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Abstract: Nonalcoholic fatty liver disease (NAFLD) with pathogenesis ranging from nonalcoholic
fatty liver (NAFL) to the advanced form of nonalcoholic steatohepatitis (NASH) affects about 25%
of the global population. NAFLD is a chronic liver disease associated with obesity, type 2 diabetes,
and metabolic syndrome, which is the most increasing factor that causes hepatocellular carcinoma
(HCC). Although advanced progress has been made in exploring the pathogenesis of NAFLD
and penitential therapeutic targets, no therapeutic agent has been approved by Food and Drug
Administration (FDA) in the United States. Gut microbiota-derived components and metabolites
play pivotal roles in shaping intrahepatic immunity during the progression of NAFLD or NASH.
With the advance of techniques, such as single-cell RNA sequencing (scRNA-seq), each subtype
of immune cells in the liver has been studied to explore their roles in the pathogenesis of NAFLD.
In addition, new molecules involved in gut microbiota-mediated effects on NAFLD are found. Based
on these findings, we first summarized the interaction of diet-gut microbiota-derived metabolites
and activation of intrahepatic immunity during NAFLD development and progression. Treatment
options by targeting gut microbiota and important molecular signaling pathways are then discussed.
Finally, undergoing clinical trials are selected to present the potential application of treatments against
NAFLD or NASH.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
worldwide, affecting about 25% of the global population [1]. The prevalence of NAFLD
is increasing proportionately with the epidemic of obesity and type 2 diabetes (T2D) [2].
Nonalcoholic steatohepatitis (NASH) is the advanced stage of NAFLD with the progression
of liver inflammation and cell death with or without liver fibrosis, which can progress to
liver cirrhosis and hepatocellular carcinoma (HCC) [3]. In addition, the incidence of NASH
is predicted to further increase by up to 56% in the following decade [4]. Although infection
of hepatitis C virus (HCV) is the predominant factor causing HCC, NAFLD is the fastest
increasing factor that causes HCC in the United States and some European countries [4,5].
With follow-up in seven years, the overall survival rate of patients with NAFLD-HCC
was significantly higher than that in patients with HCV and hepatitis B virus (HBV) after
treatments [6]. Therefore, a better understanding of the underlying cellular and molecular
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mechanisms of NAFLD or NASH pathogenesis is helpful to find therapeutic targets to
treat NAFLD.

Factors such as lipotoxicity and inflammation can drive NAFLD progression to NASH
and ending stage of liver disease [7]. Gut microbiota plays a critical role in the development
and progression of NAFLD. Gut microbiota-derived molecules, such as lipopolysaccharides
(LPS) and bacterial DNAs, and metabolites such as short-chain fatty acids (SCFAs), can
modulate intestinal and systemic immune response [8]. Those gut microbiota-derived
metabolites and components can translocate into the liver through the gut-liver axis [9],
which are implicated in the initiation and progression of NAFLD. Therefore, finding the key
metabolites or components-derived gut microbiota and their function in the pathogenesis
of liver disease is helpful for the investigation of NAFLD therapy.

Diet plays an important role in modulating gut microbiota and metabolic pathways
in the development of NAFLD [10,11]. Consumption of a high-fat diet (HFD) induces
dysbiosis of gut microbiota, leading to metabolic dysfunction, insulin resistance, inflam-
mation, obesity, and T2D [12], a major factor causing NAFLD. In contrast, consumption of
a very-low-calorie ketogenic diet (VLCKD) can increase the abundance of SCFA-producing
bacteria, such as Lactobacillus and Bifidobacterium spp., resulting in amelioration of adipose
tissue inflammation in obesity and NAFLD [13,14]. In addition, the intervention of VLCKD
had a better effect on the reduction in visceral and liver fat accumulation compared to
standard low-calorie diet in obese patients [14].

Change of intestinal or hepatic metabolites impacts intrahepatic immune cell profiles,
as well as the expression of proinflammatory cytokines and chemokines in the fatty liver.
Innate immunity plays an essential role in NAFLD or NASH pathogenesis. For example, the
frequency of macrophages was increased in the NASH liver in amylin liver NASH (AMLN)
diet-fed mice compared to that in standard chow diet-fed mice [15]. Our research study
also showed that monocyte-derived macrophages increased in the liver of wild-type mice
fed a choline-deficient, L-amino acid-defined, high-fat diet [16]. Other than that, adaptive
immunity, including T cells such as the ratio of T helper (Th) cells/T regulatory cells (Tregs)
and B cells, are activated or altered in the development of NAFLD [17,18]. Furthermore,
infiltration of inflammatory cells, progression of cell death, and activation of hepatic stellate
cells (HSCs) are involved in this process, which may result in NASH progression and liver
fibrosis [19]. Many signaling pathways are involved in the proinflammatory response, lipid
accumulation, and cell death [3], such as insulin and Wnt signaling pathways. Therefore,
targeting the molecules and their associated signaling pathways can potentially treat
NAFLD, NASH, and liver fibrosis and prevent NAFLD-related HCC progression.

