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Abstract: Sedentary behavior constitutes a pandemic health threat contributing to the pathophysiol-
ogy of obesity and type 2 diabetes (T2D). Sedentarism is further associated with liver disease and par-
ticularly with nonalcoholic/metabolic dysfunction associated fatty liver disease (NAFLD/MAFLD).
Insulin resistance (IR) represents an early pathophysiologic key element of NAFLD/MAFLD, predia-
betes and T2D. Current treatment guidelines recommend regular physical activity. There is evidence,
that physical exercise has impact on a variety of molecular pathways, such as AMP-activated protein
kinase and insulin signaling as well as glucose transporter 4 translocation, modulating insulin action,
cellular substrate flow and in particular ectopic lipid and glycogen storage in a positive manner.
Therefore, physical exercise can lead to substantial clinical benefit in persons with diabetes and/or
NAFLD/MAFLD. However, experience from long term observational studies shows that the patients’
motivation to exercise regularly appears to be a major limitation. Strategies to integrate everyday
physical activity (i.e., nonexercise activity thermogenesis) in lifestyle treatment schedules might be
a promising approach. This review aggregates evidence on the impact of regular physical activity
on selected molecular mechanisms as well as clinical outcomes of patients suffering from IR and
NAFLD/MAFLD.

Keywords: insulin resistance; type 2 diabetes; nonexercise activity thermogenesis; AMP activated
protein kinase; ectopic lipids

1. Introduction

The term nonalcoholic fatty liver disease (NAFLD) was defined in the 1980s to describe
exceeding hepatocellular triacylglycerol accumulation in absence of significant alcohol
intake, viral and autoimmune liver disease [1]. The course of NAFLD was long thought to
follow the so-called “two hit hypothesis” [2]. Manifestation of bland steatosis (nonalcoholic
fatty liver, NAFL) was defined as first hit, while signs of liver inflammation, hepatocyte
injury and fibrosis, becoming evident in varying percentages of patients, were proposed
as succeeding second hit. Presence of these pathologies can be evaluated histologically,
using defined staging and grading systems, and is termed then nonalcoholic steatohepatitis
(NASH) [1,3,4]. Steatosis can alternatively be evaluated by noninvasive approaches [4,5].

The prevalence of NAFLD is globally increasing and parallels the pandemic rise in
obesity [6–8]. This is particularly apparent for subjects suffering from type 2 diabetes
(T2D). A recent meta-analysis indicates that on a global perspective more than 55% of
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T2D patients suffer from NAFLD and a further 37% from NASH. Highest prevalences are
reported for Europe, West Asia, and Pan-America [9]. Insulin resistance (IR) is related
to hypertension and T2D and recognized as strongest predictive parameter of NAFLD
progression, putting patients to an elevated risk of morbidity and mortality [4]. Sedentary
behavior constitutes an associated risk factor and correlates with clinical outcomes [10,11].
It is accepted that lifestyle modifications including regular physical exercise can beneficially
modify long term sequelae of prediabetes and T2D [12–15]. Therefore, regular physical
activity is hypothesized to have effects on the prevention and amelioration of fatty liver
disease. However, the majority of lifestyle interventions examined the impact of combined
dietary and exercise strategies, while exclusive effects of physical training are less studied.
This review will summarize available evidence concerning potential mechanisms and
clinical benefits of exclusive physical training on ectopic lipid deposition. The scope will
mainly cover the role of skeletal muscle, since it represents the organ system mostly affected
by physical training. Furthermore, skeletal muscle has remarkable relevance in terms of
whole-body insulin action and fuel homeostasis.

