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Abstract: Background: A new method was developed based on the relative ranking of gene expres-
sion level, overcoming the flaw of the batch effect, and having reliable results in various studies. In 
the current study, we defined the two methylation sites as a pair. The methylation level in a specific 
sample was subject to pairwise comparison to calculate a score for each CpGs-pair. The score was 
defined as a CpGs-pair score. If the first immune-related CpG value was higher than the second one 
in a specific CpGs-pair, the output score of this immune-related CpGs-pair was 1; otherwise, the 
output score was 0. This study aimed to construct a new classification of Kidney Clear Cell Carci-
noma (KIRC) based on DNA CpGs (methylation sites) pairs. Methods: In this study, the biomarkers 
of 28 kinds of immune infiltration cells and corresponding methylation sites were acquired. The 
methylation data were compared between KIRC and normal tissue samples, and differentially 
methylated sites (DMSs) were obtained. Then, DNA CpGs-pairs were obtained according to the 
pairs of DMSs. In total, 441 DNA CpGs-pairs were utilized to construct a classification using unsu-
pervised clustering analysis. We also analyzed the potential mechanism and therapy of different 
subtypes, and validated them in a testing set. Results: The classification of KIRC contained three 
subgroups. The clinicopathological features were different across three subgroups. The distribution 
of immune cells, immune checkpoints and immune-related mechanisms were significantly different 
across the three clusters. The mutation and copy number variation (CNV) were also different. The 
clinicopathological features and potential mechanism in the testing dataset were consistent with 
those in the training set. Conclusions: Our findings provide a new accurate and stable classification 
for developing personalized treatments for the new specific subtypes. 

Keywords: immune cell infiltration; CpGs (methylation sites) pair; kidney clear cell carcinoma; clas-
sification; subtype; mutation; copy number variation; tumor microenvironment; immune check-
points; immunotherapy; inflammation; endothelial cells; fibroblast; PD-L1 
 

1. Introduction 
Kidney clear cell carcinoma (KIRC) is the most prevalent, aggressive, and lethal type 

of kidney carcinoma [1–3]. Previous genomic studies of KIRC have displayed high molec-
ular heterogeneity, and further categorization of these malignancies is urgently required 
to improve diagnosis and treatment schemes [3–5]. Tumor-infiltrating lymphocytes are 
the most broadly studied populations of tumor-infiltrating immune cells (TIIC) that play 
a vital role in the prognosis of KIRC [6]. Infiltrating CD4+ T cells can mediate renal cell 
carcinoma cell proliferation by regulating the TGFβ1/YBX1/HIF2α signal [7].  

Recently, a study reported that diverse immunotherapy methods successfully 
treated a large number of fatal cancers [8]. The FDA has approved Nivolumab, a check-
point blocker for renal cell carcinoma cell treatment, improving treatment prospects [9]. 
The combination therapy with bevacizumab and atezolizumab has revealed beneficial 
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outcomes in the high PD-L1 expression population in a randomized trial [10]. A remark-
able difference in the response rates to immunotherapy across individuals is that not all 
immunotherapy can successfully treat patients [11], and not all patients responded to im-
munotherapy. 

The definition of batch effects is that non-biological factors in an experiment lead to 
changes in the data produced by the experiment. Because of laboratory conditions, rea-
gent lots, and personnel differences, batch effects can lead to erroneous biological conclu-
sions[12–15], and gene pairs can overcome the batch effects of various platforms [12–15]. 
Recently, a new method based on the relative ranking of gene expression levels was found 
to overcome the flaw of the batch effect, and yielded reliable results in several studies [14–
16]. 

In a previous study, lung adenocarcinoma was classified into seven subtypes based 
on immune-associated gene pairs [17]. By contrast, our study has some differences. The 
first difference is that our analysis was based on immune-related CpGs (methylation sites) 
pairs. The second difference is that we analyzed the classification of KIRC via multi-omics. 
In fact, the classification of CpGs-pair subtypes may help to enhance the optimal scheme 
of KIRC patients that are responsive to immunotherapy. Our previous study reported that 
this method was successful in classifying bladder cancer into three clusters based on im-
mune cell gene-associated CpG sites [18]. In the present study, we classified KIRC into 
three clusters based on the immune cell gene-associated CpGs-pair and analyzed the bio-
mechanism according to the partial methods in our previous study. In our study, we de-
fined the two methylation sites as a pair. The methylation level in a specific sample is 
subject to pairwise comparison to calculate a score for each CpGs-pair. The score was de-
fined as a CpGs-pair score. Then, we classified the KIRC into three subgroups based on 
the CpGs-pairs. 

