventions, leading to precision psychiatry and
stratified clinical trial designs.

A main purpose of this review is to exemplify the new insights provided by recent
applications of machine learning in neuroimaging and clinical studies on major psychiatric
disorders. To this end, decision-making in real life and mental illness is briefly described.
Next, our current knowledge of neuronal circuits or functional connectivity in major
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psychiatric disorders is summarized. This review also argues that machine learning is
predisposed to address many challenges in the era of precision psychiatry.

2. Decision-Making in Real Life and Psychiatric Disorders

The understanding of decision-making processes helps us develop machine learning
tools for precision psychiatry. Flawed decision-making has been commonly observed in
major psychiatric disorders, often causing poor real-life outcomes. In many cases, flawed
decision-making in mental illness results from abnormalities in fundamental neuropsycho-
logical processes, including impaired attention, reward processing, associative learning,
and working memory. For instance, defects in reward and avoidance learning are reported
in patients with depression. Aberrant hedonic capacity and cognitive impairment occur in
bipolar disorder and schizophrenia. Flawed decision-making can contribute to abnormal
behaviors such as nonadherence to medications or outpatient appointments, failing to
exercise, or poor diet. Downstream consequences of poor decisions can lead to worsening
of symptoms, reduced life satisfaction, impaired everyday functioning, relapse and rehos-
pitalization, poor physical health, and even more tragic outcomes such as accidental death,
homicide, or suicide [35].

Decision-making is a constant process in real life and takes place from when we wake
up until we go to bed. Its processes are largely divided into three steps: (1) identification
and depiction of all alternatives, (2) assessment of the consequences of each alternative, and
(3) a comparison of the accuracy and efficiency of each of these consequences [35]. Different
disciplines attempt to systematize the understanding of decision-making. For instance,
consumer decision-making has long been of interest to economists. Consumers are viewed
as rational decision-makers who are only concerned with self-interest. One of the most
prevalent consumer decision models is the Engel-Blackwell-Miniard Model (Figure 1) [36],
in which every conceptual step of decision-making is instrumental for developing machine
learning algorithms to implement customized advertising tactics [37]. The model has the
following decision processes: need recognition followed by a search of information, the
evaluation of alternatives, purchase, and finally, post purchase reflection. These decisions
can be influenced by two main factors, namely memories of previous experiences and
external variables in the form of either environmental influences or individual differences.
In other words, this model shows that various computational steps of decision-making can
be affected by the environment, individual factors, and memory. Similarly, the environment
and individual factors, including polygenic architecture and epigenetic risk elements,
underlie the manifestation of psychiatric disorders [38]. The pathophysiology of psychiatric
disorders is complex and not well understood. Thus, it will be interesting to illustrate
mental illness with common denominators across diagnostic boundaries. One common
element in severe mental illness is pervasive poor decision-making. Since innumerable
combinations of computational algorithms in the brain are evoked in a flexible manner
for optimal decision-making, it would be challenging to elucidate the nature of decision-
making impairments in different psychiatric disorders. Therefore, econometric models are
becoming valuable tools for computational psychiatry [26,39–42].
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Figure 1. Schematic illustration of the Consumer Decision Model. The Consumer Decision Model (also known as the
Engel-Blackwell-Miniard Model) that was originally developed by Engel, Kollat, and Blackwell is modified [36]. This model
comprises conceptual steps of decision making in the real world and thus could be extended to be applied for developing
precision medicine in psychiatry.

2.1. Schizophrenia

Schizophrenia is a severe psychiatric disorder that affects approximately 1% of the
population worldwide. It is characterized by positive symptoms (e.g., delusion, hallu-
cination, and thought disorder), negative symptoms (e.g., apathy, poor social function-
ing, and emotional blunting), cognitive deficits and other psychopathological symptoms
(e.g., psychomotor retardation, lack of insight, poor attention, and impulse control) [43].
These symptoms are likely linked not only to excessive dopaminergic transmissions in
the mesolimbic pathway but also to the dopamine release decline in the prefrontal cortex.
Although dysfunctions of N-methyl-D-aspartic acid (NMDA) receptor systems and weaker
prefrontal GABAergic actions are also implicated, the precise manner in which plural
neurotransmitter systems interact with one another in schizophrenia remains elusive [44].