However, the role of diet and gut microbiota interaction-derived metabolites in modu-
lating intrahepatic immune response remains to be explored. A better understanding of the
underlying molecular mechanism is helpful to find a new therapeutic target for NAFLD
or potential diagnostic marker. For this purpose, a search was conducted in PubMed,
Web of Science, Google Scholar, and Embase with the keywords including NAFLD or
NASH, metabolite, gut microbiota, signaling pathway, and immune response in the last
five years. The originally retrieved publications were independently reviewed by two au-
thors. The inclusion criteria were (1) the study contained at least three keywords, (2) either
animal or human studies. Excluding criteria included (1) studies were abstracts or unpub-
lished studies, (2) studies with similar findings from another study. All the rest studies
were carefully reviewed by the authors, and representative findings in the last five years
were selected. Few supporting studies prior to this period were added to explain the
underlying mechanism.

In this review, we first summarize the latest findings of metabolites that are implicated
in the development of NAFLD, as well as the progression to NASH. Then, we investigate
the underlying cellular and molecular mechanisms of these metabolites in hepatic immunity
in animal models to study NAFLD or NASH or clinical samples. Finally, we summarize
the currently ongoing clinical trials to evaluate potential therapeutic reagents by targeting
key molecules or proteins for NAFLD and NASH treatment.
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2. Gut Microbiota-Derived Metabolites in the Pathogenesis NAFLD and NASH

LPS, a major component of Gram-negative bacterial cell membrane, plays a pivotal in
the pathogenesis of mouse and human NAFLD via Toll-like receptor 4 (TLR4) signaling
pathway [20]. In addition to gut microbial components, metabolites derived from gut mi-
crobiota also impact hepatic function, including amino acids, secondary bile acids, ethanol,
lipids, and SCFAs. For example, a tryptophan-derived metabolite indole-3-propionic acid
(IPA) by gut microbiota showed anti-NASH ability in rats by reducing gut LPS leakage,
which can activate hepatic macrophages to produce proinflammatory cytokines (e.g., tu-
mor necrosis factor (TNF)-α and interleukin (IL)-1β) to cause liver inflammation and
fibrosis [21,22]. An updated summary in the following context is to describe the function
of metabolites in the development of NAFLD from recent research findings.

2.1. Amino Acids

Plasma amino acids (AAs), such as glutamate and valine, are shown to increase in
NAFLD patients with or without obesity compared to non-NAFLD controls [23]. Hoyles et al.
reported that dysregulation of branched-chain amino acid and aromatic amino acid
metabolism was positively associated with hepatic inflammation and steatosis in non-
diabetic obese women, resulting from gut microbial dysbiosis with the richness of genes
for dietary lipid metabolism and LPS biosynthesis [24]. This study also showed that
phenylacetic acid (PAA), a microbiota-derived metabolite from aromatic amino acid pheny-
lalanine, was positively associated with hepatic steatosis. Another study showed that
limiting glycine source or inhibiting glycine biosynthetic genes such as alanine-glyoxylate
aminotransferase 1 (AGXT1) accelerated diet-induced NASH and hyperlipidemia [25].
Treatment with a tripeptide DT-109 (Gly-Gly-L-Leu) ameliorated mouse NASH features
induced by a high-fat, cholesterol, and fructose diet by enhancing liver mitochondrial
fatty acid β-oxidation (FAO) and stimulating de novo glutathione synthesis [25]. Thus,
modulating AA metabolites can potentially inhibit the progression of NAFLD.

2.2. Bile Acids

Bile acids (BAs) play important roles in NAFLD pathogenesis by modulating hepatic
lipid and glucose metabolism, consisting of primary and secondary BAs [26]. Primary BAs
such as chenodeoxycholic acid (CDCA) are produced in the liver, while gut microbiota can
metabolize them to secondary BAs such as deoxycholic acid (DCA) [9]. BA receptors such
as nuclear Farnesoid X receptor (FXR) and the Takeda G protein-coupled receptor 5 (TGR5)
are important molecules that are involved in the modulation of energy metabolism and
inflammation during metabolic disorders, including NAFLD [27]. For example, a high-fat
diet (HFD)-induced development of NAFLD has been reported to be associated with
a decrease in the ratio of non-12α-OH BAs (e.g., HDCA/Hyodeoxycholic)/12α-OH BAs
(e.g., DCA) with downregulation of FXR and TGR5 and upregulation of cytochrome P450
family 7 subfamily A member 1 (CYP7A1) and TLR4 [28]. Modulating gut microbiota with
an antibiotic cocktail can alleviate HFD-induced hepatic steatosis and inflammation in
hamsters via upregulating cytochrome P450 family 7 subfamily B member 1 (CYP7B1) to
increase hydrophilic BA synthesis [29].