2. Results 
2.1. Classification Based on CpGs-Pair 

We obtained 782 immune infiltration cell-related biomarkers from previous reports 
[19] and acquired 1138 corresponding immune cell biomarker-associated methylation 
sites. The false discovery rate (FDR) is used in multiple hypothesis testing to correct for 
multiple comparisons. FDR < 0.05 and |deltabeta value| > 0.2 were set as the parameters 
of infiltration. We identified 40 differentially methylated sites (DMSs) between 160 normal 
and 323 KIRC tissue samples with the Wilcoxon test (Figure 1A) in the training set. A total 
of 441 CpGs-pairs were obtained in the training set. The consensus clustering of 441 CpGs-
pairs was clearly divided into three subgroups, as shown in Figure 1B. Figure 1C shows 
three distinct clusters. Principal component analysis (PCA) proved that the consensus 
classification was accurate and stable (Figure 1D). Cluster 1 contained 125 samples; cluster 
2 contained 153 samples; and cluster 3 contained 45 samples. 

2.2. Survival Rates and Clinicopathologic Features of CpGs-Pair Subtypes of KIRC 
The Kaplan–Meier method was used to determine the overall survival (OS) curve of 

KIRC subgroups (Figure 2A). Cluster 2 had the best survival rate. Cluster 3 presented the 
poorest survival rate. Next, we compared survival rates between each pair of subgroups, 
and statistically different survival rates were only found between clusters 2 and 3 (Figure 
2A). However, several previous publications showed that a remarkable difference be-
tween each pair of clusters was not mandatory [20–23]. Moreover, later analysis also 
showed that the clinical significance and the immune-related bio-mechanism among the 
three subgroups were different. Thus, KIRC was classified into three clusters. 

In the present paper, the correlation between the main clinicopathological features 
and the subtypes is presented (Figure 2B–H). Excluding age, gender, and M (metastasis) 
status (p-value is 0.062), the three subgroups had significantly different clinicopathologi-
cal features. 
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Figure 1. (A) Differentially methylated sites (DMSs) between normal samples and bladder cancer samples. (B) The con-
sensus clustering of 441 CpGs-pairs was divided into three subgroups. (C) Heatmap of three clusters. (D) Principal com-
ponent analysis (PCA) validated the stability of the classification. 
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Figure 2. Cont. 
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Figure 2. Main clinicopathological significances are different among three subgroups. (A) Overall survival curve for each 
DNA CpGs-pair subtype. (B–H) Clinicopathological features (M (metastasis) status, N (nearby lymph nodes) status, T 
(tumor) status, grade, stage, gender, age) among each DNA CpGs-pair subtype. 
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2.3. Identifying Distinct Methylation and Gene Expression Levels of Each DNA CpGs-Pair 
Subtype 

We identified the DNA methylation levels (40 DMSs) among the three DNA CpGs-
pair subgroups and analyzed immune cell-associated gene-expression levels among those 
subgroups. The deferentially immune cell-associated methylation levels are presented, as 
shown in Figure 3A. Subgroups 1, 2, and 3 presented mid-range methylation, the highest 
methylation level, and the lowest methylation level, respectively. The three subgroups 
had significantly different DNA methylation levels (chi-square test, p-value < 0.001). Be-
cause we used the CpGs-pair scores to classify KIRC into three subgroups, and each sub-
type had half of methylated sites with higher methylation levels and half of methylated 
sites with lower methylation levels, the medium methylation levels among the three sub-
groups only had small disparities. We also found that the three subgroups had signifi-
cantly different gene expression levels (chi-square test, p-value < 0.001) (Figure 3B). 

 
 

A B 

Figure 3. Distinct DNA methylation and gene expression level of each subtype. (A) Methylation 
level of each subtype. (B) Gene level of each subtype. 

In a comparison of CpGs-pairs of one cluster with the other two clusters (clusters 1, 
2, and 3) (Wilcoxon test, FDR < 0.05, logFC > 0.2), a total of 148, 159, and 107 CpGs-pairs 
were significant CpGs-pair scores in subgroups 1, 2 and 3, respectively.  