Various types of cognitive functions are impaired in schizophrenia [45]. Altered
prefrontal functions might also be responsible for abnormalities in decision-making and
reinforcement learning observed in patients with schizophrenia [46]. For instance, during
economic decision-making challenges, schizophrenic patients incline to put less weight
on potential losses compared to the healthy subjects [47], and also show impairments
in feedback-based learning [48,49]. Consistent with these results, activity involved in
reward prediction error in striatum and the frontal cortex is attenuated in patients with
schizophrenia [50,51]. A pervasive clinical burden in schizophrenia is the high prevalence
of comorbidity with substance abuse disorders. Approximately half of patients with
schizophrenia exhibit a lifetime history of substance abuse disorders [52], and almost all of
them are smokers [53,54]. These unusual high rates of substance-use comorbidity may be
attributed to disrupted reward processing [55]. These global cognitive impairments are
translated in the devastating functional toll of this disorder.
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2.2. Bipolar Disorder

Bipolar disorder and schizophrenia share high levels of polygenic and pleiotropic
molecular architecture [38]. In accord with this, these two disorders share similar types of
impairments in cognitive domains including processing speed, attention, working memory,
and executive function, although bipolar disorder usually exhibits less severe deficits [56].
These cognitive deficits bring about a substantial clinical burden in up to 60% of patients
with bipolar disorder and can be observed not only in depressed, manic, and mixed
episodes but also in the euthymic state. These pervasive impairment in bipolar disorder
indicates that it may be a trait marker linked with genetic vulnerability [57]. In addition
to cognitive dysfunctions, emotion processing is severely altered in patients with bipolar
disorder. Upregulated processing of positive emotion regardless of the context is central to
the manic bipolar episode [58]. Theory of mind and emotion processing are significantly
disrupted in the euthymic bipolar state [59]. Thus, bipolar patients display defects in their
ability to understand other emotions and intentions, with a resultant impact on everyday
functioning. Moreover, euthymic bipolar patients show moderate to severe impairments
in a broad range of executive functions including mental manipulation, verbal learning,
abstraction, sustained attention, and response inhibition [60–64]. In addition to these
deficits, there seems to be specific decision-making biases in bipolar patients including
impulsivity and deficits in risk assessment and reward processing. The weights of these
aberrant decision-making are evident in depressed bipolar patients [35].

2.3. Depression and Anxiety Disorders

Depression and anxiety disorder are characterized by disturbances in mood and
emotion and feature poor concentration and negative mood states, such as sadness and
anger, with high levels of their comorbidities [65–67]. However, they have some important
differences. Anxiety is needed to improve individual’s readiness for impending danger,
whereas depression might prohibit previously unsuccessful actions and enhance more
reflective cognitive processes. Both depression and anxiety disorder often cause systematic
biases in decision-making [67,68]. Patients with anxiety disorders are hypersensitive to
threatening cues without apparent memory bias. In contrast, depressed patients show a
bias to memorize negative events and ruminate excessively [69].

The symptoms of these two mood disorders have been extensively investigated, and
some responsible brain regions have been identified. For instance, symptoms of depression
is associated with abnormalities in frontostriatal monoamines involved in reinforcement
learning [70]. Meanwhile, the brain regions responsible for anxiety disorders include the
amygdala, insula, and anterior cingulate cortex [71,72]. Interestingly, the default network
is overactive in patients with depression. The levels of excessive rumination and negative
self-referential memory in depressive states are likely to be correlated with the default
network function [73]. Indeed, deep brain stimulation in the subgenual cingulate cortex of
patients with major depressive disorder produces therapeutic effects [74].

Although the neurochemical mechanism of mood disorders remains unclear, much
attention has been paid to the role of changed serotonin metabolism [75]. For instance, it has
been hypothesized that future reward is discounted markedly in patients with depression
due to a low level of serotonin [76]. Serotonin has been proposed to be primarily involved
in the inhibition of thoughts and behaviors associated with aversive outcomes, including
the heuristic process of unpromising decision-making [77–79].