2. Insulin Resistance as Trigger Event for NAFLD Onset, Progression,
and Clinical Course

NAFLD is recognized as a heterogenous disease, with disparate and complex causes
of liver dysfunction [1]. Various maladaptations along with genetic influences are thought
to be responsible for NAFLD onset and progression. The disease is therefore increas-
ingly termed metabolic dysfunction associated fatty liver disease (MAFLD) [1]. Chronic
subclinical inflammation and IR are considered as most significant molecular drivers
of NAFLD/MAFLD progression [4,16,17]. Due to the potential risk of leading to liver
fibrosis/cirrhosis this can determine patient prognosis [18–23]. NAFLD/MAFLD is re-
lated to renal and cardiovascular disease, whereby obesity and T2D are delineated as
main pathologies linking NAFLD/MAFLD with long term sequelae [24–29]. Furthermore,
metabolic fatty liver disease is a predictor of colorectal adenoma, related to the incidence
of various malignancies, and in particular to the incidence of hepatocellular carcinoma
(HCC) [21,22,30–32]. In the US, metabolic fatty liver disease is currently the second leading
etiology of HCC-related liver transplantation and patients undergoing major surgery have
more perioperative complications and longer hospital stay. After transplantation there is a
significant risk of de novo T2D and NAFLD/MAFLD, and furthermore of premature death
from cardiovascular complications and sepsis [33–40]. Together, MAFLD/NAFLD has to
be considered a multisystem disease, as hepatic manifestation of the metabolic syndrome
(MeSy)/T2D and can influence patient prognosis [39,41,42].

IR is the early pathophysiologic trigger event in the overnutrition-MeSy-T2D spectrum
([43]; reviewed in [44]). IR is closely related to ectopic lipid deposition, whereby liver fat is
recognized as central predictor of whole-body insulin sensitivity, or reciprocally IR under
human in vivo conditions [4,43–46]. The metabolic condition of skeletal muscle, the organ
system most evidently impacted by physical exercise, was recently found to be influenced
by liver lipid status in a dose dependent fashion [46]. Regular physical exercise can
favorably modulate whole-body IR and improve glucose control and life expectancy of T2D
subjects [47]. Therefore, guidelines on T2D management suggest regular physical activity
as one causal treatment option [48,49]. This treatment strategy could also exert beneficial
effects under conditions of NAFLD/MAFLD [50]. Current guidelines on the clinical
management of metabolic fatty liver disease include such recommendations, although
evidence is sparse and potential underlying molecular mechanisms are fragmentarily
understood [51].

3. The Concept of Metabolic Flexibility: Molecular Mechanisms of Physical Activity
on Glucose Metabolism and Insulin Signaling in Skeletal Muscle

The concept of metabolic flexibility is defined by the ability to rapidly adapt to
conditional changes in energetic substrate demand, as for instance with transition from
feeding to the fasted state, or acute onset of physical activity [52–55]. It was shown in the
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1990s that postabsorpive IR humans expose markedly reduced skeletal muscle fatty acid
oxidation, a state termed metabolic inflexibility [56]. Although evidence in this field has
enormously grown in past decades it remains established that IR is a key component of
metabolic inflexibility (reviewed in [54]). IR is clinically relevant mainly in white adipose
tissue (WAT), skeletal muscle, and the liver. A broad body of evidence is available regarding
the numerous molecular mechanisms responsible for the development of IR, to which
the interested reader is referred [57,58]. Selected aspects in skeletal muscle, which can be
modified by physical activity, will be in scope of this paragraph.

Skeletal muscle accounts for 60–80% of insulin stimulation-mediated glucose
metabolism [59]. Rising skeletal muscle metabolic activity by means of physical exer-
cise therefore constitutes a promising therapeutic approach. Multiple mechanisms are
discussed with regards to acute or chronic exercise training on insulin action and related
substrate flux [60–66]. Figure 1 provides an overview.
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Figure 1. Potential molecular mechanisms of physical exercise and lipid species on glucose up-
take and modulation of insulin action in skeletal muscle (conducted according to [57,63,64,66–69]).
Physical exercise basically modulates supply of substrates and signaling molecules (via enhanced
capillary perfusion, capillary recruitment/expansion of capillary volume); membrane transport of
glucose (effects are majorly reported for GLUT4); mitochondrial adaptations (mitochondrial plastic-
ity) and metabolic activation (glycolysis, lipid metabolism); and storage capacity and mobilization
of energetic substrates (glycogen, IMCL). Effects of physical activity on insulin action and glucose
uptake mediated by activation of AMP-activated protein kinase have been evaluated in various
clinical settings (reviewed in [44]). AKT2, gene 2 encoding proteinkinase B; AMPK, AMP-activated
protein kinase; CaMK, calcium/calmodulin kinase; DAG, diacylglycerol; FATP, fatty acid transport
protein; G6P, glucose 6 phosphate; GLUT, glucose transporter; GS, glycogen synthase; GSK, glycogen
synthase kinase; GSV, glucose transporter storage vesicle; IRS, insulin receptor substrate; IMCL,
intramyocellular lipids; MAPK, mitogen-activated protein kinase; NEFA, non-esterified fatty acids;
OxPhos, oxidative phosphorylation; PCr, phosphocreatine; PI3K, phospho-inositol 3 kinase; PKC,
proteinkinase C; SR, sarcoplasmic reticulum.