In a comparison of the DNA methylation sites of one cluster with the other two clus-
ters (clusters 1, 2, and 3) (Wilcoxon test, FDR < 0.05), a total of 11, 17, and 6 DNA methyl-
ations had significantly higher methylation levels in clusters 1, 2, and 3, respectively.  

2.4. Immune-Associated Mechanism of Classification  
Immune infiltration was different among the three subgroups, as shown in Figure 

4A. Cluster 2 was associated with the lowest immune infiltration. However, cluster 3 had 
the highest immune infiltration. Furthermore, 28 types of immune cells were different 
among these subtypes, including 19 types of immune cells with remarkable differences 
(Figure 4B). Seven immune checkpoints presented remarkable differences among these 
DNA CpGs-pair subtypes (Figure 4E). 
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Figure 4. Immune status in different subgroups are different. (A) Immune infiltration level in different subgroups. (B). 
Immune infiltration cells in different subgroups. (C) Immune checkpoints in different subgroups. (D–G) Tumor microen-
vironment (TME). Three asterisks, two asterisks, and one asterisk represent a p-value less than 0.001, 0.01, and 0.05, re-
spectively. NS represents no significance. 
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2.5. Tumor Microenvironment (TME) 
A previous study introduced the idea that the TME includes stromal cells, immune 

cells, and tumor cells [24]. The relationship is negative between the tumor purity and the 
sum of the stromal score plus immune score [24]. Subgroup 2 showed the lowest immune 
score, and ESTIMATE score, but the highest level of tumor purity, as shown in Figure 4D–
G. However, subgroup 3 showed opposite results. The stromal score did not have a sig-
nificant difference among three subgroups. The reason is that the classification was based 
on immune cell gene-related CpGs-pair scores and was not based on stromal cells. 

2.6. Previous Classification 
A previous study reported that Clear Cell Renal Cell cCarcinoma was classified into 

two subtypes [25]: type A (ccA) and type B (ccB). Type A had a better survival rate than 
type B. The previous classification was based on single omics; however, our classification 
was based on multi-omics. In our study, we divided the KIRC into type A with 178 sam-
ples and type B with 93 samples. As shown in Figure 5, cluster 2 had the highest propor-
tion of ccA, whereas cluster 3 had the lowest proportion of ccA. Similarly, in our study, 
cluster 2 had the best survival rates, but cluster 3 had the poorest survival rates.  

 
Figure 5. Comparison with previous classification. 

2.7. Validation of Classification Model 
A support vector machine (SVM) was utilized to evaluate the performance of the 

classification of both sets and predict the DNA CpGs-pair subtypes in the testing set. We 
used the five-fold cross-validation method with the grid search method to obtain the op-
timum parameter (kernel: rbf; C: 10) and optimum SVM model (accuracy rate: 87.16%) 
based on 441 CpGs-pairs of the A group in the training set. Then, the optimum SVM model 
was tested in the B group and an accuracy rate of 97.53% was obtained. The samples in 
the testing set were classified into the corresponding subgroups based on the optimum 
SVM model. Cluster 1 contained 57 samples, cluster 2 contained 136 samples, and cluster 
3 contained 24 samples. The function of the heatmap (Figure 6A) was annotated based on 
the classification of 441 CpGs-pair and clinicopathological staging in the testing set. PCA 
confirmed that the consensus classification was also accurate and stable (Figure 6B). Meth-
ylation and gene expression levels among those subgroups had significant differences 
(Figure 6C,D). Subgroups 1, 2, and 3 also presented mid-range methylation, the highest 
methylation level, and the lowest methylation level, respectively. These results were con-
sistent with the training set, as shown in Figure 3. The relationship between methylation 
level and gene level was also positive. The Kaplan–Meier survival curve diagram revealed 
a prognosis of 3 subtypes (p = 7.158 × 10−04; Figure 6E). Based on our results, the prognosis 
of Clusters 3 was the worst, whereas that of Cluster 2 was the best. Figure 6F–L displays 
intracluster proportions of T status, N status, M status, grade, stage, age, and sex. Based 
on our results, excluding age and gender, the three subgroups had significantly different 
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clinicopathological features. These results were consistent with the training set. Immune 
infiltration was analyzed in the testing set. In Figure 7A,B, cluster 3 was associated with 
high immune infiltration. Cluster 2 was associated with low immune infiltration. CD80, 
CD86, CD276, CD274, CTLA4, PDCD1LG2, and PDCD1 had significant differences across 
three subgroups (Figure 7C and Figure 4C). Subgroup 2 showed the lowest immune score 
and ESTIMATE score, but the highest level of tumor purity, as shown in Figure 7D–G. 
However, subgroup 3 showed the opposite results. These results were also consistent with 
the training set (Figure 4D,E). 
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Figure 6. Classification according to CpGs-pair and clinicopathological features in the testing set is 
consistent with the training set and also different. (A) Heatmap of 441 CpGs-pairs. (B) PCA vali-
dated the stability of the classification. (C) Methylation level of each subtype. (D) Gene expression 
level of each subtype. (E) Overall survival curve for each DNA CpGs-pair subtype. (F–L) Clinico-
pathological features among each DNA CpGs-pair subtype. 
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Figure 7. Immune status among different subgroups in the testing set is consistent with the training set and also different. 
(A) Immune infiltration level. (B) Immune infiltration cells. (C) Immune checkpoints. (D–G) TME. Three asterisks, two 
asterisks, and one asterisk represent a p-value less than 0.001, 0.01, and 0.05, respectively. NS represents no significance. 