2.3. Choline Metabolism

Choline can be metabolized by the gut microbiota to trimethylamine (TMA), which is
absorbed in the liver and further converted to trimethylamine N-oxide (TMAO) by flavin-
containing monooxygenase 3 (FMO3) [30]. In addition to choline, TMA precursors such as
L-carnitine and betaine are rich in diets (e.g., red meat and eggs), and overconsumption
of these diets can increase TMAO in plasma to promote NAFLD through activation of
oxidative stress, unfolded protein response, and change of bile acid metabolism [31].
A prospective study showed that plasma levels of TMAO were positively associated with
all-cause mortality in human NAFLD patients but not in non-NAFLD patients, which
was independent of traditional risk factors, such as triglyceride glucose, and body mass
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index (BMI) [32]. TMA-producing bacteria consist of enzymes choline-TMA lyase (CutC),
carnitine oxygenase (CntA), and betaine reductase (GrdH), such as Firmicutes [32–35].
In addition, several choline-deficient diets were applied to induced mouse NASH and liver
fibrosis models [36].

2.4. Ethanol

Excessive consumption of alcohol causes alcohol fatty liver disease (AFLD). Endoge-
nous ethanol produced by gut microbiota can impair mitochondrial function and promotes
NAFLD development [37]. Gavage of ethanol-producing gut microbiota (e.g., Klebsiella
pneumoniae) to mice can increase ethanol production, increase liver injury, and impair
mitochondrial function in mice, indicating a causative factor for NAFLD [37]. Fasting
ethanol concentration in plasma has been shown to be positively associated with insulin
resistance in children with NAFLD compared to controls [38]. Further studies in mice also
showed that impaired activity of alcohol dehydrogenase (ADH) in the liver tissue is the
major cause of ethanol concentration increase instead of an increase in endogenous ethanol
synthesis [38]. Thus, ethanol either produced endogenously by gut microbiota or caused
by impaired ADH in the liver can impact NAFLD progression.

2.5. Fiber

Dietary fibers (DF) consist of carbohydrate polymers resistant to digestive enzymes in
the small intestine, which can be digested by bacteria in the large intestine [39]. DF can
be divided into soluble and insoluble forms based on the solubility in water, and soluble
fibers can be degraded into SCFAs [40]. Supplementation of oligofructose, a DF, is helpful
to reduce body weight in obese adults [41]. Obese patients with consumption of higher
insoluble fiber consumption (≥7.5 g/day) had improvement in the fatty liver index, hepatic
steatosis index, and NAFLD liver fat score, while patients with fruit fiber consumption
(≥8.8 g/day) showed significant improvements in gamma-glutamyl transferase (GGT),
alanine aminotransferase (ALT), and aspartate aminotransferase (AST) [42]. A clinical
trial study also showed that consumption of a low-carbohydrate and high-fiber diet with
education can effectively reduce the body weight and body fat of NAFLD patients and
improve metabolic disorders [43]. One of the underlying mechanisms is to change gut
permeability, as evidenced by the reduction in serum levels of zonulin in NAFLD patients
with DF [44].

Fermentation of DF can impact the diversity of gut microbiota. For example, a meta-
analysis revealed that DF intervention can increase the abundance of Bifidobacterium and
Lactobacillus genera compared to placebo or low-fiber consumption, which is associated
with a high concentration of butyrate in feces [45]. Consumption of brans such as oat and
rye containing 50% DF can reduce body weight gain and ameliorate Western diet (WD)-
induced liver inflammation via altering gut metabolism such as indole production [46].

2.6. Short-Chain Fatty Acids

SCFAs, consisting of acetate, propionate, and butyrate, are produced by gut microbiota
from dietary fibers and starch. They play important roles in energy metabolism, tissue
homeostasis, and immune regulation. Here, we discuss their roles in the pathogenesis
of NAFLD.

2.6.1. Acetate

Oral administration of branched-chain amino acids (BCAAs), including leucine,
isoleucine, and valine, significantly increased the abundance of gut Ruminococcus flavefaciens
and portal acetic acid concentration, resulting in a reduction in hepatic fat accumulation [47].
In addition, a molecular mechanism study showed that BCAA treatment inhibited the
expression of lipogenesis-related enzymes such as fatty acid synthase (FAS) and acetyl-
CoA carboxylase (ACC). It has been reported that both butyrate and propionate show
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predominantly anti-obesity effects, whereas acetate has more potential to promote obesity
and lipogenesis in the liver and adipose tissue [48].

2.6.2. Propionate

A randomized controlled trial study showed that dietary supplementation with inulin
that is mainly metabolized into acetate in the colon increased intrahepatocellular lipid.
In contrast, dietary supplementation of inulin-propionate ester, which is designed to deliver
propionate to the colon and to attenuate the acetate-mediated increase in intrahepatocellular
lipid [49].

2.6.3. Butyrate

Supplementation with grape polyphenols reduced Western diet (WD)-induced adi-
posity and hepatic steatosis in mice by increasing the abundance of Akkermansia muciniphila
and butyrate and sugar expenditure in the distal intestine [50].

Overall, the dietary metabolites or metabolites derived from gut microbiota impact
the progression of NAFLD and NASH (Figure 1).

Figure 1. Dietary metabolites or metabolites derived from gut microbiota impact the progression
of NAFLD. Abbreviations: AAA, aromatic amino acid; BCAA: branched-chain amino acid; LPS,
lipopolysaccharide; NAFLD, nonalcoholic fatty liver disease; SCFAs, short-chain fatty acids.