Hallmarks of peripheral IR are impaired glucose transporter 4 (GLUT4) mediated
glucose uptake by skeletal muscle, and compromised suppressibility of WAT lipolysis
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(reviewed in [44]). Visceral obesity is common in IR subjects and extensive evidence im-
plicates that elevated circulating non-esterified fatty acids (NEFA) from inappropriate
WAT hyperlipolysis are contributing to the etiology [17,70,71]. Under hyperlipolytic con-
ditions increased proportions of NEFA are taken up by skeletal muscle. As indicated in
Figure 1 this is followed by a rise in diacylglycerol (DAG), a product exerting potential
lipotoxic effects on insulin signal transduction, resulting in reduced insulin stimulated
GLUT4 translocation [17,64]. Supporting this, in vivo experimental settings in humans
have shown that increased NEFA exposure of skeletal muscle reduces both, non-oxidative
and oxidative glucose metabolism, as mirrored by 50% reduced glucose oxidation rates and
glycogen storage capacity, respectively [58,72,73]. Furthermore, “NEFA overflow” under IR
conditions is related to a rise in intramyocellular lipid (IMCL) deposition, which could play
a role in buffering NEFA influx [58]. IMCL, particularly the depots in the subsarcolemmal
region, correlate with the presence of IR under in vivo conditions in obese subjects, and are
associated with cellular DAG and ceramide levels [74–76]. IMCL elevation is hypothesized
to result not alone from increased lipid uptake, but also from impaired mitochondrial
function. Experimental research supports this hypothesis, showing that skeletal muscle
overexpression of the human catalase gene to mitochondria protects from age-related
mitochondrial dysfunction and lipid-induced IR [77]. A role for mitochondrial dysfunction
is further supported by findings in young lean and normoglycemic subjects with diabetic
parents, exposing a 60% increase in IMCL along with a 38% reduced mitochondrial density,
and 60% diminished insulin stimulated glucose uptake [78]. Knowledge on IMCL was just
recently expanded by showing that contribution of IMCL to whole-body lipid oxidation
could decrease in an obesity dependent manner [76]. Interestingly, lean old and young
subjects had comparable IMCL, while old obese subjects had more than twofold greater
IMCL and were more IR. The authors of this study suggest that skeletal muscle IR and
lipid accumulation are likely due to lifestyle factors rather than inherent ageing of skeletal
muscle [76]. Remarkably, normal weight endurance trained athletes also have higher
IMCL levels with concomitantly increased muscle DAG, but are at the same time more
insulin sensitive as compared to sedentary normal weight and obese subjects (“athlete’s
paradox”) [74]. In that regard it is known that muscle contractions, comparable to insulin
stimulation, can increase DAG levels in skeletal muscle cells and potentially play a role
in adaptations induced by exercise [79–81]. Therefore, regular physical exercise could not
alone normalize DAG related metabolism, but also impact specific proteins involved in
subcellular IMCL formation and mobilization. Moreover, physical training appears to
improve (or maybe even preserve) mitochondrial function, mediated at least in part by
AMP-activated protein kinase (AMPK) [66,69,74,75]. The latter phenomenon is of specific
interest in the discussion according to NAFLD/MAFLD, since it was shown by Michael
Rodens’ group in humans in vivo that patients suffering from NASH have substantial mito-
chondrial dysfunction despite higher mitochondrial mass, resulting in impaired metabolic
flexibility [82]. It is well known that IR correlates with mitochondrial function, even in
skeletal muscle [83]. Otherwise, beneficial effects of regular exercise on mitochondrial
plasticity are recognized [84,85]. For instance, rigorous physical exercise under specific
conditions just over few weeks was lately shown to improve muscle mitochondrial volume
density by as much as 50% and citrate synthase activity by 40% [86]. Consequently, mito-
chondrial dysfunction can be defined as central pathology related to IR and ectopic lipid
accumulation, while physical activity can be interpreted as a potent treatment option to re-
store or at least preserve metabolic flexibility. Remarkably, not only endurance training, but
also resistance exercise can exert favorable adaptions on ectopic lipid metabolism [87,88].
Figure 2 shows a representative IMCL droplet in skeletal muscle of a trained subject. The
close spatial relationship of IMCL and mitochondria could be indicative of a “logistic
adaptation”, to be able to quickly respond to increased substrate demand.
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Figure 2. Electron micrograph of a longitudinal section of skeletal muscle tissue. In the center, at
the z-line level, interfibrillar mitochondria with a lipid droplet immediately adjacent are shown
(micrograph taken from [89] with kind permission of [90] and Springer-Nature). In support of the
concept of metabolic flexibility it is believed that greater IMCL storage capacity in athletes represents
an adaptive response to regular physical training, allowing a larger contribution of the local lipid
pool as an energetic substrate source during exercise in order to preserve glycogen [89,91]. Li, lipid
droplet; mc, central mitochondria; mf myofilament; marker indicates 0.5 µm.

