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Abstract: Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy
can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photo-
sensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating
heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical
to randomized controlled clinical trials. However, there are still hurdles to overcome before entering
clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially
in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of
PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed
the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few
clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies
have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue
penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome
these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential
for broader clinical practice.

Keywords: photosensitizers; phototherapy; photodynamic therapy; photothermal therapy; non-
oncologic applications

1. Introduction

Phototherapy is the use of light to treat disease. Although sunlight was used to treat
disease (Heliotherapy) from BC 1400s, phototherapy′s scientific documentation could
be found at the end of the 19th century [1]. In 1893, Niels Finsen, a dermatologist in
Denmark, treated lupus vulgaris by filtered sunlight [2], for which he obtained Finsen the
Nobel Prize in 1903. For the past several decades, phototherapy has been widely applied
to various clinical diseases with nanomedicine′s advancement, such as new generation
photosensitizers (PSs) [3,4].

The current phototherapy with exogenous PSs can be broadly classified into photody-
namic therapy (PDT) and photothermal therapy (PTT) [5–7]. In PDT, PSs generate cytotoxic
chemical agents under photoactivation by light. On the other hand, PSs can produce
overheating under light irradiation in PTT. The PTT agents are employed to achieve the
selective heating of the target tissue. As a result of both phototherapies, the activated PSs
promote apoptotic and necrotic cell death in the target lesion via distinct mechanisms [8,9].

Biomedicines 2021, 9, 113. https://doi.org/10.3390/biomedicines9020113 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-6810-1727
https://orcid.org/0000-0002-3326-6927
https://doi.org/10.3390/biomedicines9020113
https://doi.org/10.3390/biomedicines9020113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9020113
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/2227-9059/9/2/113?type=check_update&version=3


Biomedicines 2021, 9, 113 2 of 27

PDT was used to localize lesions and assess therapeutic effects with hematopor-
phyrin derivatives in the 1960s [10,11]. After the first clinical approval of porfimer sodium
(Photofrin; Concordia Laboratories Inc, St Michael, Barbados) in 1993, PDT has become
the most site-specific remedy applicable to the treatment of oncological disease. The PSs
have several shortcomings that present challenges to their wide applications. For example,
highly conjugated organic PSs, including porphyrin and chlorin derivatives, are difficult to
dissolve and present serious aggregation tendencies leading to unfavorable bioavailability
and biodistribution [12]. The lack of selectivity for lesion sites can lead to off-target side
effects, such as hepatic spots and lytic necrosis. Moreover, uncontrollable photoactivity
and slow clearance could trigger post-treatment hazards [13].

PTT has recently emerged as an important and efficient strategy for cancer treatment
with its short treatment time of a few minutes and reduced patient pain [14]. Most PTT
strategies depend on constructing nanomaterials utilizing enhanced permeability and
retention effects and conjugation with cell-specific target ligands [15,16]. However, the
current targeting ability of the injected reagent to reach the lesion site is relatively low [17].
In addition, most PS for PTT has a relatively low photothermal conversion efficiency and
required high power of light irradiation for therapy [18].

Recent emerging nanotechnology enables advanced PSs for PDT and PTT to enhance
therapeutic performance with reduced adverse effects. However, most PDT and PTT with
the state-of-the-art PSs have been applied to oncology to eliminate tumor cells [7,19,20].
On the other hand, phototherapy for non-oncologic applications has less appeared in
both preclinical and clinical fields. Relatively small numbers of traditional PSs have been
applied to phototherapy as a treatment option for non-cancerous lesions. In this Review,
we focus on the non-oncological applications of nanomedicine-based phototherapy. We
provide the mechanisms of PDT and PTT, recent PSs with nanocarriers in phototherapy,
and a comprehensive overview of clinical trials and preclinical studies using advanced
nanomaterials in various non-oncologic diseases.

2. Mechanisms of Nanomedicine-Based Phototherapy

Phototherapy-based nanomedicine can be broadly classified into PDT and PTT. In the
section, we present the mechanism of phototherapy how to cause selective damage to the
target cells with PSs. In addition, we describe nanocarriers which can be conjugated with
PSs to enhance phototherapy performance.

2.1. Mechanism of Photodynamic Therapy (PDT)

PDT is phototherapy to kill target cells involving light and photosensitizing chemical
agents. PDT involves three principle components: (1) PS, a substance, which induces
a chemical alteration in the photochemical process, (2) light, and (3) oxygen [21–23]. A
PS, administered intravenously or topically, accumulates in the target tissue and remains
inactive until exposed to the photosensitizing light [8,22,24,25].

Following the absorption of light, the PS is transformed from its ground state (singlet
state, S0) into a relatively long-lived electronically excited state (triplet state, T1) via a
short-lived excited singlet state (S1). The lifetime of the triplet state enables the interaction
of the excited PS with the surrounding molecules. The activated PS can undergo two types
of reactions (Figure 1).

The type I mechanism involves the PSs reacting with biomolecules transferring an
electron to form a radical cation. These radicals react with oxygen resulting in reactive
oxygen species (ROS) [17–20]. The Type II mechanism is related to direct energy transfer
between the sensitizer′s excited triplet state and the ground state generating singlet oxygen
molecules [17,21]. Generally, the Type II process predominates during PDT such that
singlet oxygen is the primary cytotoxic agent responsible for biological effects. Also,
the Type I reaction is more important at low oxygen concentrations or in more polar
environments [22,23].
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PDT kills cells by necrosis or apoptosis. Necrotic cells swell and disrupt the plasma
membrane, resulting in the release of intracellular components that lead to the inflammatory
reaction. Apoptotic cells bleb and shrink with nuclear fragmentation via endonuclease
that degrades DNA into oligonucleosomal fragments [26]. PDT can affect discoloration,
skin infections, erythema, itching, or burning at target tissue and neighboring normal
tissue [27,28].
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Figure 1. Mechanism of action on target lesion in photodynamic therapy (PDT). There are two types
of reaction during PDT. Following absorption of light, a photosensitizer is transformed from the
ground state into an excited state. The activated sensitizer generates radicals (type-I reaction) or
oxidative substrates (type-II reaction) to damage the cell. Modified from Refs. [29–31].

2.1.1. Light Sources for Photodynamic Therapy

The categories of light sources for PDT include halogen lamps, light-emitting diodes
(LEDs), and lasers. The selection of light sources depends on the location of the target and
the type of PSs. LEDs have been widely applied with low cost and diverse illumination
spectra options due to broad illumination areas, especially for dermatological diseases with
5-aminolevulinic acid (5-ALA) sensitizers in clinics. However, LEDs have poor coupling
efficiency for optical fiber delivery or beam collimation to access distant lesions such as the
gastrointestinal tract with endoscopy. However, lasers can be used for both superficial and
deep tissue PDT applications. Lasers provide high optical power and monochromatic light
delivered to a distal irradiation location via optical fiber coupling.