Biomedicines 2021, 9, 403 6 of 22

2.4. Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring early-
onset impairments in social cognition, poor communication abilities, restricted repetitive
and stereotyped behaviors, and narrow interests that hurt the individual’s ability to func-
tion properly in school, work, and other fields of life [80]. Particularly, patients with ASD
show impairments in their ability to make inferences about the intentions and beliefs of
others, namely, theory of mind [81,82]. Such impaired abilities might underlie differences
in socially interactive decision-making tasks between autistic patients and healthy subjects.
Autism is known as a “spectrum” disorder because there is a wide range of variations
in the type and severity of symptoms [83]. Under the DSM-5 criteria, patients with ASD
must display symptoms from early childhood, even if those symptoms are not recognized
later. They also may not be fully recognized until social demands surpass their capacity
to receive the diagnosis. The earliest symptoms include the lack of attention to faces [84],
imitative behaviors [85], and motor deficits [86].

In ASD, a variety of brain architectures are altered, ranging from the brain stem to
the cerebellum and cerebral cortex [87–90]. In particular, the connectivity deficit in the
parieto-frontal circuit involved in the mirror mechanism has been proposed to underlie
some cognitive aspects of ASD [91,92]. Several brain regions affected in ASD have also been
shown to be involved in decision-making. Neurobiological studies have revealed that ASD
has functional abnormalities in the amygdala, prefrontal cortex, superior temporal sulcus,
and fusiform gyrus whose brain regions are thought to constitute the “social brain” [93,94].
Especially, the amygdala, ventral striatum, and prefrontal cortex are implicated in decision-
making according to functional neuroimaging and lesion analyses [95–97].

3. Psychiatric Neural Networks

Brain imaging can give important insights into the underlying neural mechanisms of
psychiatric disorders. For instance, the resting state functional magnetic resonance imaging
(rs-fMRI) analyses in humans have identified a large number of potentially important
abnormal functional connections that may underlie psychiatric manifestations [98–101].
Most of MRI-based neuroimaging biomarker studies have applied the machine learning
algorithm of SVM to achieve high accuracy with many features and shown that different
diagnoses are related to unique patterns of functional connections [102–105].

Functional connectivity (FC) shows how brain regions are temporally coordinated and
is becoming more and more used to investigate neuronal network architecture. Resting
state FC has been linked with a diverse range of individual traits [106–110]. For instance,
whole-brain FC models have revealed that patterns of functional connections across brain
regions can predict cognitive abilities not only in healthy individuals but also in individuals
with mental illness [111–115]. Intriguingly, a prediction model of working memory on letter
three-back task performance using whole-brain FC shows the order of working memory
impairment for major psychiatric disorders (i.e., schizophrenia > major depressive disorder
> obsessive-compulsive disorder > ASD) [115]. This suggests that specific cognitive pro-
cesses may be represented by the corresponding FC patterns among distributed neuronal
networks. Whole-brain FC-based models also have been shown to predict psychiatric dis-
ease, including schizophrenia, ASD, and major depressive disorder, as well as individual
clinical severities [105,116,117], suggesting that FC alteration is quantitatively associated
with psychiatric abnormality.
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MRI-based delineation of psychiatric disorders has been explored as a complement to
the current symptom-based diagnoses. While a number of studies have identified numer-
ous disease-specific functional and structural aberrations, none of them are practically used
as a credible biomarker mostly because of the lack of its generalizability. Namely, the relia-
bility of the developed classifiers has not been demonstrated with regard to the variety of
population demographics and data attributes [118–124]. These elements include different
ethnicities, sex, ages, medication profiles, scanner specifications, imaging parameters, and
instructions to participants, all of which are known to affect the MRI results [108,125–129].
Thus, little attention has been paid to the neuroimaging-based biomarkers in neuropsychia-
try until recently [130,131].