Another elementary energy storage substrate in terms of physical exercise is glycogen.
There is an inverse relationship of IR-status, glycogen synthase activity and glycogen
storage capacity in human skeletal muscle in vivo [72,92,93]. By contrast, exercise-induced
depletion of depots is followed by an enhanced ability to synthesize glycogen [65]. Using
a defined depletion-recovery protocol under combined exercise and dietary restriction
conditions, followed by carbohydrate overfeeding over days resulted in glycogen storage
capacity in humans as high as 15 g per kilogram body weight [94]. Glycogen depletion
due to exercise and repletion by dietary intervention during recovery is a routinely used
strategy of many athletes [95,96]. Moreover, highly trained endurance athletes can increase
fatty acid oxidation in response to lipid overload. At the same time glycogen storage within
muscle is preserved at the expense of decreasing glucose oxidation. This maneuver, which is
associated with higher mitochondrial capacity of the exercised muscle, represents a unique
example of metabolic flexibility [54]. As regards NAFLD/MAFLD, improved glycogen
storage and mobilization capacity would be desirable, since this would theoretically help to
relieve glucose load from the liver and thereby leave less substrate for de novo lipogenesis
(reviewed in [44]). Remarkably, a single bout of exercise can substantially rise insulin
sensitivity in IR subjects, while the subsequent increase in insulin stimulated skeletal
muscle glucose uptake and glycogen synthesis can be observed for up to 48 h. Interestingly,
glycogen levels are increased independently from muscle glycogen content under such
conditions (reviewed in [96]). Further research is required to explore which preconditions
and exercise schedules will result in best clinical results, specifically in ageing human
NAFLD/MAFLD patients. However, it appears that exercising in the fasted state can
substantially stimulate glycogen synthesis and IMCL breakdown, at least in young healthy
volunteers [97]. Moreover, GLUT4 content of skeletal muscle is related to muscle mass,
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suggesting potential over-additive effects of a combined endurance and resistance exercise
schedule [98].

Finally, one aspect in terms of exercise which can potentially result in unfavorable
adaptations needs to be discussed. There is a known relationship between exercise intensity
and improved glucose uptake [66]. However, very intense exercise (particularly eccentric
exercise, i.e., downhill running), resulting in disruption of muscle cell integrity followed by
delayed onset of muscle soreness due to eliciting local inflammatory response can decrease
glucose disposal in skeletal muscle for up to 48 h (reviewed in [99]). Although earlier data
suggest a compensatory pancreatic β-cell response resulting in raised insulin levels after
eccentric exercise in young healthy subjects, it is still unclear whether this remains true
for older IR patients [100]. Furthermore, it has been shown very recently that excessive
training (i.e., high intensity interval training, HIIT) results in impaired mitochondrial
function and glucose intolerance [101]. This clearly indicates that exercise schedules for
improving insulin action, glucose uptake and ectopic lipid storage in older IR subjects
require professional assessment, appropriate planning, monitoring and management.

Together, regular physical exercise can beneficially impact gross adaptational processes
involved in fuel storage and mobilization associated with IR. The concept of metabolic
flexibility provides some explanation governing fuel selection between NEFA and glucose,
with the related substrate shift serving more efficient energy source utilization during
exercise. Beyond this metabolic flexibility enables the switch from catabolic to anabolic pro-
cesses in which energy substrates can be effectively stored after muscle activity [54]. These
adaptations are realized by a multitude of modulations on the transcriptomic, proteomic,
and epigenomic level. Obviously, AMPK appears to have a key regulatory function in this
situation ([102,103]; reviewed in [54]). From a pathophysiological perspective the model of
metabolic flexibility is specifically attractive under conditions of NAFLD/MAFLD, since
it can be concluded from existing literature that the regularly exercised skeletal muscle
provides substantial surplus storage capacity for energetic substrates (i.e., NEFA and glu-
cose). Moreover, restoration of skeletal muscle fuel depots relies on provision from food
sources, further contributing to relieve the liver from an overflow of potential nutritoxic
substrates [104,105].