The criteria for selecting an optimal light source are as follows: (1) absorption spectra
of reactive PSs, (2) the state of the disease (location and characteristics of the tissue), and
(3) cost. Proper dosimetry can affect the treatment efficiency of PDT [8,32]. Dosimetry is
classified by the method and requires (1) the total dose of the light source to be irradiated, (2)
the irradiation time of the light source, and (3) transmission of the light source [33–35]. To
improve the efficiency of PDT, it is necessary to accurately predict and verify all therapeutic
doses. The influence of the light source on the therapeutic dose is determined by the
wavelength and light power. The procedure is performed by calculating the final amount
of light according to the lesion’s condition to be treated.

2.1.2. The Role of Oxygen in Photodynamic Therapy

Singlet oxygen, the major reactive oxygen species, causes physicochemical damage to
intracellular organelles, such as mitochondria and membrane systems. This leads to target
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cell death from PDT. Also, only cells proximal to ROS production are directly affected by
PDT due to high reactivity and short half-life of ROS. As the half-life of singlet oxygen in
biological tissue is <0.04 µs with a limited radius effect (0.20 µm), ROS is limited to the
lesion tissue area, where the PS accumulates [22,36]. However, the necrosis of target tissue
by singlet oxygen has less effect in the 1-2-log reduction compared to the 6-8-log reduction
required for treatment due to uneven distribution of PSs and oxygen in the tissue, and the
short “free diffusion length” and photobleaching of ROS [37].

2.1.3. Photosensitizers Used in Photodynamic Therapy

PS is a light-sensitive material that is an essential factor for PDT. PSs can be used
because of their toxicity at a specific wavelength [38]. In PDT, PS is activated by absorbing
a light source’s specific wavelength irradiated for the destruction of target cells. It plays the
role of producing ROS to destroy target cells. PSs rarely exhibit cytotoxicity, even at high
concentrations unless exposed to light. However, PSs generate ROS and show toxicity only
when excited by light of a specific intrinsic wavelength. Additionally, the triggered ROS
induces cell necrosis or apoptosis, damages the extracellular matrix (ECM), and allows for
deeper penetration. PS can also be used as a tissue penetration enhancer [39].

Currently, in clinical trials, PS can be divided into porphyrin-based and non-porphyrin-
based types. Thus far, the most extensively studied PSs are porphyrins, which were
identified in the mid-nineteenth century. 5-Aminolevulinic acid (5-ALA) is a prodrug that
converts into protoporphyrin IX in tumor tissues. 5-ALA has been used extensively for
PDT in Europe, where it is readily available and inexpensive [24]. To perform PDT with
high therapeutic efficiency, the characteristics of PSs to consider are (1) little toxicity when
not exposed to light, (2) proper wavelength of NIR light to maximize tissue penetration of
light, (3) high singlet oxygen yield, (4) selective accumulation in the lesion [40].

2.2. Mechanism of Photothermal Therapy (PTT)

PTT is a treatment that selectively eliminates lesions through a photothermal trans-
ducer which converts light into heat [14,41,42].

2.2.1. Phototherapeutic Mechanism in Photothermal Therapy

PTT agents are active substances that generate heat in response to light exposure.
When the PTT agents absorb light, electrons transition occurs from the ground state to
the excited state (Figure 2). The electronic excitation energy subsequently relaxes through
nonradiative decay channels, leading to the overheating of the local environment around
light-absorbing materials [43]. This treatment is a highly effective and non-invasive, capable
of eliminating target lesions [44]. The generated heat may cause hazardous cellular effects
such as protein aggregation and denaturation, cytosol evaporation, and cell lysis for living
cells [45]. However, improper irradiation dosing may lead to side-effects, including tissue
burning, swelling, and inflammation [46].

Gold nanoparticles have attracted significant interest among PTT agents for nearly
20 years, owing to their unique physicochemical properties such as bacteriostatic, anticor-
rosive, and antioxidative characteristics [47]. Research on PTT began in the early 2000s; it
is now approved by the US FDA. Preclinical and clinical studies are being conducted on
products such as AuroLase [48]. The agents can be natural chromophores in the tissue or
externally added dye molecules such as indocyanine green (ICG) and porphyrins coordi-
nated with transition metals [49,50]. However, natural chromophores suffer from very low
light absorption.

2.2.2. Photosensitizers Used in Photothermal Therapy

The selection of photothermal agents is based on their strong absorption cross-sections
and highly efficient light-to-heat conversion. Recently, several nanoparticles were used for
photothermal treatment. Metal nanoparticles show four to five times more light absorption
than light-absorbing dyes. This strong absorption can be effectively treated using a laser
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with less energy. Therefore, it is possible to reduce the destruction of normal surrounding
tissues. Besides, metal nanoparticles have high stability against light, and there is no loss
of fluorescence. The gold nanoparticles in the body adhere to the target cells. When the
laser is irradiated into cells, heat is generated killing the target cells [51,52]. It can absorb
most of the energy in the visible and NIR regions by controlling the gold nanoparticle’s
size, shape, and maternity.

The gold nanospheres react to light in the visible region to create strong surface plas-
mon resonance (SPR). As the particle size increases, the wavelength of the reacting light
moves to the longer side and reacts to light in the NIR region [14,53]. In addition, when
gold nanoparticles change from a spherical to rod shape, SPR formed in the nanoparticle’s
longitudinal direction reacts to light in the NIR region. The reaction frequency of nanopar-
ticles can be controlled by changing their size and shape. Studies on gold nanoparticles
that can use NIR rays with high permeability in tissues are being conducted.
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2.3. Nanocarriers for Phototherapy

A nanocarrier is a nanomaterial with 1–100 nm to deliver substances such as photo-
sensitizers. The intrinsic characteristics of PSs with low water solubility and aggregating
tendency lowers the therapeutic efficacy of phototherapy [55]. In order to improve the
delivery of PSs, various kinds of nanocarriers have been developed. In this section, we
introduce the latest nanocarriers in phototherapy.