To identify a generalizable classifier, we must surmount the following two major
difficulties: over-fitting and nuisance variables (NVs). First, certain situations in data and
model properties bring about over-fitting problems where the model fitting to the training
data can be so precise that the associated errors become artificially smaller compared with
the inherent data variance [130]. Second, any machine learning algorithms used for classi-
fication is doomed to employ NVs specific to a given sample data and to falsely choose
neuroimaging features that are associated with the NVs. NVs include site-specific condi-
tions in image acquisition and properties in the sample population such as demographic
attributes, treatment status, and illness severity. To abrogate the over-fitting and the effects
of NVs, advanced approaches with a unique combination of machine learning algorithms
across multiple imaging sites have recently identified generalizable FC classifiers correlated
with specific psychiatric disorders as described below.

3.1. Functional Connectivity as ASD Classifier

The rs-fMRI studies have revealed a reliable neuroimaging-based classifier for ASD
that shows the spatial distribution of the 16 FCs identified from the data at multiple sites
in Japan by the machine-learning algorithm (Figure 2 and Table 1) [105]. They also have
demonstrated that both a sophisticated machine learning algorithm and a large training
data set are prerequisite for identifying a reliable and generalizable classifier. Concerning
the hemispheric distribution of the 16 FC related-brain regions, there are significantly more
regions in the right hemisphere than in the left. Concerning the functional network at-
tributes of the 32 brain regions constituting these 16 FCs, the 13 brain regions participate in
the cingulo-opercular network [105,108,132]. This ASD classifier achieves a diagnosis pre-
diction accuracy of 85% for each individual with balanced sensitivity and specificity of 80%
and 89%, respectively [105]. Intriguingly, the ASD classifier is intermediately generalizable
to schizophrenia, whereas it hardly exhibits any generalizability to attention-deficit hyper-
activity disorder (ADHD) and major depressive disorder (MDD). This suggests that ASD
shares more intrinsic neural networks with schizophrenia than with ADHD or MDD [105].
In concordance with this, genome-level studies have found that ASD shares a high degree
of polygenic risk with schizophrenia, but not with ADHD or MDD [133,134]. Accumulating
evidence by clinical and behavioral studies also has shown a close relationship between
ASD and schizophrenia [135,136].
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Figure 2. The specific FCs identified for ASD/SSD/MDD classifiers. The 70 terminal regions connected by the FCs are
numbered as described in Table 1. The state of FC exhibiting the smaller (more negative) and greater (more positive)
correlations than the healthy control is termed under- and over-connectivity, respectively. Specific FCs identified for (a)
ASD [105], (b) SSD [116], and (c) MDD classifiers [117], are illustrated. These three classifiers are summarized in (d), where
they did not overlap.

Table 1. The identified terminal regions in ASD/SSD/MDD classifiers. The terminal regions identified for ASD/SSD/MDD
classifiers are numbered. See Figure 2.

No Anatomical Name No Anatomical Name

1 anterior lateral fissure 36 posterior sub-central ramus of the lateral fissure

2 anterior ramus of the lateral fissure 37 calloso-marginal posterior fissure

3 diagonal ramus of the lateral fissure 38 collateral fissure

4 anterior sub-central ramus of the
lateral fissure 39 intraparietal sulcus

5 calloso-marginal anterior fissure 40 secondary intermediate ramus of the
intraparietal sulcus
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Table 1. Cont.

No Anatomical Name No Anatomical Name

6 calcarine fissure 41 insula

7 superior postcentral intraparietal
superior sulcus 42 paracentral lobule central sulcus

8 primary intermediate ramus of the
intraparietal sulcus 43 central sylvian sulcus