2.8. Genomic Alteration of Classification 
In each cluster, 30 genes with the most frequent mutation were obtained (Figure 8A–

C), and 74 genes were identified from the 90 genes in three clusters. This implied that 
there was less overlap in the two groups based on the highest frequency of gene mutation 
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(Figure 8A–C). Moreover, the somatic mutation of CD209 in subgroup 1 was remarkably 
more frequent than that in the other two subgroups. Similarly, the somatic mutation of 
ATP6V1A in cluster 3 was remarkably more frequent than that in the other two subtypes. 

Figure 8D shows 20 genes with significant copy number gains and 2 genes with sig-
nificant copy number losses in subgroup 1 compared with the other subgroups. Figure 8E 
shows 38 genes with significant copy number gains and 14 genes with significant copy 
number losses in subgroup 2 compared with the other subgroups. 
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Figure 8. Cont. 
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Figure 8. Genomic alteration of classification is different between each subtype. (A–C) 30 genes with the most frequent 
mutation in clusters 1, 2 and 3, respectively. (D,E) Copy number variation (CNV) in cluster 1 and cluster 2, respectively. 

3. Discussion 
As a potentially promising biomarker, DNA methylation plays a significant role in 

diagnosis, tumor classification, and adjuvant therapies, according to several studies [26–
28]. These studies indicate that DNA methylation plays a significant role in the modula-
tion of the molecular structure and the expression of genes, and is correlated with many 
biological processes [3]. To understand the biological mechanism, help inform diagnosis 
and therapy, and promote prognoses, it is important to classify subtypes accurately. Sev-
eral studies classified subtypes based on DNA methylation, including cervical tumors 
[29], glioblastomas [30], colon cancer [31], and bladder tumors [32]. According to the rel-
ative ranking of the gene expression level, a novel method was found to overcome the 
deficiency of the batch effect. It obtained reliable outcomes in several studies [14–16]. In a 
recent study, lung adenocarcinoma was classified into seven subtypes based on immune-
associated gene pairs [17]. However, to the best of our knowledge, no study has con-
structed a new classification of KIRC based on immune-related CpGs pair profiles, which 
is what we achieved in this study. 

In the present study, different CpGs-pair subtypes had different survival rates, as 
shown in Figures 2 and 6. This may be due to the following: (1) Aberrant DNA methyla-
tion may result in a poor survival rate in tumor patients [33]. Low methylation values of 
SAT-α and L1 are correlated with poorer survival rates in patients with advanced gastric 
tumors [34]. A genome-wide low DNA methylation level is correlated with a poorer sur-
vival rate in early-stage colorectal tumor [35]. (2) High levels of immunosuppressive mol-
ecules can be expressed by cancer cells in the microenvironment to inhibit T cell prolifer-
ation and function while promoting tumor development and progression [36,37]. Previ-
ous studies showed that macrophages at high density in the microenvironment are asso-
ciated with a poor survival rate in bladder cancer patients [38]. In our study, cluster 3 
showed the lowest methylation level and the highest immune status, whereas cluster 2 
showed the highest methylation level and the lowest immune infiltration. Thus, all previ-
ously mentioned factors might result in the poorest prognosis in cluster 3 and the best 
prognosis in cluster 2. 