4. Data on Lifestyle Interventions under Conditions of Insulin Resistance
and NAFLD/MAFLD

There is a plethora of data suggesting beneficial effects of lifestyle interventions on
clinical endpoints in T2D [47,106]. Furthermore, in subjects suffering from prediabetes, i.e.,
impaired glucose tolerance (IGT), lifestyle intervention studies have proven to decrease the
incidence of T2D (reviewed in [48]). Prominent examples comprise the DaQuing Study,
the Finish Diabetes Prevention Study and the Diabetes Prevention Program [12,15,107,108].
Over a period of few years the risk of incident T2D was reduced by more than 50% in these
trials. The latter is supported by a report on the Lifestyle intervention and Impaired glucose
tolerance Maastricht (SLIM) trial, which has been shown to still impact clinical endpoints
four years after stopping the intervention [109,110]. In contrast the almost 10-year lasting
prospective randomized LookAHEAD study in T2D patients was unable to find substantial
effects on cardiovascular events, although the intervention group experienced significant
weight loss [111]. Of note, secondary analyses of this hallmark study were able to show
that the magnitude of weight loss may be predicting in terms of outcome measures [112].
Mean weight loss in most intervention studies was modest, typically ranging around 5 kg
or less. Thus, a variable percentage, yet not all the longer-term effects, can be apparently
explained by weight loss. Together, there is decent evidence that physical activity as part of
a lifestyle intervention schedule cannot alone impact metabolic control, but also beneficially
influence outcome parameters in subjects suffering from IR, which has been recognized in
recommendations on the clinical management of T2D [48,113].

What can we learn from these data when focusing on NAFLD/MAFLD? As outlined,
IGT, T2D, and NAFLD/MAFLD have IR as a core pathophysiologic trigger event in
common. Physical exercise is capable of improving and maybe reversing IR, and it is
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reasonable to assume that it represents a potent treatment modality in motivated patient
groups. Short term decreases in physical activity coming along with a rise in sedentary
behavior are sufficient to reduce multiorgan insulin-sensitivity and in parallel increase
liver fat, supporting the given hypothesis [114]. Regarding that, improved insulin action
in peripheral tissues is thought to represent the main mechanism contributing to liver fat
decline following exercise (reviewed in [115,116]). However, only few data are available on
this matter. Most studies have significant shortcomings as for instance (extremely) short
duration, uncontrolled and/or non-randomized or retrospective design, and/or application
of a combination of dietary intervention and exercise methods. However, all of them were
more or less consistently able to show beneficial effects on primarily liver fat and most also
on features of IR/glucose control [117–127]. Prospective randomized controlled studies
exclusively examining the effects of regular physical training on NAFLD/MAFLD features
are rare. Table 1 summarizes representative interventions using exercise-only approaches.

Table 1. Randomized controlled studies examining exclusive physical exercise effects in NAFLD/MAFLD.

Author Design Intervention and Methods Outcomes Drop Out

[128]

Randomized,
placebo controlled

n = 23
sedentary
NAFLD/MAFLD
patients

1 month supervised
aerobic cycling exercise
vs. stretching (placebo)

IR (HOMA-IR),
dietary record monitoring,
visceral adipose volume,
liver fat (1H-MR
spectroscopy)

Significant reduction of
liver fat
and visceral adipose volume
(intervention group)
under conditions of
unaltered
dietary habits
No effects on IR
No effects on body weight

Drop out/excluded
from analysis:
n = 4 (17%)

[129]

Randomized,
controlled

n = 21
NAFLD/MAFLD
patients

Partially supervised
resistance exercise (2 months)
vs. control
Glucose control/IR
(fsOGTT-AUC, HOMA-IR),
liver lipids and abdominal
fat (1H-MR spectroscopy),
body weight

Significant reduction of
liver fat (intervention group)
Improved glycemic control
and IR (intervention group)
No effect on body weight
and body fat

Drop out/excluded
from analysis:
n = 2 (9%)