9 parieto-occipital fissure 44 cuneal sulcus

10 lobe occipital 45 anterior interior frontal sulcus

11 central sulcus 46 intermediate frontal sulcus

12 subcallosal sulcus 47 median frontal sulcus

13 inferior frontal sulcus 48 polar frontal sulcus

14 internal frontal sulcus 49 sulcus of the supra-marginal gyrus

15 marginal frontal sulcus 50 posterior intra-lingual sulcus

16 orbital frontal sulcus 51 internal occipito-temporal lateral sulcus

17 superior frontal sulcus 52 posterior occipito-temporal lateral sulcus

18 anterior intralingual sulcus 53 olfactory sulcus

19 anterior occipito-temporal lateral sulcus 54 internal parietal sulcus

20 median occipito-temporal lateral sulcus 55 transverse precentral sulcus

21 occipito-polar sulcus 56 intermediate precentral sulcus

22 orbital sulcus 57 median precentral sulcus

23 superior parietal sulcus 58 superior postcentral sulcus

24 interior precentral sulcus 59 rhinal sulcus

25 marginal precentral sulcus 60 posterior inferior temporal sulcus

26 superior precentral sulcus 61 superior temporal sulcus

27 inferior rostral sulcus 62 superior terminal ascending branch of the superior
temporal sulcus

28 anterior inferior temporal sulcus 63 sub-parietal sulcus

29 polar temporal sulcus 64 Thalamus

30 anterior terminal ascending branch of the
superior temporal sulcus 65 Amygdala

31 paracentral sulcus 66 Accumbens

32 ventricle 67 Caudate

33 posterior lateral fissure 68 Pallidum

34 ascending ramus of the lateral fissure 69 Putamen

35 retro central transverse ramus of the
lateral fissure 70 Vermis
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3.2. Functional Connectivity as Schizophrenia Spectrum Disorder Classifier

The rs-fMRI studies also have identified a reliable classifier for schizophrenia spec-
trum disorder (SSD) using L1-norm regularized sparse canonical correlation analyses and
sparse logistic regression (SLR) [137,138]. The machine-learning algorithms automatically
selected SSD-specific FCs from about 10,000 FCs of whole-brain rs-fMRI [116]. The SSD
classifier shows the distinctive 16 FCs that are distributed as interhemispheric (44%), left
intra-hemispheric (25%), and right intra-hemispheric connections (31%) (Figure 2 and
Table 1) [116]. The classifier differentiates SSD from healthy controls with an accuracy of
76% [116]. The 16 FCs as SSD classifier are different from the 16 FCs as ASD classifier
mentioned above (Figure 2d). The weighted linear summation (WLS) of the selected FCs
predicts the categorical diagnostic label for each individual. The values of WLS provide
a degree of classification certainty, which can be construed as neural classification cer-
tainty for the disorders. Then, each biological dimension can be determined based on the
WLS [116]. On the basis of the SSD and ASD biological dimensions, the WLS distributions
of individuals with SSD and ASD display overlapping but asymmetrical patterns in the two
biological dimensions. This suggests that the neuronal network of SSD is characterized by
a larger diversity and that it partially shares spatial distributions with the smaller network
of ASD. In accord with this, the recent genetic findings demonstrate that ASD shares a
significant degree of polygenic architecture with SSD [133], and that common genetic
variants explain nearly 50% of total liability to ASD and approximately 30% of total liability
to SSD [139,140].

3.3. Functional Connectivity as MDD Classifier

According to the meta-analysis published results of MRI-based biomarkers in depres-
sive disorders [141], approximately 30% of them harnessed rs-fMRI as modality, of which
only one-third employed FCs among region of interests (ROIs). As most of those studies
have applied the SVM algorithm to achieve high diagnostic accuracy, it remains unknown
that which are the most critical FCs in depression across the whole brain. Approximately
half of depressed patients are inadequately treated by available interventions, as there are
no reliable guidelines to match patients to optimal treatments. This mainly derives from
the heterogeneity of depression [142]. Thus, it would be important to pay attention to a
specific subtype of depression in order to identify target FCs.