Biomedicines 2021, 9, 215 17 of 23 
 

 

MMR (MLH1, PMS2, MSH2, or MSH6) deficiency, which is driven by inactivating 
methylation, was correlated with older age, advanced stage (II–IV), high grade of differ-
entiation (G3), and larger tumor size [39]. Similarly, Cluster 3 showed the lowest methyl-
ation and several of the worst clinicopathological parameters, including more stage II and 
IV, more M1, more T3 and T4, more G4, and more N1.  

A previous study showed that two-thirds of the relationship between gene expres-
sion and DNA methylation in lung cancer was negative [40]. Similarly, another previous 
study showed that the high methylation cluster had low immune infiltration in breast 
tumors and skin cutaneous melanomas [41]. All of the above studies demonstrated a neg-
ative relationship between immune infiltration and methylation level. In the current 
study, cluster 3 with the lowest methylation levels had the highest immune infiltration; 
however, cluster 2 had the opposite outcome (Figures 3 and 4). 

RASAL1 silencing promotes kidney fibroblast and fibrogenesis activation through 
hypermethylation [42]. In the current study, cluster 2 with the highest methylation had 
the highest density of fibroblasts, as shown in Figures 3 and 4. 

Endothelial cells promote cancer cell intravasation and metastasis [43]. Upregulation 
of Notch1 of endothelia is correlated with poor prognosis in human cancer tissues, such 
as melanoma, serous ovarian carcinoma, lung adenocarcinoma, breast carcinoma, and col-
orectal carcinoma [44]. In the current study, cluster 2, with the lowest endothelial density, 
had a good survival rate; however, cluster 3 had the opposite results (Figures 3 and 4). 

A previous study reported that the immunity-high subgroup had high Human Leu-
kocyte Antigen (HLA) expression, and the immunity-low subgroup had low HLA expres-
sion [45]. Similarly, the high immune cell infiltration subgroup also had high Type I IFN 
response, Type II IFN response, MIC class I, and APC [22,45–46]. The immune cell infil-
tration subgroup had opposite outcomes [22,45–46]. Our study found the same results as 
the above studies, as shown in Figure 5. 

The negative or positive relationship between methylation levels and checkpoint ex-
pression levels depended on the specific CpG sites [47]. Furthermore, several previous 
studies showed that high immune infiltration is associated with high LD-1 (PDCD1) ex-
pression [22,45–46]. Moreover, two articles reported that one of the subgroups with high 
immune infiltration had PDCD1, PDCD1LG2, CD86, CD80, and CTLA4 overexpression 
[22,46]. In the current study, cluster 3 with high immune infiltration had high expression 
of PDCD1, PDCD1LG2, CD86, CD80, and CTLA4.  

Triple-negative breast cancers with PD-L1 overexpression responded robustly to im-
mune checkpoint inhibitor therapy [48]. Similarly, higher PD-L1 expression was associ-
ated with better responses to Atezolizumab in the tumor-infiltrating leukocytes in bladder 
cancer [49]. In the present study, cluster 3 had PD-L1 overexpression and cluster 2 had the 
lowest PD-L1. This suggests that cluster 3 had a robust response to the PD-L1–Blocking 
Antibody; however, cluster 2 had the opposite response. 

Although the molecular mechanisms are not yet understood [50–55], chronic inflam-
mation plays a vital role in inducing abnormal methylation [50–55]. In our study, cluster 
2, with high methylation, had low inflammation, whereas cluster 3, with low methylation, 
had high inflammation. 