[130]

Randomized,
controlled

n = 45 obese
adolescent males

Supervised aerobic vs.
resistance exercise vs.
control (3 months)

Insulin sensitivity
(HE and HH clamp),
liver fat (1H-MR
spectroscopy,
in subgroups),
abdominal fat and body fat
(whole-body magnetic
resonance imaging)

Body weight stabilization
(both intervention groups)
compared to controls
(weight gain)

Significant reduction of liver
fat
and visceral adipose volume
(intervention groups)
Improved insulin sensitivity
(resistance exercise group)

Drop out/excluded
from analysis:
n = 3 (7%)

[131]

Randomized,
controlled,

n = 33
NAFLD/MAFLD
Patients

Partially supervised
aerobic exercise
vs. control (4 months)

NAFLD/MAFLD-related
Lipoprotein kinetics
(tracer methods),
body composition (DEXA),
liver fat (1H-MR
spectroscopy)

Significant reduction of
liver fat (intervention group)

No effect on body weight
and
body fat
No effect on lipoprotein
kinetics

Drop out/excluded
from analysis:
n = 15 (45%)
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Table 1. Cont.

Author Design Intervention and Methods Outcomes Drop Out

[132]

Randomized,
controlled,

n = 82
NAFLD/MAFLD
Patients

3 months of partially
Supervised resistance
Exercise
vs. placebo (stretching)

Body composition (DEXA),
dietary record monitoring,
liver steatosis (HRI)

Significant reduction of liver
fat,
body fat and
trunc fat mass
(intervention group)
under conditions of
unaltered
dietary habits

Drop out/excluded
from analysis:
n = 18 (22%)

[133]

Randomized,
controlled

n = 29
NAFLD/MAFLD
patients

Partially supervised
high intensity interval
cycling (3 months) vs.
control

Glucose control/IR
(fsOGTT-AUC, HOMA-IR),
body composition
(air displacement
plethysmography),
liver fat (1H-MR
spectroscopy)

Significant reduction of liver
fat
(intervention group)
Improved 2-h glucose,
no effect on IR
Body fat and body weight
reduction (intervention
group)

Drop out/excluded
from analysis:
n = 6 (21%)

[134]

Randomized,
placebo controlled

n = 48
sedentary
NAFLD/MAFLD
patients

2 months supervised aerobic
cycling exercise (subgroups
with varying volume and
intensity) vs.
stretching/self massage/
fitness ball (placebo)

Dietary monitoring,
visceral adipose volume
(magnetic resonance
imaging),
liver fat (1H-MR
spectroscopy)

Significant reduction of liver
fat
and visceral adipose volume
(intervention group)
under conditions
of unaltered dietary habits

Drop out:
n = 0 (0%)

[135]

Randomized,
controlled

n = 69
NAFLD/MAFLD
patients

Supervised aerobic exercise
(4 months)
vs. counselling (control)

Peripheral insulin sensitivity,
dietary monitoring,
hepatic glucose production
(HE clamp in a subgroup),
abdominal fat
(magnetic resonance
imaging),
liver fat (1H-MR
spectroscopy)

Significant reduction of liver
fat
(supervised exercise)
(p = 0.05)
under conditions of
unaltered
dietary habits
Improved glycemic control
and
peripheral insulin sensitivity
(supervised exercise)
Body weight and
abdominal fat mass
reduction
(supervised exercise)

Drop out/excluded
from analysis:
n = 19 (28%)
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Table 1. Cont.

Author Design Intervention and Methods Outcomes Drop Out

[136]

Randomized,
controlled

n = 220 NAFLD/MAFLD
patients

6 months of vigorous-
moderate exercise
(jogging and brisk walking)
vs. 12 months of moderate
exercise (brisk walking)
vs. control (no exercise)

Liver fat (1H-MR
spectroscopy after 6
and 12 month),
body weight,
waist circumference,
body fat

Significant reduction of liver
fat
after 6 and 12 months
(in both exercise groups)
Reduced body fat (vigorous-
moderate exercise group
after
6 and 12 months)
Reduced waist circumference
(both exercise groups after
12 months)
Reduced body weight
(both exercise groups after
12 months)

Drop out/excluded
from analysis:
n = 9 after 6 months
(4%),
n = 14 after 12 months
(6%)

[137]

Randomized,
controlled,

n = 26 sedentary
NASH patients

Supervised combined
aerobic
and resistance exercise
(3 months)
vs. standard care (control)