3. Intrahepatic Immunity in NAFLD and NASH in Diet-Induced Murine Models and
Human Patients

The intrahepatic immune response plays an essential role in the progression of
NAFLD/NASH. Gut microbiota-derived metabolites and components circulating in the
portal vein system can enter the liver to modulate intrahepatic immunity to impact
NAFLD. This process is involved in a complicated communication among different liver
non-parenchymal cells, including macrophages, monocytes, T cells, B cells, neutrophils,
and HSCs [51]. Herein, we update some recent findings in this field to explore new
molecules or cell subtypes in the pathogenesis of NALFD. Animal models of steatosis,
NAFLD, and NASH have been summarized in recent publications [52], which are briefly
mentioned with the discussion of immune activation.
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3.1. Macrophages/Monocytes

The composition of liver macrophages was altered in mice fed a high-fat high-sucrose
diet (60% fat and 10% sucrose), with a decrease in liver resident macrophage Kupffer cells
(KCs) and an increase in monocyte-derived macrophages (MdMs) detected by single-cell
RNA sequencing (scRNA-seq) [53]. A subset of MdMs shows the phenotype of lipid-
associated macrophages (LAMs) characterized by the expression of triggering receptor
expressed on myeloid cells 2 (Trem2), cluster of differentiation (CD)63, CD9, and glycopro-
tein nonmetastatic melanoma protein B (Gpmnb) [53]. In addition, Cc chemokine recep-
tor (CCR)2 expression is critically important for the recruitment of this population. Gut
microbiota-derived tryptophan metabolites tryptamine and indole-3-acetate (I3A) can atten-
uate the expression of TNF-α, IL-1β, and MCP-1 on macrophages exposed to palmitate and
LPS [54]. Those cytokines expressed by macrophages can promote NAFLD progression.

3.2. NK Cells

The number of natural killer (NK) cells was increased in a methionine- and choline-
deficient diet (MCD)-induced mouse NASH liver via C-X-C motif chemokine ligand
(CXCL)10/chemokine receptor (CXCR)3 signaling [55]. These intrahepatic NK cells ex-
pressed low levels of protein Ki67, indicating a reduced proliferation ability. In addition,
depletion of NK cells induced hepatic infiltration of MdMs with M2-like phenotype, ad-
vancing liver inflammation and fibrosis [55]. Another study showed that CD56brightNK
cells decreased in intrahepatic lymphocytes in NAFLD patients, while CD56dimNK cells
increased compared to that in healthy controls, indicating the complex roles of each sub-
type of NK cells in NAFLD [56]. However, another study showed that there was only
a minor change in NK cell activation and inhibitory markers from NASH patients, except
natural killer group 2 member D (NKG2D) [57]. Natural cytotoxicity triggering receptor
1 (NKp46)+ NK cells can inhibit the progression of NASH and liver fibrosis via suppress-
ing the expression of profibrogenic genes as well as M2 polarization (anti-inflammatory
phenotype) of liver macrophages [58]. Therefore, the role of NK cells is dependent on
their subtypes.

3.3. NKT Cells

Activation of invariant natural killer T (iNKT) cell subsets was shown in choline-
deficient L-amino acid-defined HFD (CDAHFD)-induced murine NASH, accompanying
the accumulation of plasmacytoid dendritic cells (pDCs) [59]. In addition, the frequency
of iNKT cells was increased in peripheral blood mononuclear cells (PBMCs) from NASH
patients compared to that in healthy controls. The axis of CXCR6/CXCL16 plays an essen-
tial role in the recruitment of NKT cells in fatty liver, liver fibrosis, and liver cancer [60,61].
Gut microbiota such as Clostridium spp. induced secondary bile species (sBAs) activated
liver sinusoidal endothelial cells (LSECs) to produce the chemokine CXCL16 to attract
accumulation of hepatic CXCR6+NKT cells [62]. CD1d-deficient mice lacking NKT cells on
a high-fat high carbohydrate (HFHC) showed reduced body weight and hepatic triglyc-
eride content, mRNA expression of α-smooth muscle actin (α-SMA), collagen type 1 alpha
1 (Col1α1) and alpha 2 (Col1α2), and infiltration of macrophages, with improved NAFLD
activity scores [63]. Overall, NKT cells are normally increased in the liver, accompanying
the development of NAFLD and NASH.

3.4. Neutrophils

Neutrophils are one of the first response cells that are recruited to the injury site to
participate in the inflammatory response and tissue repair. Neutrophil depletion treated
with antibody 1A8 (200 µg/mouse per week for four times) can reduce body weight gain
and attenuate liver lipid accumulation with activation of lipid β-oxidation in HFD-fed
mice compared to mice treated with isotype control [64]. Neutrophil depletion was also
associated with a reduction in expression of inflammatory cytokines, such as TNF-α, IL-6,
and monocyte chemoattractant protein-1 (MCP-1/CCL2) [64].
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3.5. CD4 T Cells

Different subtypes of CD4+ T cells play different roles in NAFLD pathogenesis. Fatty
acid composition (e.g., the ratio of C16:1n7/C16:0) can modulate the frequency of CD4+ T
cell profiles in PBMCs of NAFLD patients, with an increase in CD25+CD45+CD4+ T cells
and a decrease in PD1+CD4+ T cells [65].