The colloidal carriers are frequently used in the drug delivery system by protecting the
drug against degradation while preventing the drug’s adverse side effects and toxicity [56].
The polymer-drug conjugates, polymeric micelles, and liposomes are examples of colloidal
carriers. The polymeric micelles consist of a hydrophilic stealth corona and a hydrophobic
core suitable for accommodating hydrophobic drugs [57]. It can protect the drug from
harsh biological environments, such as low pH and hydrolytic enzymes, significantly
improving the water solubility of the hydrophobic drug and facilitating drug targeting
by its small size [58]. Liu et al. studied PDT with polymeric micelles with the loading
of 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (mTHPC) [57]. The epidermal growth
factor receptor (EGFR)-targeted nanobody was added to the micelles to enhance targeting
function. In addition, the mTHPC-loaded micelle showed prolonged blood circulation
time than free mTHPC. Other photosensitizers, such as ICG and phthalocyanine, were
encapsulated into micelles and applied to PDT/PTT [59–61]. Therefore, polymeric micelles
are promising nanocarriers of PS in phototherapy.
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Liposomes are spherical-shaped, small artificial vesicles created from phospholipids
and cholesterol [62]. They have higher biocompatibility and biodegradability, trapping
the hydrophilic and lipophilic drugs with low toxicity [63]. Therefore, PS-encapsulated
liposomes were used in phototherapy [64,65]. A single PS or dual PSs, or other chemother-
apeutic drugs have been encapsulated within liposomes [66,67].

Polymeric nanocapsule (NC) consists of a liquid/solid core coated with a polymeric
shell [68]. NC can effectively increase drug-loading efficiency with reduced polymeric ma-
tric contents of the nanoparticles compared with polymeric nanospheres [69,70]. The
poly(lactic-co-glycolic acid) (PLGA) is the US Food and Drug Administration (FDA)-
approved polymers for human use [71]. PLGA has excellent biocompatibility and tunable
biodegradability. Therefore, PLGA-encapsulating PS has been used for phototherapy re-
cently [72,73]. Moreover, the polymeric NC has shown enhancement of therapeutic efficacy
by the co-encapsulating PS and chemotherapeutic agents [74].

Carbon-based materials are popular in chemistry and biomaterials due to their envi-
ronmental friendliness [75]. They possess high mechanical strength, good biocompatibility,
tunable cavity, controlled release manner, and low toxicity suitable for biomedical applica-
tions [76]. Besides, carbon-based material has photodynamic or photothermal properties
due to its distinctive structures [77]. Therefore, various carbon-based nanocarriers includ-
ing carbon nanosheet, carbon dot, graphene, carbon nanotube, and fullerenes, have shown
significant theranostic performances in phototherapy [78–81].

Metal-based nanomaterials have drawn great attention with their tunability in elec-
tronic and electro-optical properties and high luminescence [82]. The gold nanomaterials
can be synthesized with different forms and dimensions and easily functionalized by all
kinds of biomolecules with biocompatibility [83]. Therefore, gold-based nanomaterials
were conjugated with PSs or drugs for biomedical application [84–86]. On the other hand,
magnetic nanoparticles have been employed as carriers for drugs. Magnetic nanoparticles
such as magnetite (Fe3O4) can be delivered to the desired region under an external magnetic
field [87]. PS-conjugated magnetic nanoparticles have been used for PDT [88]. In partic-
ular, magnetic iron oxide nanoparticles (MIONs) possess several important properties,
including small size, biocompatibility, chemical compatibility for biomedical applications.
Due to the proton’s short transverse relaxation time (T2), MIONs can be used as an MRI
contrast agent [89]. A recent study with ICG-conjugated MIONs reported PTT efficacy
with multiple imaging modalities, including MR, ultrasound (US), and fluorescence [90].

The upconversion nanoparticles (UCNP) are another promising nanocarrier in the
phototherapy field. Especially, the rare-earth-doped near-infrared (NIR)-to-visible UCNP
has a promising potential [91]. Due to the two-photon or multiphoton mechanisms, UCNP
can convert long-wavelength radiation into shorter-wavelength emission [92]. The NIR
light irradiation enhanced tissue penetration than visible light with reduced phototoxicity
and background autofluorescence [93]. Therefore, UCNP-based PS was applied to the pho-
totherapy to increase therapeutic efficacy [94]. Another recent study used the conjugation
of UCNP with dual PSs (chlorin e6 and Rose Bengal) for greater ROS generation than single
PS-based PDT [95].

With nanotechnology, conjugated PDT or PTT agents showed enhanced therapeutic
efficacy with improved drug delivery to the target tissue. Also, nanocarrier-conjugated
PSs can be visualized with multiple imaging modalities, including fluorescence. The
recent representative examples of PS-conjugated nanocarriers for phototherapy is shown
in Table 1.
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Table 1. Recent photosensitizers loaded or conjugated with nanocarriers for application in phototherapy.

Types of
Nanocarriers

Therapeutic
Modalities PDT Agents PTT Agents Imaging

Modalities Year Ref.

Polymeric micelles PDT mTHPC FL 2020 [57]
Polymeric micelles PDT + PTT IGG IGG FL 2020 [59]
Polymeric micelles PDT Silicon phthalocyanine 2020 [60]

Polymeric micelles PDT + PTT ICG ICG FL, SPECT, PA,
thermal 2020 [61]

Liposomes PDT curcumin 2020 [64]
Liposomes PDT verteporfin FL 2020 [65]
Liposomes PDT + PTT Ce6 Cypate FL 2020 [66]
Liposomes PTT + Chemo ZnPc(PEG)4 FL 2020 [67]
Polymeric

nanocapsules PDT PpIX, hypericin FL 2018 [70]

Polymeric
nanocapsules PDT anthraquinone 2020 [72]

Polymeric
nanocapsules PDT Rose Bengal FL 2020 [73]

Polymeric
nanocapsules PDT + Chemo verteporfin FL 2019 [74]

Carbon nanosheet PDT + SDT Ce6 FL 2020 [78]
Carbon dot PDT + Chemo Ce6 FL 2020 [79]

Graphene oxide
nanosheet PDT Ce6 FL 2020 [80]

Gold nanocluster PDT + Chemo PpIX 2020 [84]
Gold nanorod PDT + PTT Ce6 FL 2020 [85]
Gold nanorod PDT TMPy FL 2020 [86]
Magnetic NP PDT MB FL 2020 [88]
Magnetic NP PTT ICG MR/US/FL 2020 [90]

Upconversion NP PDT pheophorbide FL 2020 [94]
Upconversion NP PDT Ce6/Rose Bengal FL 2020 [95]

Abbreviations: PDT: photodynamic therapy; PTT: photothermal therapy; FL: fluorescence; mTHPC: 5,10,15,20-tetrakis(m-
hydroxyphenyl)chlorin; ICG: indocyanine green; SPECT: single-photon emission computed tomography; PA: photoacoustic; Ce6: chlorin
e6; SDT: sonodynamic therapy; PpIX: protoporphyrin IX; NP: nanoparticle; MB: methylene blue; PpIX: protoporphyrin IX; TMPy:
5,10,15,20-tetrakis(1-methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate).