Body composition
(air displacement
plethysmography),
glycemic control/IR
(fsOGTT-AUC, HbA1c,
HOMA-IR),
circulating markers
of liver fibrosis,
liver fat (1H-MR
spectroscopy)

Significant reduction of liver
fat
and visceral adipose tissue
(intervention group)
No effects on glycemic
control
or IR
No effects on body
composition
No effects on circulatory
markers of fibrosis

Drop out/excluded
from analysis:
n = 2 (8%)

DEXA, dual energy X-ray absorptiometry; fsOGTT-AUC, frequently sampled oral glucose tolerance test-area under the curve; HbA1c,
glycated hemoglobin A1c; HE, hyperinsulinemic euglycemic; HH, hyperinsulinemic hyperglycemic; HOMA-IR, homeostasis model of
insulin resistance; HRI, hepato-renal ultrasound index; IR, insulin resistance; MR, magnetic resonance.

From the data presented in Table 1 it becomes evident that exercise is capable of
consistently reducing liver fat in a restricted yet significant manner. Correspondingly a
recent metaanalysis including studies with appropriate design showed significant effects
of physical training on liver fat [116]. This effect was independent from changes in body
weight, but the results suggest that the outcome will be more substantial under weight
loss conditions [116,138]. Importantly both aerobic endurance and resistance exercise are
capable of exerting beneficial adaptations on insulin signaling and therefore probably also
on liver fat [48,139]. It should be otherwise kept in mind that after cessation of exercise any
beneficial effects are lost within relatively short time periods, pointing to the importance of
long-term compliance when aiming at promoting regular exercise as a serious treatment
option for NAFLD/MAFLD patients [140].

In conclusion exercise without dietary intervention can reduce liver fat and exert
positive mechanistic effects on insulin signaling. Such effects can become more prominent
when combining exercise and dietary intervention in a lifestyle treatment-schedule to
support weight loss. Of note, if regular exercise may positively modify features of NASH,
e.g., inflammation, hepatocyte ballooning and fibrosis progression, remains momentarily
unanswered due to lack of appropriate studies.

5. The Concept of Non-Exercise Activity Thermogenesis

Adherence represents a central precondition when aiming at treating NAFLD/MAFLD
by means of physical exercise. NHANES data show that more than 36% of the studied
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US population is categorized as sedentary and a further almost 48% are physically active
at low levels (reviewed in [141]). Only around 16% of subjects in NHANES met the
recommended guidelines for physical activity or were considered to be highly active. Thus,
it is reasonable to conclude, that from the perspective of a population level the percentage
of subjects engaging in regular intense physical exercise is low. It can be hypothesized
that without a supervised training schedule most patients under “real world conditions”
will show poor compliance in the long term. The study of Pugh and colleagues indicates
impressively that in absence of a supervised program beneficial effects of physical activity
on NAFLD/MAFLD are quickly reversed [140]. The control groups in many of the trials
in Table 1 further support this hypothesis, since control subjects were typically advised
to be physical active, yet without supervision compliance was limited. Otherwise, it is
recognized that everyday activity as for instance ambulation (walking) can exert significant
effects on glucose metabolism in T2D. Seasonal impairment of glycemic control during
wintertime due to lower physical activity levels and more sedentary behavior is well
documented [142]. Available evidence does not support the hypothesis that a structured
rigorous physical training has more pronounced effects on liver fat when compared to
more moderate training sessions (see Table 1). Moreover, low to moderate physical activity
is known to improve indices of IR, but under such conditions exercise duration needs
to be considered an important factor when intending to impact insulin signaling in a
relevant manner (reviewed in [143]). Given the limited participant motivation of most
NAFLD/MAFLD or T2D patients it could be promising to encourage subjects to engage in
more everyday activity. The energy expenditure related to such physical activity is known
as non-exercise activity thermogenesis (NEAT). As can be taken from Figure 3, three main
components of daily energy balance determine total energy expenditure (TEE), namely
basal or resting metabolic rate, diet-induced thermogenesis (thermic effect of food), and
physical activity-related energy expenditure (reviewed in [141,144]).
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In western civilizations physical activity-related energy expenditure (PEE) accounts
for maximally 30% of TEE in most individuals. PEE can be further categorized into exercise-
related activity thermogenesis (EAT) and NEAT. These vary widely within and among
subjects. EAT is defined as planned, structured, and repetitive physical activity aiming
at improving health status, physical fitness, and quality of life. In those who habitually
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participate in purposeful physical training, EAT is believed to maximally account for
15–30% of daily energy expenditure (reviewed in [141]). In contrast, NEAT represents the
predominant component of daily activity, which is also true for the majority of subjects
undergoing regular physical training. NEAT is the “unnoticed” energy expenditure includ-
ing energy expended for maintaining and changing posture (laying, standing), and other
activities of daily living, which are not categorized as exercise training (i.e., walking, stair
climbing, spontaneous muscle contraction). The significance of NEAT becomes apparent
when considering the following points: The variability in basal/resting metabolic rate
between individuals of similar age, BMI and of equal gender ranges around 7–9%, while
the contribution of diet-induced thermogenesis is maximally 15% (reviewed in [141]). Thus,
basal/resting metabolic rate and diet-induced thermogenesis are relatively fixed in amount
and account for roughly three quarters of daily TEE variance. In contrast NEAT represents
the most variable component (reviewed in [141]).