What is the correlation between mutation or CNV and DNA methylation? Previous 
research revealed that mutation might be promoted by hypomethylated blocks [56]. Mu-
tations to thymine are caused by the methylation of cytosine [57]. However, another study 
showed that somatic mutations and differential promoter methylation interact with one 
another in head and neck tumors [58]. The genes of mutations were diverse among the 
three CpGs-pair subgroups. There was less overlap between the three subtypes (Figure 
8A–C). Hypomethylated loci in tumors always coordinate with DNA break hotspots. 
Thus, this might result in copy number alteration [56]. As shown in Figure 8D,E, the genes 
with CNV were different between the two subgroups. This suggests that promising drug 
targets based on these CNV genes were different between the two subgroups. All of these 
genes with alteration show significant promise as drug targets. 
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Triple-negative breast cancers with PD-L1 overexpression responded robustly to im-
mune checkpoint inhibitor therapy [48]. Similarly, higher PD-L1 expression has been as-
sociated with better responses to Atezolizumab in the tumor-infiltrating leukocytes in 
bladder cancer [49]. In the present study, cluster 3 had PD-L1 overexpression and cluster 
2 had the lowest PD-L1. This suggests that cluster 3 had a robust response to the PD-L1–
Blocking Antibody; however, cluster 2 had the opposite response. CD80, CD86, CD276, 
CD274, CTLA4, and PDCD1LG2 had significant differences across three subgroups (Fig-
ure 7C and Figure 4C). These checkpoints are potential treatment targets.  

A total of 11, 17, and 6 DNA methylations had significantly higher methylation levels 
in clusters 1, 2, and 3, respectively. These methylation sites were detected to differentiate 
the subtypes and show significant promise as drug targets.  

In conclusion, the successful classification of KIRC into three clusters was stable and 
accurate. The distribution of immune cells, stromal score, immune score, ESTIMATE 
score, tumor purity, checkpoints, HLA, endothelial cells, and inflammation were signifi-
cantly different across the three clusters. The mutation and CNV were also different. The 
clinicopathological features and potential mechanism in the testing dataset were con-
sistent with those in the training set. The study of the intratumoral immune microenvi-
ronment may provide a new perspective for therapy in KIRC. 

4. Materials and Methods 
4.1. Data Pre-Processing and Immune Cell-Associated Gene Selection 

All of the methylation data were collected from the UCSC Cancer Browser (https://xe-
nabrowser.net/datapages/). In total, 483 KIRC methylation datapoints were generated 
from Illumina Human Methylation 450 BeadChip, and 414 KIRC methylation datapoints 
were generated from Illumina Human Methylation 27 BeadChip. RNA-sequencing data 
(FPKM) from 611 KIRC tissue samples. The gene was kept when the medium gene expres-
sion level was great than 0. The Masked Somatic Mutation data (MuTect2. Somatic. Maf), 
the CNV data set (Masked Copy Number Segment, affymetrix snp 6.0), and correspond-
ing clinical data were acquired from TCGA (https://cancergenome.nih. gov/). KIRC clini-
cal data with follow-up times of more than 30 days were included. Samples with unknown 
grades, stages, T and M status were deleted. Thus, the clinical data contained 483 samples. 
The CNV data contained 1122 samples. Because our data were required directly from 
UCSC and TCGA websites, we strictly observed the publishing guidelines provided by 
the public databases; no requirement was needed for ethical approval. 

The DNA methylation sites in promoter regions that were defined as from 0.5 kb 
downstream to 2 kb upstream of the transcription start sites strongly influenced gene ex-
pression [18,59,60]. We obtained 28 types of immune infiltration cell-associated genes 
from another study [19] (Table S1) and their corresponding methylation sites in promoter 
regions. Exclusions were based on the following probe criteria: (1) more than 70% of the 
sample data missed [61]; (2) probes on the X and Y chromosomes were removed [62]; (3) 
cross-reactive sites were excluded [62]. The k-nearest neighbors (KNN) imputation proce-
dure was utilized to impute the remaining sites [31].  

The samples were divided into a training set and a testing set. Data in the training 
set were from HumanMethylation 450 BeadChip, and data in the testing set were from 
HumanMethylation 27 BeadChip. The new method based on the relative ranking of the 
gene expression levels, overcame the flaw of batch effects, and had reliable results in sev-
eral studies [14–16]. In the current study, the batch effects were not removed in data pre-
processing. 

4.2. Process of CpGs-Pairs 
FDR less than 0.05 and a |deltabeta value| greater than 0.2 were set as the parameters 

of infiltration. DMSs were identified between KIRC and normal tissue samples with the 
Wilcoxon test. In previous research, the method used was as follows: if the first immune-
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related gene expression level was higher than the second immune-related gene expression 
level in a specific immune-related gene pair, the output score of this specific immune gene 
pair was 1; otherwise, the output score was 0 [14]. According to the above method, if the 
first immune-related CpG value was higher than the second in a specific CpGs-pair, the 
output score of this immune-related CpGs-pair was 1; otherwise, the output score was 0. 
If the score of an immune-related gene pair was 1 or 0 in more than 80% of the samples, 
then the immune-related gene pair was deleted from the training set [63].  