3. Non-Oncologic Applications of Photodynamic Therapy

While PDT has been used in many cancer treatments, here we describe PDT’s non-
oncologic applications focusing on clinical study. Some preclinical studies which can be
translatable to clinical practice are also included. We illustrate various non-cancerous
human diseases that can be treated with PDT in Figure 3.

3.1. Dermatologic Disease
3.1.1. Acne

Acne is a disease of pilosebaceous units [96]. This is a major dermatologic disorder
that occurs in adolescents and young adults. The factors affecting the pathophysiology
of acne vulgaris include follicular hyperkeratosis and occlusion [97], decreased linoleic
acid [98], androgen stimulation, bacterial, hereditary, and immunological factors [99]. PDT
with topical porphyrin precursors showed a good therapeutic response to acne. It promotes
antimicrobial and anti-inflammatory effects, inhibition and destruction of sebaceous glands,
and enhanced epidermal turnover promoting reduced follicular obstruction [100].

Yang et al. performed a prospective clinical trial with 75 patients with acne conglobata,
a severe form of cystic acne that is difficult to manage [101]. The 5-ALA PDT therapy group
showed significant improvement in acne lesions and reduced scar formation compared to
the control group. Although extensive studies support the PDT’s effect on acne, consensus
on the optimal therapeutic protocol is necessary [102].
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of photosensitizers.

3.1.2. Warts

Conventional therapeutic methods (e.g., glutaraldehyde and cryotherapy) for hand
and foot warts may cure up to 70% of warts in 3 months [103]. However, some recalcitrant
warts remain despite treatment. Stender et al. performed a randomized double-blind trial
with 5-ALA [104]. The PDT group showed a significant reduction in the wart area than the
placebo PDT group at 14 and 18 weeks after treatment.

Genital warts are related to human papillomavirus (HPV) infection and sexually
transmitted diseases. Liang et al. performed a randomized clinical trial in patients with
condylomata acuminata (CA) [105]. The 5-ALA PDT group showed a lower recurrence
rate than the CO2 laser therapy group (9.38% vs. 17.39%, p < 0.05). However, owing to
the absence of the optimized therapeutic protocol, PDT is less frequently used in clinics,
despite the positive results.

3.1.3. Photoaging

Aging affects all skin constituents, resulting in reduced generation of the dermal
matrix [106]. Nonablative treatment of photoaging has become more popular, owing to its
reduced side effects. PDT with a topical PS is applied for the same purpose [107]. Shin et al.
performed a randomized controlled split-face study on Asian skin [108]. They used 5-ALA
liposomal spray to treat periorbital wrinkles. The 5-ALA PDT group showed better results
in wrinkle reduction than long-pulsed Nd:YAG laser therapy. However, further clinical
trials with optimizing parameters and protocols are needed.
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3.1.4. Psoriasis

Psoriasis is a chronic inflammatory skin disease mediated by increased keratinocyte
proliferation and T-cell infiltration [109]. PDT with 5-ALA, methylene blue, verteporfin,
and hypericin were applied to treat psoriasis [110]. However, the clinical trial did not
show a significant treatment benefit compared to the control group [111]. Therefore, the
guidelines of care for the management and treatment of psoriasis with phototherapy
from the American Academy of Dermatology and the National Psoriasis Foundation do
not recommend topical 5-ALA PDT or methyl-aminolevulinate (MAL) PDT for localized
psoriasis [112].

3.1.5. Vascular Malformations

Vascular malformations are abnormalities of vasculatures, including venous, arteri-
ovenous, capillary, and lymphatics. Port-wine stain (PWS) is a congenital vasculopathy
owing to an abnormal capillary network in the upper dermis with a normal overlying epi-
dermis [113]. It becomes darker and thicker with age. Zhao et al. performed a randomized
controlled trial for PWS patients with hemoporfin [114]. The hemoporfin (5 mg/kg) was
transfused to the patients at a constant rate over 20 min. The target site was irradiated
with a 532 nm continuous laser for 20 min with a power density of 80–100 mW/cm2. The
therapeutic efficacy was evaluated eight weeks after PDT. The PDT group showed a higher
improvement rate than the placebo group (89.7% vs. 24.5%, p < 0.0001).

Jerjes et al. performed a clinical trial for patients with vascular tumors (hemangioma)
or vascular malformation [115]. The mTHPC was used as a PS. mTHPC (0.15 mg/kg)
was administered intravenously to the patients 96 h before treatment. The light was
delivered by a needle-type optical fiber into the interstitium under ultrasound guidance
to treat deep-seated malformation. Among the treated patients, 22 of 43 showed a good
therapeutic response by clinical assessment after PDT. Although PDT was not superior to
other treatment modalities to manage vascular malformations, additional advantages of the
PDT were demonstrated including less invasiveness, repeatability, and low residual toxicity.

3.1.6. Cutaneous Leishmaniasis

Cutaneous leishmaniasis (CL) is a parasitic disease of the skin. It is caused by female
sandflies infected by Leishmania species [116]. The goal of treating CL is the eradication
of amastigotes and reduction of lesion size with minimal scarring [117]. Although the
paromycin ointment was suggested as the first-line treatment, the optimal therapeutic
regimen has not been established. Therefore, several studies reported the use of PDT
as a treatment option for CL [118]. A placebo-controlled, randomized clinical trial was
undergone to treat CL [119]. In the PDT group, the lesion was irradiated 4 h after the
application of the 5-ALA cream. The PDT group showed a higher rate of improvement
over a paromycin ointment group and the placebo group (93.5% vs. 41.2% and 13.3%,
respectively, p < 0.001). Also, all lesions that underwent PDT showed a parasitological cure.
Therefore, PDT with topical PS could be an alternative therapeutic modality in CL patients.

3.1.7. Onychomycosis

Onychomycosis is a fungal infection that causes discoloration, thickening, and sep-
aration from the nail bed [120]. PDT has become popular based on successful in vitro
studies [121]. Sotiriou et al. underwent a single-center clinical trial in 30 toenail onychomy-
cosis patients [122]. 5-ALA was topically applied to the nail bed and PDT was done 3 times
every other week. After one year of PDT therapy, 13 of 30 (43.3%) patients showed cure and
the cure rate fell to 36% at 18 months. Gilaberte et al. performed a randomized controlled
clinical trial with a PS, methy aminolevulinate (MAL) [123]. The MAL-PDT group did
not show significant differences with the placebo PDT group. In the ancillary analysis,
onychomycosis without dystrophy showed a better clinical response and microbial cure
rate than the dystrophy group in MAL-PDT. Therefore, the use of PDT for onychomycosis
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is recommended in cases where conventional therapy fails or when patients cannot endure
adverse effects of standard drug [102].