Note that parts of spontaneous physical activity are beyond voluntary control (i.e.,
“fidgeting”). Human overfeeding experiments shed interesting light on the importance of
NEAT regarding its relevance for daily energy balance. Levine and coworkers were the
first to systematically investigate the effect of overfeeding on the individual ability to adapt
NEAT in free-living subjects (reviewed in [141]). By using sophisticated methods and mea-
suring NEAT over a representative time span, they overfed volunteers by 1000 kcal day−1

in excess of their weight maintenance requirements. The energy surplus was paralleled by
a mean rise in TEE of 554 kcal day−1. 336 kcal day−1 of the TEE increase was attributable to
enhanced physical activity thermogenesis. Volitional exercise remained at a constantly low
level and therefore about 60% of the increase in TEE due to overfeeding was attributable to
NEAT. Fascinatingly NEAT adaptation varied remarkably between subjects, ranging from
−98 to +692 kcal day−1 (reviewed in [141]). Due to the fact, that these findings were not
consistently reproducible in later studies, it seems possible that variable inter-individual
adaptations in thermogenesis by changes in NEAT are an explanation why some humans
are susceptible to weight gain while others are not [141].

From the recent section it becomes clear that NEAT is principally capable of sig-
nificantly impacting energy balance. A systematic review showed that subjects under
a prescribed diet for weight loss may reduce daily activity in a compensatory manner,
which could potentially contribute to body mass regain after cessation of the diet [145].
Otherwise, NEAT-related physical activity can be relatively easy integrated in daily patient
routines (i.e., climbing stairs instead of using a lift, walking instead of using a car) and
when exceeding a “critical” exercise volume and intensity (i.e., moderate to vigorous)
it could potentially influence body weight and related metabolic features in a positive
manner [136,146]. For instance, it was recently shown that increasing NEAT can contribute
to improved postprandial lipemia and fat oxidation rates [147]. Whether this holds true
for NAFLD/MAFLD conditions remains to be investigated. Since a sedentary lifestyle
is otherwise not only associated with obesity, but also with various unfavorable clinical
endpoints, increasing NEAT can be recognized as a promising way of lifestyle modification
and should be regarded by future trials when considering physical activity as a treatment
option. Such studies should also address the question whether increases in everyday
activity is capable of positively impacting liver steatosis and IR/insulin sensitivity, and
which volume (i.e., minutes day−1) and intensity (i.e., “NEAT activity with sweating” vs.
“no sweating”) of exercise is necessary to observe beneficial effects.

6. Conclusions

Sedentarism is a worldwide pandemic and related to unfavorable clinical outcomes in-
cluding premature mortality. Regular physical exercise can evidently impact features of IR,
whole-body energy homeostasis and ectopic energy substrate depots in a health promoting
manner. It is recognized that regular physical exercise can reduce the incidence of T2D
and probably liver steatosis as one main pathophysiological feature of NAFLD/MAFLD.
This beneficial impact is independent from body weight reduction, but effects are more
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pronounced under conditions of weight loss. Positive modulation of insulin signaling
appears to represent the main responsible mechanism. One major limitation in terms of
physical exercise as a treatment option remains patient motivation. Encouraging patients
to engage in more everyday physical activity could be a promising strategy to overcome
this problem. This hypothesis needs to be evaluated by future research.
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