Melancholic major depressive disorder is a subtype of MDD that is considered to be
the most drug-responsive [143–146]. The sparse machine learning algorithm identified
melancholic MDD-specific 10 FCs from rs-fMRI data of 130 individuals including melan-
cholic MDD patients and healthy controls (Figure 2 and Table 1) [117]. Importantly, this
biomarker does not generalize to non-melancholic and treatment-resistant MDD, ASD, and
schizophrenia. Out of 10 FCs, the top two FCs as the melancholic MDD-specific classifier
includes the FCs (SN-ECN connectivity) with left inferior frontal gyrus (IFG) in executive
control network (ECN) and right dorsomedial prefrontal cortex (DMPFC)/frontal eye field
(FEF)/supplementary motor area (SMA) in salience network (SN), and the FCs (DMN-
ECN connectivity) with left dorsolateral prefrontal cortex (DLPFC)/inferior frontal gyrus
(IFG) in executive control network (ECN) and posterior cingulate cortex (PCC)/Precuneus
in default mode network (DMN). These brain regions are tightly linked with cognitive
flexibility, such as reversal learning tasks, in which patients with depression often have
functional impairments [147,148]. In SN-ECN connectivity, activation in IFG and DMPFC
leads to empathic accuracy with compassion meditation training [149], and adolescents
with depression show reduced connectivity between DMPFC and IFG during cognitive
reappraisal of emotional images [150]. Priming transcranial magnetic stimulation (TMS)
studies demonstrate that the DMPFC play an essential role in forming social-relevant
impression, such as processing verbal emotional stimuli and face-adjective pair [151,152].
In DMN-ECN connectivity, bilateral DLPFC/IFG relate to conflict processing and atten-
tion control [153], and PCC/Precuneus are linked with anhedonic anxious arousal and
depression [154]. In addition to the accumulated evidence that links the connections of
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DLPFC to depression [110,155–161], there is another evidence that supports therapeutic
relevance. For instance, DLPFC is a well-known target for repetitive TMS (rTMS) therapy
for treatment-resistant depression [162–164]. Besides, neurofeedback therapy targeting
DMN-ECN connectivity has been reported to be effective [165–167], suggesting that DLPFC
plays a causal role in manifestation of depression.

4. Machine Learning Approach to Predict Therapeutic Outcomes in
Psychiatric Disorders

Psychiatric research and treatment are based on a diagnostic system exclusively depen-
dent on human experiential terms rather than on objective biological markers. Psychiatrists
use a prolonged trial-and-error process to identify the optimal medications for each pa-
tient [168,169]. Although the standard diagnostic classifications have been constructed
from expert opinions and defined in DSM and ICD, they are not sufficient for judging an
appropriate treatment for each patient. Modern drug treatment choices are only effective
in roughly half of the patients [25,141]. This is because of the heterogeneity of psychiatric
disorders and the unknown precise mechanism of action of antipsychotic drugs. The
psychiatrist’s choice from the best-possible treatment options does not rely on what has
caused or maintained the mental illness of a given patient. While current clinical research
goal is mainly to discover novel treatment options that benefit some majority of a certain
patient group, an attractive alternative research goal is to improve the choice from existing
treatment options by predicting their effectiveness of individual patients. In fact, a specific
drug or psychotherapy treatment has been successful in a particular clinical group and
unsuccessful in another patient group labeled even with the identical diagnosis [170]. This
approach might help reduce the time spent in trial-and error treatment and accompanying
personal and economic burden.

Machine learning methods can offer a set of tools that are especially suited to achieve
clinical predictions at the individual level. Predictive models are conceptually positioned
between genetic vulnerability as an individual’s architecture and clinical symptoms as
an individual’s behavioral manifestations. The exploitation of various endophenotypes
has the translational potential to refine individual clinical management by early diagnosis,
disease stratification, optimal choices of drug treatments and dosages, and prognosis for
psychiatric care (Figure 3) [99]. Machine learning models have a long-standing focus on
prediction as a metric of statistical quality and are able to predict an outcome from single
observation, such as behavioral, neural, or genetic measurements of individuals [141,171].
In contrast, traditional statistical methods, such as Student’s t test, are often used in medical
research to explain variance of group effects.