3.1.8. Hirsutism

Hirsutism is excessive hair growth in women in places usually associated with
androgen-dependent areas of the body, including the face, chest, abdomen, lower back,
upper arms, and thighs [124]. Generally, it is managed by the mechanical removal of
excess hairs, suppressing ovarian androgen production, and anti-androgen medication.
ALA-based PDT showed therapeutic efficacy in patients with hirsutism [125]. Comacci et al.
applied PDT to patients with hirsutism to remove excess hairs [126]. After 5-ALA was
topically applied to the lesion, the patients showed a 75% hair reduction in 12 months
after PDT. PDT was found more effective for actively growing phased (anagen) hairs.
The cytotoxic effect in hair bulge and papilla with local inflammation was proposed as a
potential mechanism of the PDT-induced epilation [126].

3.1.9. Keloid

The development of keloids and hypertrophic scars is related to impaired fibroblastic
proliferation and collagen deposition after trauma, inflammation, surgery, or burns [127,128].
They can occur in genetically susceptible individuals [129]. Keloid removal by surgical
excision alone leads high recurrence rates of 45–100% [130]. Two clinical PDT case reports
used MAL-based PDT as an alternative treatment [131,132]. After PDT, the keloid area
was significantly softened and reduced in volume. Although the actual mechanism was
not well known, the PDT cytotoxicity damaged target tissue resulting in necrosis and
apoptosis, microcirculation arrest, immune response induction, and inflammation [132].
With further study by optimizing therapeutic protocols, PDT could be a potentially effective
keloid therapy.

3.1.10. Alopecia Areata

Alopecia areata (AA) is a complex genetic, immune-mediated disease that affects hair
follicles and results in nonscarring hair loss [133]. Several clinical studies have attempted
PDT to treat AA and made controversial results. Linares-González et al. performed 5-ALA-
based PDT on the refractory form of AA patients [134]. After the monthly session of PDT
for 6 months, a regrowth of scalp hair was observed and there were no relapse 4 months
after the end of treatment. However, another previous case report failed to show significant
improvement in the PDT group in AA patients [135]. Giorgio et al. showed an additional
therapeutic benefit of PDT when combined with the roller therapy [136]. Therefore, PDT
may provide benefit to AA which does not improve with conventional treatment.

3.2. Ophthalmologic Disease
3.2.1. Central Serous Chorioretinopathy

Central serous chorioretinopathy (CSC) is characterized by a localized, serous de-
tachment of the neurosensory retina in the macular region, and occasionally associated
with detachment of the retinal pigment epithelium [137]. Although the exact mechanism
of PDT on CSC is not well-known, PDT may decrease choroidal hyperpermeability by
inducing choriocapillaris damage and vascular remodeling [138]. Van Dijk et al. performed
a multicenter randomized controlled trial with verteporfin [139]. The PDT-treated group
showed a significantly higher proportion of complete subretinal fluid resolution than the
high-density subthreshold micropulse laser treatment group (67.2% vs. 28.8%, p < 0.001).
In addition, visual acuity and retinal sensitivity were improved in the PDT-treated group.

3.2.2. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a chronic structural change in the mac-
ular area under multifactorial interaction of metabolism, functions, genetics, and the
environment [140]. The most common cause of vision loss is the development of choroidal
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neovascularization, which is a common type of AMD [141]. In randomized controlled
clinical trials, PDT is less effective than antivascular endothelial growth factor (Anti-VEGF)
agents [142]. Another clinical trial showed that the combination therapy group of an anti-
VEGF agent and PDT showed a better therapeutic effect than the monotherapy groups [143].
Therefore, combination therapy with PDT and anti-VEGF agents should be considered for
treating eyes with choroidal vasculopathy.

3.2.3. Corneal Neovascularization

Corneal neovascularization is characterized by abnormal proliferation of preexisting
blood vessels and lymphatic vessels into the corneal stroma [144]. Increased vascular
permeability leads to corneal scarring, edema, lipid deposition, and inflammation, resulting
in permanent visual loss [145]. The regression of corneal neovascularization with PDT was
quantitatively analyzed in a clinical trial [146]. After one month of PDT with verteporfin,
eight were occluded among 25 new vessels, and 15 were partially occluded (regression
ranges 15.3% to 85.1%), and two vessels showed worsening. The mean areas of corneal
neovascularization were decreased by 70% after PDT. Moreover, a randomized controlled
trial revealed that combination therapy with verteporfin PDT and an anti-VEGF agent
showed a significant reduction in corneal neovascularization area [147]. However, the
number of enrolled patients was small (7 patients); thus, further clinical trials with larger
sample size will be needed to confirm the results.

3.3. Cardiovascular Disease
3.3.1. Atherosclerosis

The application of PDT for atherosclerotic plaque treatment has limitations, including
(1) nonspecific accumulation of the PS in the skin, leading to cutaneous photosensitiv-
ity [148]; (2) relatively long drug-light interval (from 3 to 24 h) after systemic injection with
most of the tested PSs [149]; and (3) difficulty of light delivery into the targeted vessel.
However, 5-ALA PDT was used as an adjuvant therapeutic modality of angioplasty to
prevent restenosis in a clinical trial [150]. PS motexafin lutetium was used in another
phase I clinical trial on patients with peripheral arterial atherosclerosis [151]. The patients
received motexafin lutetium one day before photoangioplasty. A laser-delivering fiberoptic
catheter was positioned to stenosis lesion under fluoroscopic guidance during angioplasty.
There was no evidence of significant, dose-limiting systemic toxicity. Other types of PSs,
including photofrin, phthalocyanine, verteporfin, and ICG, were also evaluated to treat
atheromatous plaques indicating potential prevention of neointimal hyperplasia [152].

3.3.2. Esophageal Varix

The esophageal varix is the dilated veins that bulge into the lumen, producing an
uneven wormlike surface inside the esophagus [153]. PDT can selectively damage the
vascular endothelial cells and result in blood flow stasis, followed by thrombosis, vascular
occlusion, and eventually, the destruction of the abnormal microvasculature [154]. Li et al.
performed a randomized controlled trial in 14 patients [155]. After 3 months of hemato-
porphyrin monomethyl ether (HMME) PDT, the number of newly visible vessels was
significantly decreased in the PDT-treated group than in the control group. The recurrent
bleeding rate was significantly lower in the PDT-treated group than in the control group.
Therefore, it can be a potential therapeutic modality to treat newly visible vessels and
prevent recurrent bleeding from esophageal varix.