Obesity increased the accumulation of inflammatory hepatic CXCR3+ T helper 17 (Th17)
cells and concomitant expression of IL-17a, interferon (IFN)-γ, and TNF-α, resulting in
NAFLD progression [66]. Cellular metabolism impacts the inflammatory phenotype of hep-
atic Th17 cells, especially by pyruvate kinase M2 (PKM2)-mediated glycolytic pathway [66].
The ratio of Th17 and regulatory T (Treg) cells is critically important in the pathogenesis of
NAFLD and liver inflammation. Feeding an HFD increased the frequency of liver Th17
cells; meanwhile, it caused a decrease in Tregs in mice compared to ND feeding mice, result-
ing in an increased Th17/Treg ratio, progression of NAFLD, and liver inflammation [67].
IL-17+CD4+ T cells were significantly increased in the liver during NAFL to NASH pro-
gression [68]. The increase in Th17 cells in NASH patients was positively correlated with
an increased blood concentration of LPS [69].

Hepatic infiltration of Tregs was increased in CD62L-deficient mice, which was asso-
ciated with less hepatic lipid accumulation, reduced liver fibrosis, and improved insulin
resistance [70]. However, adoptive transfer of Tregs from healthy wild-type mice to mice
fed a high-fat, high-fructose diet (HFHFD) promoted hepatic steatosis due to infiltration of
Tregs in subcutaneous adipose tissue and/or a decrease in Th1 cells [71].

3.6. CD8 T Cells

Liver CD8+ T cells were increased in obese patients with NASH, which was associated
with the expression of α-SMA, a marker of HSC activation [72]. Depletion of liver CD8+

T cells reduced hepatic macrophages and α-SMA expression in obesity or hyperlipidemia-
induced NASH mice, but not in lean mice [72]. RNA-seq data showed that perforin
deficiency increased proinflammatory cytokine expression in hepatic CD8+ T cells in mice
with NASH [73]. Perforin-deficient mice fed with a methionine- and choline-deficient
diet (MCD) displayed an increase in CD8+ T cell accumulation and activation with the
expression of proinflammatory cytokines, but not CD4+ T cells and NK cells. Ex vivo
studies revealed that microbiota-derived extracts in NAFLD-HCC patients compared to
that can induce an immunosuppressive phenotype in human PBMCs, characterized by a
suppression of CD8+ T cells and expansion of Tregs [19]. NAFLD promotes CD8+ T cell
activation and suppresses its cytotoxicity to tumor cells by inducing immune tolerance.

3.7. B Cells

Fecal microbiota transplantation (FMT) of gut microbiota from human NAFLD pa-
tients into recipient mice can accelerate NASH progression via inducing accumulation
and activation of liver B cells [74]. ScRNA-seq data showed that intrahepatic B cells in
NASH mice display proinflammatory phenotype with activation of myeloid differentiation
primary response protein 88 (MyD88) signaling pathway [74]. Furthermore, depletion of
B cells suppressed NASH progression, whereas adoptive transfer of B cells from NASH
liver can induce NASH, indicating the pathogenic role of B cells in NASH.

Activation of HSCs, the major cells that contribute to liver fibrosis, is mediated by
the activation of intrahepatic immunity during NASH. For example, proinflammatory
cytokines such as TNF-α, transforming growth factor (TGF)-β1, and IL-1β expressed
by intrahepatic macrophages can activate HSCs to promote the progression of liver fi-
brosis and NASH [16]. In contrast, a recent study showed that tissue-resident memory
CD8+ T cells can trigger apoptosis of activated HSCs via Fas (TNF receptor superfamily,
member 6)/FasL-mediated signaling [75]. Therefore, the immune activation, hepatocyte in-
jury, and activation of HSCs are cross-talked with each other during NAFLD development
and progression (Figure 2).



Biomedicines 2021, 9, 1893 8 of 18

Figure 2. Innate and adaptive immune responses in the progression of NAFLD and liver fibrosis. Red
arrows show that the immune cells will be recruited into the fatty liver during NAFLD development,
such as CCR2+ monocytes/macrophages and neutrophils; the ratio of Th17/Tregs increases, NKT cell,
CD8 T cells, and B cells are activated and increased in different extend according to different models;
however, CD56brightNK cells are decreased. The immune activation and hepatocyte injury will
impact the activation of hepatic stellate cells (HSCs) to express extracellular matrix (ECM) proteins
via upregulation of profibrotic and proinflammatory cytokines, such as TGF-β1 and IL-β.