An observed impact evaluated to be statistically significant by a p value does not
always produce a high prediction accuracy in new and independent data. A classical
null-hypothesis method takes a one-step procedure. Namely, a given dataset is routinely
used to yield a p value or an effect size in a single process. This result itself cannot be used
to judge other data in later steps. In a two-step procedure of machine learning models, a
learning algorithm is fitted on a larger amount of available data (training data) and the
resulting “trained” learning model is evaluated by application to new data (test data). In a
first step, structured knowledge in openly available or hospital-provided data sets can be
extracted. In a second step, the resulting trained algorithms can be applied with little effort
in a large number of individuals in diverse mental health contexts.
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Figure 3. Challenges for precision medicine in psychiatry by artificial intelligence. (a) Traditional psychiatric research
investigates a given patient group by comparison against the healthy group, possibly creating artificial dichotomies. (b) Each
psychiatric disorder has various types of the symptoms with their varying degrees. (c) The interplay between altered gene
expression and neural circuit, and environment such as stress, may elicit psychiatric manifestations. Instead of relying on
diagnostic category, a given patient can be classified based on biological and pathological properties (i.e. endophenotypes).
(d) Artificial intelligence such as machine learning can be extended to compare observations from numerous groups in the
same statistical estimation. (e) Machine learning algorithms, such as SVM, can automatically extract unknown patterns of
variations in individuals simultaneously from heterogenous data labeled with traditional diagnosis. Predictive models
could improve patient care by early detection, treatment choice, and prognosis.

4.1. Prediction of Therapeutic Outcomes in Schizophrenia

Despite the established pharmacological treatments for schizophrenia, up to 50% of
the patients develop poor disease outcomes [172,173]. Stratifying treatment through the
early recognition of outcome indicators might alleviate unfavorable disease progression
in these patients [174,175]. Group-level studies have discovered many potential outcome
predictors, such as disease course variables, treatment adherence and response, comorbidity,
and cognitive impairments [176]. It remains unclear which of these characteristics should
be combined for prediction, whether these group-level findings can be used to generate
significant predictions for individual patients, or how accurate these predictions might
be at another sites. Furthermore, the outcome can be not merely defined by symptomatic
remission, but has to include various concepts that focus on restored functioning to widely
cover treatment effects [177].

Large multisite treatment databases containing prospective phenotypic data of psychi-
atric disorders, such as the European First Episode Schizophrenia Trial (EUFEST), enable
us to develop powerful machine learning methods to reliably predict treatment outcomes.
By using data from EUFEST, the pooled non-linear SVMs predicted patients’ 4-week and
52-week outcomes with cross-validated balanced accuracies (BAC) of 75.0% and 73.8%,
respectively [34]. This non-linear SVMs surpassed linear SVMs, univariate and multivariate
logistic regression, and decision tree ensembles. Intriguingly, the most useful predictors
of poor 4-week and 52-week treatment outcome were unemployment, daytime activities,
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psychological distress, educational difficulties, low educational status of the patient and
patient’s mother. In patients with good 52-week prognosis, haloperidol was linked with
shorter adherence compared with ziprasidone, amisulpride, and olanzapine due to insuffi-
cient response and side effects. Olanzapine and amisulpride were associated with higher
global assessment of functioning (GAF) scores than quetiapine [34].

Recent machine learning methods have revealed that functional striatal abnormalities
(FSA) are significantly correlated with a spectrum of severity across psychiatric disorders,
where dysfunction is most severe in schizophrenia, milder in bipolar disorder, and in-
distinguishable from individuals in obsessive-compulsive disorder (OCD), depression,
and ADHD [178]. FSA scores provide a personalized index of striatal dysfunction and
distinguish individuals with schizophrenia from healthy controls with an accuracy ex-
ceeding 80% (sensitivity, 79.3%; specificity, 81.5%). FSA scores are also significantly linked
with antipsychotic treatment response. Interestingly, clozapine, the only drug approved
for treatment-resistant schizophrenia, is not associated with FSA scores. This may sug-
gest that FSA can characterize treatment response across different types of antipsychotics,
preferentially the types with lower Meltzer’s ratio (5-HT2A/D2 affinity ratio) [178].

4.2. Prediction of Therapeutic Outcomes in Depression

Antidepressant medication is the first option for the treatment of MDD. However,
remission rates are approximately 30% to 55% after first or second medication trials and
then drop with subsequent medication trials [168]. Thus, the patients experience trial and
error periods with different treatments before finding the optimal one. One solution is to
identify the biological predictors of response to an antidepressant. This may expedite the
treatment and lead to faster relief of the symptoms.