3.4. Dental Disease
3.4.1. Periodontitis

Periodontitis is an inflammatory disease caused by dysbiotic dental biofilm and
characterized by progressive destruction of the periodontium [156]. PDT was applied as
an antimicrobial therapy to treat biofilm-mediated diseases [157] as the PDT-induced free
radicals and singlet oxygen are toxic to bacteria [158]. However, a recent meta-analysis with
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a randomized controlled study showed a lack of clinical benefit compared to conventional
treatments in periodontitis [159]. Another recent clinical trial applied ICG-PDT as an
adjunct modality to periodontitis patients with scaling and root planning (SRP), a current
standard treatment [160]. The ICG-PDT group showed a significant improvement in
periodontal probing depth and clinical attachment level compared to the SRP group.

3.4.2. Oral Lichen Planus

Oral lichen planus (OLP) is a common T-cell-mediated inflammatory disorder that
affects the oral mucosa [161]. Although corticosteroids, immunosuppressants, or im-
munomodulatory agents are used to treat OLP, PDT can be used as an alternative treatment
modality. Aghahosseini et al. underwent PDT in OLP patients with methylene blue as
a PS [162]. Four out of five OLP lesions displayed clinical improvement after PDT. A
recent prospective, case-controlled study performed PDT with phenothiazine chloride as
a PS [163]. The PDT was performed in 4 sessions on days 1, 3, 7, and 14 resulting in a
significant reduction of lesion size, improvement of Autoimmune Bullous Skin Disorder In-
tensity Score (ABSIS) and Thongprasom-scores. The quality-of-life parameters also showed
significant improvement in the PDT group. Therefore, PDT can be a therapeutic option in
OLP patients.

3.5. Neurologic Disease
3.5.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a common progressive neurogenerative disorder with
abnormal accumulation of beta-amyloid (Aβ) plaque as a characteristic finding [164]. The
inhibition of Aβ aggregation is a potential treatment intervention for AD inhibition of the
Aβ aggregation is a potential treatment intervention for AD [165]. Several studies have
attempted to disaggregate Aβ in preclinical situations with Rose Bengal [166], methylene
blue [167], or 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) [168]. These preclini-
cal studies lead to the inhibition of Aβ aggregation in vitro and in vivo in a Drosophila AD
model. Further studies are needed to boost the PSs in the AD model.

3.5.2. Prion Disease

Prion disease is a fatal neurodegenerative disease including Creutzfeldt-Jacob disease
(CJD) and kuru in humans, scrapie in sheep, and bovine spongiform encephalopathy
(BSE) in cattle [169]. They are transmissible within and between mammalian species and
caused by the conversion of a natively occurring prion protein (PrPC) into its misfolded
infectious form (PrPTSE) [170]. The prevention of the action of neurotoxic species of prion
disease is the therapeutic goal. Kostelanska et al. used PDT to treat prion disease with a
phthalocyanine PS in a preclinical study [171]. PDT inhibited the infectious form of the
prion protein in mouse brain homogenate. Therefore, PDT suggests a promising approach
to inactivate the misfolded infectious form of the prion protein.

3.6. Skeletal Disease
3.6.1. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic, inflammatory autoimmune disease currently
considered a disease of the joints [172]. Synovectomy is an invasive and destructive
procedure that requires long periods of rehabilitation. A preclinical PDT study showed cell
death in cells involved in inflammation and hyperplasia in the joint [173]. Interestingly,
Hendrich et al. examined the feasibility of conventional drug to treat RA as a PS [174]. The
in vitro cytotoxicity of laser-irradiated chloroquine or methotrexate was more than 20 times
compared to drug-treated or laser irradiation alone in human synovial fibroblasts from RA
patients. The high grade of vascularization involved in RA would enable the accumulation
of a PS into the inflamed tissue. Further clinical trials would be necessary in the future.
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3.6.2. Synovitis

Chronic synovitis is a pathologic feature of RA, osteoarthritis, spondylarthritis, and
villonodular synovitis [175]. The residual tissue after synovectomy may lead to recurrent
synovitis. Dietze et al. underwent in vitro and rat in vivo studies that showed significant
5-ALA accumulation in the inflamed synovial tissues [176]. Kirdaite et al. showed a higher
accumulation of 5-aminolevulinic acid hexyl ester (h-ALA) from RA patients’ tissue [175].
The microscopic image showed the localized accumulation of the protoporphyrin IX in the
synovial lining layer, endothelial cells, and macrophages. In addition, the PDT-induced
cytotoxic effect was observed via Sytox green staining. Therefore, PDT may be used as
a less invasive treatment method for synovitis with a high degree of specificity. Further
human clinical trials are warranted to find a therapeutic efficacy.

3.7. Gastrointestinal Disease
3.7.1. Crohn’s Disease

Crohn’s disease is a relapsing inflammatory disorder that potentially affects the entire
gastrointestinal tract and presents with abdominal pain, fever, bowel obstruction, or
bloody or mucus diarrhea [177]. Fabre et al. used low-dose delta-ALA-PDT in a mouse
colitis model. [178]. The PDT group showed improvement in the colitis score, decreased
proinflammatory cytokines, interleukin-6, 17, and interferon-gamma. Therefore, PDT
has therapeutic potential against inflammatory bowel disease by modulating the local
immune system.

3.7.2. Bacteria-Mediated Gastritis or Colitis

Helicobacter pylori is a human pathogen that colonizes the gastric mucosa and causes
chronic infection. Baccani et al. used porphyrin-PDT as an adjuvant with conventional
doxycycline therapy [179]. The results showed that combination therapy with PDT and
doxycycline showed a higher antibacterial effect than monotherapy.

Cassidy et al. performed targeted PDT to treat colon-residing bacteria [180]. The
h-ALA, methylene blue, and 5,10,15,20-tetrakis(1-methyl 4-pyridinio)porphyrin tetra(p-
toluenesulfonate) (TMPy) were tested for colon-targeted delivery. Among the results, PDT
with h-ALA and oxygen releasing compound reduced up to 7.73 logs of Bacteroides fragilis,
which causes chronic infection of the colon. Therefore, PDT may be used with targeted PSs
in the gastrointestinal tract to kill specific pathogens.

3.8. Respiratory Disease
3.8.1. Ventilator-Associated Pneumonia

Ventilator-associated pneumonia (VAP) is a life-threatening infectious disease related
to patients who require mechanical ventilation [181]. The endotracheal tube (ET) is the
major cause of VAP. Methylene blue-PDT reduced the ET tube polymicrobial biofilm
by more than 99.9% after a single treatment [182]. Recent work showed that curcumin-
containing ET reduces gram-negative and gram-positive bacteria by up to 95% [183].
Therefore, PDT has the potential as a preventive modality against VAP.