4. Molecules Involved in the Recruitment of Immune Cells in NAFLD and NASH

The recruitment of immune cells into the fatty liver plays a critical role in the patho-
genesis of NAFLD/NASH. Chemokines and their receptors are the key factors involved
in the recruiting process. For example, CCL2/CCR2 and CXCL9/10/CXCR3 signaling
pathways are involved in the migration of myeloid cells and T cells [66,76–78]. Another
study showed that gut-derived lymphocytes from mesenteric lymph nodes (MLN) can
migrate to the liver via CCL5 signaling and induce liver T cell activation and injury [79].
In this review, we discuss some recently explored molecules that are associated with the
infiltration of immune cells during NAFLD development and progression.

4.1. Integrins

Hepatic accumulation of integrins α4β7+CD4+ T cells was positively associated with
hepatic steatosis, inflammation, and fibrosis via its ligand mucosal addressin cell adhesion
molecule 1 in a Western diet (WD)-fed mice [80]. Another study showed that β7-Integrin-
deficient mice exhibited more inflammatory cell infiltration in the livers of mice fed with
HFD, especially neutrophils, promoting NASH progression [81].

4.2. Selectin

A soluble form L-selectin/CD62L was dramatically increased in the liver in patients
with NASH. CD62L-deficient mice showed dampened NASH features compared to wild-
type mice, including less hepatic lipid accumulation, reduced liver fibrosis, and improved
insulin resistance [70]. Hepatic infiltration of Tregs was increased in CD62L-deficient mice.
Similarly, treatment with anti-CD62L antibody protected HFD-induced NASH in mice [70].
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4.3. Runt-Related Transcription Factor 2 (Runx2)

Infiltration of hepatic infiltration of macrophages in HFD-induced NAFLD mice was
associated with an increase in hepatic Runx2 expression [82]. Both in vivo and in vitro
studies further revealed that the expression of receptor activator of nuclear factor-κB (NF-
κB) ligand (RANKL) was positively correlated with Runx2 expression [82]. Runx2 was
shown to be more specifically expressed in activated HSCs in NAFLD mice, which can
modulate the expression of monocyte chemotactic protein 1 (MCP-1) to increase liver
infiltration of macrophages [83].

5. Treatment Options for NAFLD and NASH Based on Modulation of Gut Microbiota,
Intrahepatic Immunity, and Metabolic Signaling Pathways

Many treatment agents have been tested in preclinical animal studies for the treatment
of NAFLD or NASH with promising effects, including modulation of gut microbiota, FXR
modulators, targeting chemokines and their receptors, anti-inflammatory or antioxidant
agents, and modulation of fibroblast growth factors (FGFs) and microRNAs (miRNAs).

5.1. Modulation of Gut Micorbiota
5.1.1. Bariatric Surgery (BS)

A prospective cohort in Japan showed that the prevalence of NAFLD and NASH
was 82.4% and 77.5%, respectively, in morbidly obese patients [84]. BS treatment in
morbidly obese patients with NASH resulted in 85% of the disappearance of NASH
and reduction in histological features, including steatosis, hepatocellular ballooning, and
lobular inflammation [85]. A 5-year follow-up of NASH patients with BS showed that
NASH was resolved in 84% of patients, and fibrosis was ameliorated in 70.2% of patients.
In addition, no significant recurrence was shown in patients with resolution of NASH in
5 years [86].

5.1.2. Fecal Microbiota Transplantation

FMT has been tested as a therapeutic strategy to prevent and treat different diseases
associated with gut microbiota dysbiosis. FMT is a procedure to transfer healthy donor
stool into the gastrointestinal tract of the patient in order to restore the balance of gut
microbiota. For example, FMT is an effective and safe treatment for the recurrence and
reduction in severe Clostridium difficile infection (CDI) induced by gut dysbiosis [87,88].
The serum level of proinflammatory cytokines (e.g., TNF-α and IL-1β) was significantly
reduced in CDI patients with FMT [87], the inducing factor for NAFLD. Eight-week FMT
improved gut microbiota dysbiosis with increased abundances of the beneficial bacteria
Christensenellaceae and Lactobacillus and intestinal tight junction protein ZO-1, and reduced
hepatic lipid accumulation, proinflammatory cytokines, and NAFLD activity score (NAS)
in HFD-fed mice [89]. In addition, hepatic expression of IFN-γ and IL-17 was decreased
post FMT. A clinical study showed that FMT in NAFLD patients did not improve insulin
resistance and hepatic proton density fat fraction but improved the intact of small intestinal
barrier [90]. Still, more clinical trials are expected to further validate the efficacy of FMT in
NAFLD/NASH patients.