Electroencephalography (EEG) and fMRI have been used for predicting treatment
response in MDD patients [179–181]. Since EEG is relatively more available and cost-
effective than fMRI, it is a good option for developing such treatment biomarkers. The
accumulated findings suggest that EEG-derived features before treatment may predict
clinical response to antidepressants [182,183]. Several EEG studies have shown that char-
acteristics of resting-state neural oscillations, especially in alpha and theta bands, may
predict the drug response [184–188]. For instance, posterior alpha activity is associated
with response to amitriptyline and fluoxetine [189,190]; theta activity with imipramine,
venlafaxine, and several selective serotonin reuptake inhibitors (SSRI) [188,191,192]; in-
terhemispheric delta asymmetry with fluoxetine [193]; delta activity with paroxetine and
imipramine [188,194]; delta activity in rostral anterior cingulate cortex with nortriptyline,
venlafaxine, and fluoxetine [195,196]; nonlinear features of EEG signals with clomipramine,
escitalopram, citalopram, bupropion, and mirtazapine [197–199].

Although resting-state EEG can be useful for predicting drug response, the afore-
mentioned studies fail to address several questions that are important for translating this
finding into a clinical tool. First, they use small and homogeneous sample sets. Second,
most of them report low prediction accuracy. Third, their prediction accuracies are biased
upward by the lack of an independent testing set. One of the most powerful methods for
addressing these questions is applying machine learning techniques. Zhdanov et al. used a
SVM classifier to predict EEG-derived escitalopram treatment outcome using data from a
large, Canada-wide, multicenter study, the first Canadian Biomarker Integration Network
in Depression (CAN-BIND-1) study [200]. This classifier identified responders with an
estimated balanced accuracy of 79.2% (sensitivity, 67.3%; specificity, 91.0%) when using
EEG data recorded before the treatment, whereas additional EEG data after first 2 weeks of
treatment increased the accuracy to 82.4% (sensitivity, 79.2%; specificity, 85.5%). In rTMS,
Hasanzadeh et al. used k-nearest neighbors (KNN) classifier to predict its EEG-derived
treatment response in MDD [201]. Using beta bands, this classifier discriminated between
responders and non-responders to rTMS treatment with the accuracy of 91.3% (sensitivity,
91.3%; specificity, 91.3%) when resting-state EEG data from 46 MDD patients were used.
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5. Conclusions

The infusion of economic and machine learning framework into neuroscience has
rapidly advanced our understanding of neural mechanisms for various cognitive pro-
cesses including decision-making. Because flawed decision-making is the most prominent
symptoms in numerous psychiatric disorders, it is essential for neuroscientists and psychi-
atrists to combine their expertise to develop more effective treatment. They also need to
redefine mental illness to meet biological and pathological evidence as seen in the RDoC
initiative, while DSM/ICD manuals often reflect public values, such as the definition of
sexual identity disorders and the advent of internet gaming disorder [202,203], and have
been frequently revised so far. Since substantial progress in major mental illness research
has been made in understanding the molecular mechanisms through basic and transla-
tional approaches, including cell and animal models, those types of big data may also
be helpful for reinforcing weakness of RDoC [204]. Following the growing data richness
and changing research questions, machine learning or deep learning algorithms could
enable clinical translation of empirically trusted prediction for individual patients in a
fast, cost-effective, and practical manner. Such artificial intelligence algorithms may be
particularly tuned to precision psychiatry because they can directly translate large-scale
multidimensional data into clinical relevance. From a long-term and larger perspective, it
is particularly challenging to verbalize mechanistic hypotheses for mental disorders at the
abstraction level, ranging from molecular mechanisms to urbanization trends in society.
Individual consumer decision patterns would be useful for this purpose. Ultimately, we
may more effectively impact psychiatric disorders that arise from the interplay between
genetic vulnerability and life experience, both of which are unique to each individual.
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