3.8.2. COVID-19

COVID-19 is caused by an infection related to the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus strain. Although there are few relevant in vitro or in vivo
studies of COVID-19, PDT can be a potential therapeutic strategy [184]. Moghissi et al.
attempted methylene blue-PDT for COVID-19 patients [185]. Dias et al. suggested that PDT
could decrease the microbial load in the respiratory tract using the nebulization of PSs [186].
Recent reports showed that methylene blue has an inhibitory function of the SARS-CoV-2
virus in vitro at a lower concentration than hydroxychloroquine or azithromycin [187].
Further clinical studies are needed to evaluate the therapeutic efficacy of PDT on COVID-19.

Overall, we reviewed the various kinds of non-oncologic PDT applications in clinical
and potentially promising preclinical studies summarized in Table 2. The 5-ALA or MAL
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was used to treat dermatologic applications, including acne, warts, photoaging, cutaneous
leishmaniasis, and onychomycosis. The representative clinical trials showed significant
clinical improvements when compared with control or placebo groups. In ophthalmologic
applications, verteporfin was applied as PSs with laser for localized illumination. The
results showed a better clinical response of PDT treated group than high-density sub-
threshold micropulse laser therapy in central serous chorioretinopathy. However, PDT
showed additional therapeutic benefit only when combined with anti-VEGF therapy in
age-related macular degeneration and corneal neovascularization. In esophageal varix, the
HMME-based PDT group showed a reduction of neovascularization. ICG was applied to
treat periodontitis and showed additional therapeutic effects when combined with stan-
dard SRP treatment. In sum, PDT brought clinical benefit as an individual or adjuvant
therapeutic modality to treat non-oncologic diseases in clinical trials. However, the number
of enrolled patients was limited. Therefore, extended clinical trials with a large population
will warrant clinical efficacy of PDT.
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Table 2. Clinical trials of PDT in non-oncologic diseases.

Disease Photo-
Sensitizer Light Source Wave-Length

(nm)
Power Density

(mW/cm2)
Energy Density

(J/cm2)
Treatment
Protocol Outcome of PDT Group Enrolled

Patients Ref.

Acne 5-ALA LED 633 100 50 20 min
significantly improved acne

lesion and reduced scar
formation

75 [101]

Warts 5-ALA Halogen lamp 590–700 50 70 23 min 20 s
reduced area and number

of warts than placebo
group

45 [104]

Photoaging 5-ALA Xenon lamp 400–720 3500 10.5 3 s 3 times
better wrinkle reduction

than ND:YAG laser therapy
group

13 [108]

Cutaneous
leishmaniasis 5-ALA LED 633 100 Once a week for

4 weeks
better treatment outcome

than control group 57 [119]

Onychomycosis MAL LED 635 37 Once a week for
3 weeks

better clinical response than
placebo group, but failed

statistical significance
40 [123]

Central serous
chorioretinopa-

thy
Verteporfin Laser 689 50 83 s

better clinical response
than high-density

subthreshold micropulse
laser treatment group

179 [139]

Age-related
macular

degeneration
Verteporfin Laser 689 600 50 83 s

additional therapeutic
effect with anti-VEGF

therapy
322 [143]

Corneal neo-
vascularization Verteporfin Laser 689 600 50 83 s

combination with
anti-VEGF therapy showed
best therapeutic response

7 [147]

Esophageal
varix HMME Laser 150 40 min less newly visible vessel

than control group 14 [155]

Periodontitis ICG laser 810 200 30 s
additional therapeutic

effect with scaling and root
planing

29 [160]

Abbreviations: PDT: photodynamic therapy; 5-ALA: 5-aminolevulinic acid; MAL: methyl-aminolevulinate; HMME: hematoporphyrin monomethyl ether; ICG: indocyanine green, LED: light-emitting diode;
anti-VEGF: antivascular endothelial growth factor 4. Non-oncologic applications of photothermal therapy.
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4. Non-Oncologic Applications of Photothermal Therapy
4.1. Atherosclerosis

Reducing the burden of atherosclerosis below the Glagov threshold is a therapeutic
target for cardiovascular disease [188]. Kharlamov et al. used silica-gold nanoparticles
to treat coronary artery stenosis [189]. Plasmonic photothermal therapy was applied to
patients with coronary artery disease. Nanoparticles were delivered to the atheroma via a
bioengineered patch, and the lesion was irradiated by an intravascular NIR laser. After
12 months, the mean reduction of total atheroma volume was significantly reduced over
the control group. The event-free survival was significantly lower than that of the other
groups without any target lesion-related complications. Therefore, silica-gold nanoparticle-
based photothermal therapy can be employed for patients with coronary artery disease to
treat atherosclerosis.

4.2. Dry Eye Syndrome

The dry eye occurrence has increased due to the substantial screen time watching a
computer monitor, tablet, or smartphone. To treat dry eye syndrome, Pang et al. devel-
oped a gold nanoparticle-based hydrogel patch that can attach to the skin of the lacrimal
gland [190]. After watching videos for 3 h, the patch-attached eye showed increased
eye-protective results over the control eye. The infrared camera showed an increased
temperature of the patch lesion. These types of noninvasive biocompatible patches can be
applied to treat dry eye syndrome.

5. Future Perspective of Nanomaterials for Non-Oncologic Disease

Current PS agents suffer from low target sensitivity and specificity with off-target
toxicity. In addition, clinical PDT/PTT efficacy is restricted by limited tissue penetration of
photosensitizing light due to absorption and scattering within the tissue. The application
of phototherapy will expand when these limitations are resolved. In this section, we
introduce strategies with the state-of-the-art nanomaterials, that have been mostly applied
to oncology, to improve phototherapy in non-oncologic diseases as a future direction.

5.1. Multifunctional Nanomaterials for Phototherapy

The residual tissue after PTT tend to regrow by acquired thermal resistance. To resolve
this, there has been an attempt to enhance the therapeutic effect by combining PTT and
PDT [191]. The results of combination therapy showed enhanced therapeutic efficacy with
reduced side effects [192]. Further, the photothermal effect can generate acoustic waves
that can be detected and converted into imaging signals, such as in photoacoustic imaging
(PAI) [14,193].