5.1.3. Probiotics

Treatment with probiotics significantly ameliorated HFD-induced NAFLD in rats by
decreasing the abundance of pathogenic bacteria and upregulating the bile acid receptor
FXR/FGF15 signaling pathway [91]. A meta-analysis showed that probiotics/synbiotics
were helpful to reduce hepatic steatosis, inflammation, liver stiffness measured by elas-
tography in patients with NAFLD [92]. In addition, treatment with probiotics but not
synbiotics was associated with a reduction in body mass index. Pediatric NAFLD pa-
tients treated with a probiotic capsule, including Lactobacillus acidophilus (ATCC B3208),
Bifidobacterium lactis (DSMZ 32269), Bifidobacterium bifidum (ATCC SD6576), Lactobacillus
rhamnosus (DSMZ 21690) for 12 weeks showed reduced liver injury and a higher percentage
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of normal liver sonography in compared to placebo treatment [93]. Administration of Bac-
teroides uniformis (CBA7346), a strain isolated from the healthy human gut, can ameliorate
liver injury, inflammation, and lipid accumulation in NAFLD mice induced by feeding an
HFD via improving insulin resistance and regulating de novo lipogenesis-related proteins,
such as fatty acid synthase (FAS) and peroxisome proliferator-activated receptor-gamma
(PPARγ) [94].

5.2. FXR Modulators

Clifford et al. showed that FXR activation both in mice and humans can specifically
decrease the levels of monounsaturated fatty acids (MUFA) and polyunsaturated fatty
acids (PUFA) in the liver [95]. FXR agonist GSK2324 suppressed hepatic lipid accumulation
via suppressing lipogenesis in the liver and lipid absorption in the intestine [95]. Treatment
with FXR agonist cilofexor reduced portal pressure and hepatic hydroxyproline product,
as well as the expression of Col1a1, platelet-derived growth factor receptor beta (PDGFR-β),
and desmin in NASH rats [96], indicating amelioration of liver fibrosis.

5.3. Targeting Chemokines/Chemokine Receptors

Chemokines and their receptors, such as CCL25 and CCR9, play important roles in
the hepatic infiltration of macrophages and other immune cells in NAFLD/NASH [97,98].
Therefore, inhibiting this axis may prevent liver inflammation and liver fibrosis. Treatment
with CCR9 antagonist CCX282-B (vercirnon) inhibited fibrosis progression in mice with
NASH [98]. Blocking CCL24 with a monoclonal antibody significantly reduced liver fibrosis
and inflammation in methionine choline-deficient (MCD) and STAM (streptozotocin + HFD)
mouse models and in thioacetamide (TAA)-treated rat model [99].

5.4. Modulation of FGFs

Treatment with aldafermin, an engineered analog of FGF19, markedly reduced serum
BAs, specifically hydrophobic BAs, such as DCA, lithocholic acid (LCA), glycodeoxycholic
acid (GDCA), glycochenodeoxycholic acid (GCDCA), and glycocholic acid (GCA) in NASH
patients [100]. In addition to prebiotics, natural medicine such as the traditional Chinese
medicine Salvia-Nelumbinis naturalis can activate intestinal FXR-FGF15 signaling to de-
crease hepatic CD68+ macrophages and expression of inflammatory cytokines IL-1β and
TNF-α [101].

5.5. Anti-Inflammatory and Anti-Oxidative Agents

Natural polyphenols such as resveratrol with anti-inflammatory and antioxidant prop-
erties show potential efficiency against NAFLD [102]. Polyphenol showed multiple effects,
including reduction in body weight gain and hepatic fat accumulation, improvement of
insulin resistance, and amelioration of oxidative stress, mitochondrial dysfunction, and
ER stress [103]. In addition, they can decrease both serum and liver proinflammatory cy-
tokines that contribute to the fatty liver [104]. Treatment with methyl brevifolincarboxylate,
a natural polyphenolic compound, reduced lipid metabolism and inflammatory markers,
such as TNF-α, IL-6, and IL-1β, via modulating 5′ adenosine monophosphate-activated
protein kinase (AMPK)/NF-κB signaling pathway [105]. However, clinical studies are still
needed to confirm the function of polyphenols.

Administration of hydro-alcoholic extract of spinach reduced the expression of proin-
flammatory cytokine TNF-α and enhanced the expression of PPAR-γ in the livers of NAFLD
rats at prevention and treatment phases [106]. Dietary vitamin E such as α-tocopherol has
potential protective effects against steatosis [107].

5.6. miRNAs

MicroRNAs (miRNAs) play important roles in regulating cell apoptosis, migration,
and lipid metabolism during the development of NAFLD [108], which may function
as diagnosis markers (e.g., miR-144-3p and miR-200b-3p) [109]. Keeping the balance
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of Th17/Treg ratio via modulating miR-195 expression can inhibit CD40 expression to
ameliorate NAFLD in rats. In contrast, anti-miR-195 treatment aggregated NAFLD by
interrupting Th17/Treg balance [110]. Upon a high-fat, high-cholesterol, high-sugar diet
feeding, miR-155 KO mice displayed less liver injury, decreased steatosis, and attenuation
in fibrosis compared to wild-type mice [111].

The above-discussed treatment options are summarized in a figure (Figure 3). In addition,
cell-based therapy by adoptive transfer cells to NAFLD mice shows a therapeutic effect. For
example, injection of anti-inflammatory MER receptor tyrosine kinase (MERTK)+/hiM2c-
macrophages to NAFLD mice increased serum level of high-density lipoprotein (HDL) and
decreased total NAFLD pathological score via reducing liver inflammation, cell death, and
fibrosis [112].

