Supplementary Information

Pursuing orally bioavailable hepcidin analogues via cyclic N-methylated mini-hepcidins

Daniela Goncalves Monteiro¹, Johannes W. A. van Dijk¹, Randy Aliyanto¹, Eileen Fung², Elizabeta Nemeth², Tomas Ganz², K. Johan Rosengren¹, Richard J. Clark^{1*}

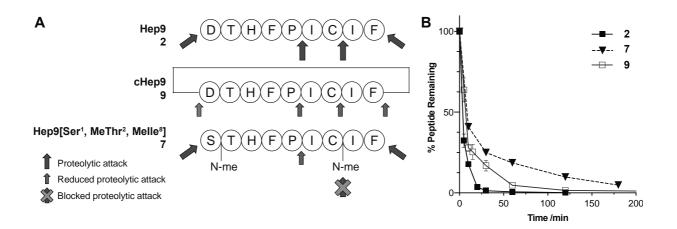
¹School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, University of Queensland, Chancellors Pl, Brisbane, QLD 4072, Australia
²David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
*Corresponding author. Richard J. Clark

Tel.: +61 7 3365 1527

E-mail address: richard.clark@uq.edu.au

#	Peptide	Sequence ¹	Calc. [M+H] ⁺	Obs. [M+H]⁺	Yield ²
1	Hepcidin	DTHFPICIFCCGCCHRSKCGM CCKT	2789.42	[M+3H ⁺] 930.5	5%
2	Нер9	DTHFPICIF	1092.27	1092.5	20%
3	Hep9[Ser1]	STHFPICIF	1064.26	1064.6	5-10%
4	Hep9[Melle ⁶ , Melle ⁸]	D T H F P [<i>N</i> -Me I] C [<i>N</i> -Me I] F	1120.32	1120.4	5%
5	Hep9[Ser ¹ , MeThr ² , Melle ⁶]	S [N-Me T] H F P [N-Me I] C I F	1092.31	1092.6	< 5%
6	Hep9[Ser ¹ , MeThr ² , Melle ⁸]	S [N-Me T] H F P I C [N-Me I] F	1092.31	1092.8	< 5%
7	Hep9[Ser ¹ , MeThr ² , Melle ⁶ , Melle ⁸]	S [N-Me T] H F P [N-Me I] C [N-Me I] F	1106.34	1106.5	< 3%
8	сНер9	c(DTHFPICIF)	1074.26	1074.6	10%
9	cHep9[Ser ¹]	c(STHFPICIF)	1046.24	1046.7	5%
10	cHep9-Gly₄	c(D T H F P I C I F G G G G)	1302.46	1302.8	5%
11	cHep9[MePhe ⁴ , MePhe ⁹]	c(D T H [<i>N</i> -Me F] P I C I [<i>N</i> -Me F])	1102.31	1102.6	5%
12	cHep9[Melle ⁶ , Melle ⁸]	c(D T H F P [<i>N</i> -Me I] C [<i>N</i> -Me I] F)	1102.31	1102.6	< 5%
13	cHep9[Ser ¹ , MeThr ² , Melle ⁸]	c(S [<i>N</i> -Me T] H F P I C [<i>N</i> -Me I] F)	1074.30	1074.6	< 3%
14	Hep9[MeThr ² , MeCys ⁷]	D [<i>N</i> -Me T] H F P I [<i>N</i> -Me C] I F	1120.32	1120.8	Could not purify
15	Hep9[MeThr ² , Melle ⁶ , MeCys ⁷]	D [N-Me T] H F P [N-Me I] [N-Me C] I F	1134.35	-	Could not synthesise
16	Hep9[MeThr ² , MeCys ⁷ , Melle ⁸]	D [N-Me T] H F P I [N-Me C] [N-Me I] F	1134.35	-	Could not purify
17	Hep9[Ser ¹ , MeThr ² , MeCys ⁷]	S [N-Me T] H F P I [N-Me C] I F	1092.31	-	Could not synthesise
18	cHep9[MeThr ² , MeCys ⁷]	D [N-Me T] H F P I [N-Me C] I F	1102.31	1102.7	Could not purify
19	cHep9[MeThr ² , Melle ⁶ , MeCys ⁷]	D [N-Me T] H F P [N-Me I] [N-Me C] I F	1116.34	-	Could not synthesise

Table S1. Library	of mini-hepcidin	analogues th	hat could not be tested.


20	cHep9[MeThr ² , MeCys ⁷ , Melle ⁸]	D [<i>N</i> -Me T] H F P I [<i>N</i> -Me C] [<i>N</i> -Me I] F	1116.34	1116.5	Could not purify
21	cHep9[Ser ¹ , MeThr ² , Melle ⁶]	S [<i>N</i> -Me T] H F P [<i>N</i> -Me I] C I F	1074.30	1074.6	Could not purify
22	cHep9[Ser ¹ , MeThr ² , Melle ⁶ , Melle ⁸]	S [<i>N</i> -Me T] H F P [<i>N</i> -Me I] C [<i>N</i> -Me I] F	1088.33	1088.6	Could not purify
23	cHep9[Ser ¹ , MeThr ² , MeCys ⁷]	S [<i>N</i> -Me T] H F P I [<i>N</i> -Me C] I F	1074.30	-	Could not synthesise

¹"c" corresponds to cyclic peptides and "*N*-Me" corresponds to *N*-methylated. ²% Yield was calculated relative to crude product following HPLC

purification.

#	Compound	Obs. [M+xH⁺]	MRM transitions	Retention time (min)
-	Atenolol	267.1	225.1 190.1 145.2	1.19
-	Methoxyverapamil	485.4	333.4 165.2 150.1	6.79
2	Нер 9	1092.7	501.1 354.2 336.0	6.54
4	Hep9[Melle ⁶ , Melle ⁸]	1120.7	372.4 245.2 217.5	6.48
6	Hep9[Ser ¹ , MeThr ² , Melle ⁸]	1092.0	314.4 285.5 203.3	6.48
8	cHep9	1074.7	314.2 216.9 183.2	6.96
12	cHep9[Melle ⁶ , Melle ⁸]	1102.9	294.4 217.1 156.2	7.15
13	cHep9[Ser ¹ , MeThr ² , Melle ⁸]	1074.5	314.3 216.8 209.1	6.98

Table S2. Liquid chromatography mass spectrometry (LC-MS) specifications for multiple reaction monitoring (MRM) protocols.

Figure S1. Effect of macrocyclisation and *N*-methylation on the stability of selected minihepcidin derivatives. **A**) Illustration of sites most susceptible to enzymatic attack in minihepcidin derivatives. **B**) Serum stability analysis of selected minihepcidins. Human male serum was centrifuged at 20,000 g for 10 minutes and the clear part of the supernatant was then diluted to 25% (v/v) with Milli-Q[®] water and incubated at 37°C for 15 minutes. Each peptide sample was dissolved in triplicate at a final concentration of 20 μ M in pre-incubated 25% serum, or Milli-Q[®] water as a control. Aliquots of 100 μ L were removed at different time points and quenched with 100 μ L of 15% trichloroacetic acid (TCA), followed by incubation on ice for 30 min and centrifugation at 14,000 g for 5 minutes. Supernatant was then removed and transferred into vials for liquid chromatography mass spectrometry (LC-MS) analysis (50 μ L injection and multiple reaction monitoring (MRM) protocol). Error bars indicate SEM, n=3. Comparison between Hep9, **2**, Hep9[Ser¹, MeThr², MeIle⁸], **7**, and cHep9, **9**.