To increase both diagnostic and therapeutic efficacy, multifunctional theranostic nano-
material platform has been developed. Cheng et al. developed a core-shell nanohybrid
for multimodal image-guided combined PTT/PDT in CT26 tumor-bearing mice [194]. The
nanomaterial is a controllable coating of a zirconium-porphyrin (PCN) shell on Prussian
blue (PB) nanoparticles, which show enhanced photodynamic therapeutic effects against
hypoxic target cells. In addition, nanocomplex can be used for magnetic resonance imag-
ing, PAI, and fluorescence imaging. The designed integration of diketopyrrolopyrrole
(DPP) and benzothiadiazole (BT) molecule dye is a NIR-II fluorescence/PA dual imaging
agent that serves PTT and PDT. DPP-BT shows strong absorption in the NIR-I region
and fluorescence emission in the NIR-II region [195]. The integration of Cu2+ into black
phosphorus@Cu nanostructures enabled chemodynamic therapy and enhanced PTT to im-
prove photothermal stability with positron emission tomography (PET), allowing in vivo
real-time and quantitative tracking for diagnosis [196]. Therefore, the combination of PTT
and PDT is desirable strategy for increasing therapeutic outcome.
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5.2. Photoactivatable Nanomaterials for Phototherapy

Several nanomaterials show poor signal-to-noise ratio (SNR) with side effects, owing
to nonspecific biodistribution and “always-on” pharmacological activities [197,198]. Stimu-
lated responsive nanomaterials have been developed to tackle these challenges, such that
the nanomaterials can only be “turned on” in specific external responses. Photoactivatable
therapeutic agents have been developed to achieve accurate lesion-specific release and
activation. They are chemically functionalized to be “inert” and can be converted into an
“active” state by internal or external stimulation [199]. Upon integrating photoactivatable
nanomaterials, they can be delivered to specific target tissues through passive or active
targeting. After localizing the targeted tissue, the nanocarriers undergo structural changes
and generate a PDT/PTT effect with irradiation [200]. The nanomaterial is composed of
three components: active-inhibited therapeutic molecules, photoconverting agents, and
light-related responsive components. Compared to passive delivery, photoactive nano-
materials offer the possibility of tailoring the release kinetics of the encapsulated active
molecules, which is of considerable clinical relevance for targeted delivery to specific lesion
areas. In addition, photoactivatable chemotherapy can provide spatiotemporal control
over drug activation beyond conventional chemotherapy.

There remain various challenges for clinical translation with sufficient therapeutic
efficacy. Many photoresponsive linker’s biocompatibility and their degradation byproducts
are currently less understood and require further investigation. Besides, as UV and visible
light has limited tissue penetration, NIR-I (700–950 nm) light can be used instead. However,
NIR-I nanomaterials have relatively low sensitivity and effective therapy requires high
photoirradiation power [201]. With further development, photoactivatable nanomaterials
can be promising agents for non-oncologic phototherapy.

5.3. Target-Specific Nanomaterials for Phototherapy

The induction of immunogenic cell death (ICD) presents a therapeutic modality, which
is attributed to immune system’s ability to eradicate target cells through a “bystander
effect” [202]. This ICD can be triggered by ROS production and endoplasmic reticulum
(ER) stress. However, most radiotherapy, chemotherapy, and non-targeted PDT cannot
induce effective ICD, owing to secondary or collateral ER stress effects [203]. Therefore, a
direct ER stress inducer is required for effective ICD. Combination of PDT and PTT has been
extensively studied to establish effective nanotherapeutics under light irradiation [204]. The
drawback of conventional PDT is its oxygen-consuming process [205]. Low oxygen levels
severely limit the production of ROS in PDT, thus weakening ROS-based ER stress and ICD
effects [206]. To overcome this limitation, recent report introduced the combination of ER
targeting PSs and oxygen-delivering nanomaterials [207]. The ER-targeting pardaxin (FAL)
peptides were conjugated with indocyanine green and gold nanospheres, together with an
oxygen-delivering hemoglobin liposome to increase ER stress. Still, the mechanisms by
which the nanomaterials stimulate the immune response remain poorly understood.

Moreover, the conventional PDT family lacks hydrophilicity. Aza-boron-dipyrromethene
(aza-BODIPY) molecules were fabricated into hydrophilic nanoassemblies, contributing to
enhanced target tissue accumulation with prolonged blood circulation. The aza-BODIPY
family comprises organic PSs with NIR optical characteristics [208]. Chen et al. showed
hydrophilic nanomedicines that selectively target sites by aza-BODIPY-encapsulated PS.
This was enabled by an enhanced permeability and retention effect to improve diagnosis
and therapeutic efficacy [209]. Aza-BODIPYs exhibit good biocompatibility and intense
red-shifted NIR absorbance.

5.4. Deep Tissue Penetrating Nanomaterials for Phototherapy

Conventional PDT and PTT cannot reach deep-seated target lesions due to insufficient
light penetration into the tissue [210,211]. Also, the lesion’s unfavorable physiological
environment, such as high interstitial fluid pressure and dense extracellular matrix hin-
ders sufficient PS distribution [212,213]. NIR light (700–1700 nm) has much greater body
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transparency than visible light. Particularly, the NIR-II (1000–1700 nm) wavelength light
can offer deeper tissue penetration due to reduced photon scattering and tissue back-
ground [214,215]. The PTT agents activated by NIR-II light, such as graphene or carbon-
based nanomaterial conjugated polymer particles have been developed [216–218]. Another
nanomolecule known as a PTT agent with its high photothermal conversion efficiency,
copper sulfide (CuS), has been explored for PDT with their strong absorbance in the NIR-II
window and low off-target toxicity [219,220]. Recently a BSA-stabilized CuS nanomolecule
combined with chemotherapeutic agent (doxorubicin) showed a promising therapeutic
effect of PTT/PDT and doxorubicin [221]. Therefore, the use of NIR-II responsive nano-
material can further enhance the therapeutic performance of the nanomedicine-based
phototherapy.

The strategies used to improve phototherapy such as PDT and PTT with novel nano-
materials are summarized in Figure 4. These provide a rational design of nanomaterials for
treating non-oncologic diseases with enhanced theranostic performance of nanomedicine-
based phototherapy.
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6. Remaining Issues

The nanomedicine-based phototherapy for treating various diseases shows promising
results in clinical and preclinical studies. While there exist many promising phototherapy
results, several limitations still hinder the wide-spread use of phototherapy. (1) The thera-
peutic phototherapy protocols have not been well established. A standardized protocol
is necessary to obtain consistent therapeutic responses; (2) Some clinical studies did not
directly compare with the control (or placebo) group. The number of enrolled patients in
the randomized controlled trial was too small to prove clinical significance (Table 2). A
well-designed, case-controlled clinical trial with a larger population will be needed to con-
firm the efficacy of phototherapy; (3) The number of clinically applicable PSs is still limited
(Table 2). There is a need to develop more PS agents with high target sensitivity and speci-
ficity, deeper tissue penetration, and low toxicity; (4) Detailed mechanisms of phototherapy
for various non-oncologic diseases are largely unknown due to complex immune reactions
in different tissue microenvironment. Further studies with advanced nanomaterials will
provide patients with further treatment options for intractable non-oncologic diseases with
refined phototherapy.
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