4.3. Unsupervised Hierarchical Clustering  
Subtypes of KIRC were identified using unsupervised hierarchical clustering (com-

plete linkage method, with cutree: (3) based on immune-related CpGs-pair scores with the 
“sparcl” package in R software obtained from a website (https://CRAN.R-pro-
ject.org/package=sparcl). The Kaplan–Meier method was used to obtain the overall sur-
vival curve of the KIRC subgroups with the “survival” R software package. The classifi-
cation was validated using PCA. The correlation between clinicopathology and the CpGs-
pair clusters was analyzed. The statistical method was chi-square tests, and a p-value of < 
0.05 was considered statistically significant. 

4.4. ssGSEA Based on Immune-Related Biomarker 
We obtained the immune infiltration cell gene sets and the other immune-related 

gene sets from previous studies [19,45,64–66] (Supplementary Materials: Tables S1 and 
S2) and quantified the above gene sets using the ssGSEA that utilized the “GSVA” and 
“GSEABase” R packages to rank the genes based on their absolute expression.  

The enrichment score was calculated based on the integrated differences between the 
empirical cumulative distribution functions for the ranks of the genes [67]. Immune cells 
and the other immune-related gene set-rich scores were compared across subsets. 
Moreover, immune checkpoints [22,46] were compared across the subsets. The statisti-
cal method used was the Kruskal-Wallis test, and a p-value of < 0.05 was considered sta-
tistically significant. 

4.5. TME 
We obtained the immune infiltration cell gene sets and the other immune-A previous 

finding showed that tumor stromal and immune cells in cancer tissues according to spe-
cific genes were estimated using an algorithm called the ESTIMATE algorithm [24], which 
was acquired online (https://sourceforge.net/ projects/estimateproject/) [68]. The level of 
tumor stroma was predicted using the stromal scores. Similarly, the level of immune cells 
in tumor tissue was predicted using immune scores. The relationship between the combi-
nation of two types of scores and tumor purity was negative [68,69]. The immune scores, 
stromal scores, ESTIMATE scores, and tumor purity were compared across the sub-
groups.  

4.6. Validation of Classification Model 
The classification model was validated using PCA. Several previous studies reported 

that the samples in training set were added labels with unsupervised hierarchical cluster-
ing. Then, a support vector machine (SVM) or Bayesian network classifier was used to 
obtain the optimum classification model from the training set and predict subtypes in the 
testing set [20,46,70]. The training set was randomly divided into two groups (the samples 
in A group: the samples of B group was 3:1). We used the five-fold cross-validation 
method and the grid search Method to obtain the optimum parameter and optimum SVM 
model based on 441 CpGs-pairs of the A group in the training set with Python software. 
Then, the optimum SVM model was tested in B group. Next, the samples in the testing set 
were divided into the corresponding subgroups based on the optimum classification 
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model. The OS curve was constructed. The relationship between the biological character-
istics of clusters and clinical information was shown via a bar plot. Immune infiltration 
and immune checkpoints were also analyzed in the testing set. 

4.7. Genomic Alteration of Classification 
The immune cell biomarker-associated mutation data (Table S1) were analyzed and 

visualized with the ‘maftools’ software package [71]. In a comparison of mutation data of 
one cluster with the other two clusters (clusters one, two, and three), the statistical method 
used was the chi-square test, and a p-value of < 0.05 was considered statistically signifi-
cant. Subsequently, we analyzed CNV data (Table S1) that were associated with the im-
mune cell gene. The genomic identification of significant targets in a cancer (GISTIC) al-
gorithm was utilized to identify the CNV genes [72,73]. The values 0.2 and −0.2 were used 
as the parameter thresholds for genomic gains and losses, respectively. Copy number al-
teration data in one group were compared with those in other two groups. A p-value of < 
0.05 was considered statistically significant.  

Supplementary Materials: The following are available online at www.mdpi.com/2227-
9059/9/2/215/s1. 
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