Figure 3. Treatment options for NAFLD. There are several options to accelerate the reverse of NAFLD
even NASH, including modulation of gut microbiota, targeting chemokine/chemokine receptor
signaling, change of lifestyle, modulation of miRNAs, Farnesoid X receptor (FXR), and fibroblast
growth factors (FGFs), cell-based therapy, anti-inflammatory, and anti-oxidative agents, as well
as others.

6. Clinical Trials for NAFLD Treatment

Many treatment agents have been tested in clinical trials for the treatment of NAFLD or
NASH with promising effects, including chemokine receptor antagonist (e.g., cenicriviroc,
a dual antagonist of CCR2 and CCR5), FXR agonist (e.g., obeticholic acid), modulation of
FGF (e.g., aldafermin, an analog of FGF19), PPAR agonist (e.g., lanifibranor, a pan-PPAR
agonist), diet intervention (e.g., low-calorie diet), anti-inflammatory or antioxidant agents
(e.g., omega-3), and modulation of gut microbiota (e.g., synbiotics). Representative trials
were selected with clinical results in the last 5 years before 11 October 2021 (Table 1).
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Table 1. Current clinical trials for NAFLD and NASH treatment.

Trial Number Phase Agents Results References

NCT02217475 2 Cenicriviroc

Treatment with cenicriviroc (CVC), a dual
antagonist of CCR2 and CCR5, ameliorated liver
fibrosis but did not worse steatosis compared to
placebo treatment.

[36]

NCT03008070 2 Lanifibranor
Treatment with lanifibranor, a pan-PPAR agonist,
decreased liver enzyme levels and inhibited lipid
accumulation, inflammation, and fibrosis.

[113]

IRCT2016102530489N1 2–3 Omega-3
Supplementation with omega-3 for 12 weeks with
2000 mg per day can improve fatty liver and
visceral adiposity indexes.

[114]

NCT02443116 2 Aldafermin

Treatment with aldafermin (1 mg) daily for 24
weeks, an analog of FGF19, significantly reduced
liver fat content and improved liver injury, and
improved liver fibrosis in a higher percentage of
NASH patients, compared to placebo.

[115]

NCT02912260 2 Resmetirom

Treatment with resmetirom, a liver-directed,
orally active, selective thyroid hormone
receptor-β agonist, significantly reduced liver fat
accumulation after 12 weeks or 36 weeks in
patients with NASH.

[116]

NCT01265498 2 Obeticholic acid

Treatment with obeticholic acid (OCA), a
farnesoid X receptor agonist, increased total
low-density lipoprotein (LDL) particle
concentration and reduced a reduction in total
high-density lipoprotein (HDL) particle
concentration at 12 weeks.

[117]

NCT01680640 2 Synbiotic

Administration of a synbiotic combination of
probiotic and prebiotic agents for a year changed
fecal microbiome but did not ameliorate fatty
liver and liver fibrosis.

[118]

NCT04038853 4 Vitamin D

Over twelve-month treatment of low-medium
dose supplementation of vitamin D (1000 IU/day)
decreased transient elastography (FibroScan)
indices of liver steatosis and fibrosis (liver
stiffness measurement) in adult NAFLD patients.

[119]

NCT02679417 None Exercise and
dietary change

Both moderate-intensity aerobic training and
resistance training with dietary modification can
effectively reduce liver fat and improve insulin
resistance in NAFLD patients.

[120]

IRCT20100524004010N23 None Bacillus coagulans
plus inulin

Twelve-week supplementation with Bacillus
coagulans plus inulin is beneficial for the
treatment of NAFLD and its related inflammation
without any significant effects on related
cardiovascular risk factors.

[121]

ISRCTN85177264 None A very-low-calorie
diet

With a very low-calorie diet (VLCD) intervention
for a maximum of 12 weeks, 34% and 68% of
patients achieved and sustained ≥10% and ≥5%
weight loss at 9-month follow-up, respectively.
For NAFLD patients who completed the dietary
intervention, VLCD can improve liver health,
cardiovascular risk, and metabolic health in those
completing the intervention.

[122]
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7. Conclusions

NAFLD is the most chronic liver disease in the global population, and its incidence
increases with the prevalence of obesity and T2D. Currently, NAFLD is the most increasing
factor to induce primary liver cancer, HCC. However, there are no currently available FDA-
approved treatments for NAFLD. Gut microbiota-derived metabolites and components
play pivotal roles in the development and progression of NAFLD. Preclinical studies and
clinical trials have been processed to evaluate potential treatment options for NAFLD
and NASH, including synbiotics, omega-3, CCR2/5 antagonists, FXR agonists, and so on.
A combined treatment such as combined medical treatment and physical activity could
reduce the treatment time and improve the outcome. Although preclinical animal studies
show the effects of pre-/probiotics and FMT, more clinical trials are waiting to verify the
efficacy of balancing gut microbiota profile in patients with NALFD/NASH. In the future,
meta-omics, including metabolomics with bioinformatic analysis, should be applied to
search for early diagnostic markers and therapeutic targets for NAFLD and NASH.
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