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Abstract: Background: Chronic obstructive pulmonary disease (COPD) continues to pose a thera-
peutic challenge. This may be connected with its nosological heterogeneity, broad symptomatology
spectrum, varying disease course, and therapy response. The last three decades has been char-
acterized by increased understanding of the pathobiology of COPD, with associated advances in
diagnostic and therapeutic modalities; however, the identification of pathognomonic biomarkers that
determine disease severity, affect disease course, predict clinical outcome, and inform therapeutic
strategy remains a work in progress. Objectives: Hypothesizing that a multi-variable model rather
than single variable model may be more pathognomonic of COPD emphysema (COPD-E), the present
study explored for disease-associated determinants of disease severity, and treatment success in
Taiwanese patients with COPD-E. Methods: The present single-center, prospective, non-randomized
study enrolled 125 patients with COPD and 43 healthy subjects between March 2015 and February
2021. Adopting a multimodal approach, including bioinformatics-aided analyses and geospatial
modeling, we performed an integrated analysis of selected epigenetic, clinicopathological, geospatial,
and air pollutant variables, coupled with correlative analyses of time-phased changes in pulmonary
function indices and COPD-E severity. Results: Our COPD cohort consisted of 10 non-, 57 current-,
and 58 ex-smokers (median age = 69 ± 7.76 years). Based on the percentages of low attenuation area
below − 950 Hounsfield units (%LAA-950insp), 36 had mild or no emphysema (%LAA-950insp < 6), 22
were moderate emphysema cases (6 ≤ %LAA-950insp < 14), and 9 presented with severe emphysema
(%LAA-950insp ≥ 14). We found that BMI, lnc-IL7R, PM2.5, PM10, and SO2 were differentially associ-
ated with disease severity, and are highly-specific predictors of COPD progression. Per geospatial
levels, areas with high BMI and lnc-IL7R but low PM2.5, PM10, and SO2 were associated with fewer
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and ameliorated COPD cases, while high PM2.5, PM10, and SO2 but low BMI and lnc-IL7R character-
ized places with more COPD cases and indicated exacerbation. The prediction pentad effectively
differentiates patients with mild/no COPD from moderate/severe COPD cases, (mean AUC = 0.714)
and exhibited very high stratification precision (mean AUC = 0.939). Conclusion: Combined BMI,
lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classifiers for accurate patient stratification and
management triage for COPD in Taiwan. Low BMI, and lnc-IL7R, with concomitant high PM2.5,
PM10, and SO2 levels is pathognomonic of exacerbated/aggravated COPD in Taiwan.

Keywords: chronic obstructive pulmonary disease; COPD; emphysema; severity; BMI; lnc-IL7R;
PM2.5; PM10; SO2

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD), entailing small airways inflamma-
tory disease and parenchyma destruction (otherwise known as emphysema), is a common,
avoidable, and currently incurable respiratory pathology secondary to protracted and
significant exposure to noxious gases and/or particulate matter [1,2]. The pathological
hallmarks of emphysema include loss of lung tissue and accelerated loss of pulmonary
function [3], where the latter is associated with reduced gas exchange, altered airway
dynamics, impaired expiratory airflow, and progressive air trapping [4].

Protracted exposure to air pollutants, including oxides of nitrogen (NOx), ambient
ozone (O3), emitted hydrocarbons (HC), and fine particulate matter < 2.5 µm in aerody-
namic diameter (PM2.5), has been implicated in the progressive reduction of pulmonary
function in patients with COPD/emphysema [5–7]. The significant increase in PM2.5
exposure-specific COPD burden observed over the last decade [8], cannot be decoupled
from reported reduction in lung function indices, such as the forced vital capacity (FVC),
forced expiratory volume in 1s (FEV1), maximum mid-expiratory flow (MMEF), and
FEV1/FVC ratio, elicited by every 5 µg/m3 increase in PM2·5 [6].

While our understanding of the pathobiology of COPD has greatly increased in the
last two decades, its prevalence, disease burden, and mortality remain unabated, pharma-
cological therapies continue to exhibit limited effects on morbidity and mortality, and it
remains rather unclear why the presence and severity of emphysema differs significantly
between patients with COPD [9].

Although tobacco smoking is widely reported to strongly influence predisposition
to COPD, other environmental factors, including noxious gases and particulate matters,
and endogenous (age, genetic, and epigenetic) factors, are increasingly documented as
important determinants of COPD [10,11]. With only ~14% of the overall COPD burden
attributable to occupational exposures [12], the relevance of endogenous factors in the
pathogenesis of COPD is accentuated by reports indicating that globally, an estimated
25–45% of COPD cases were “never smokers” [12,13].

The last decade has been characterized by accruing evidence that tobacco smoking,
which is considered a principal risk factor for COPD, alongside aging, is associated with epi-
genetic reprogramming of the bronchial epithelium and that epigenetic signal transduction
pathways regulate COPD-related airway inflammation [14]. More so, Zeng H, et al. demon-
strated that cigarette smoking elicits pulmonary cell death and B-cell lymphoma/leukemia-
2 (Bcl-2) promoter hypermethylation in emphysema models through induction of oxidative
stress and activation of epigenetic DNA methyltransferase enzyme 1 (DNMT1) [15]. Re-
cently, our team reported that Toll-like receptor (TLR)-related long non-coding interleukin
7 receptor (lnc-IL7R) levels were significantly downregulated in the peripheral blood
mononuclear cells of patients with COPD, compared with those from their healthy control
peers.l This suppressed lnc-IL7R levels was also found to be associated with impaired
pulmonary function, and increased risk of COPD exacerbation [16].
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Against this background, the present study probed for pathognomonic biomarkers
and/or clinicopathological parameters that determine the severity of emphysema in pa-
tients with COPD (COPD-E), affect disease course, and predict clinical outcome, while
informing therapeutic strategy in Taiwan. Stemming from the working hypothesis that
a multi-variable model rather than single variable model may be more pathognomonic
of COPD-E, we demonstrate herein that a pentad comprising of body mass index (BMI),
lnc-IL7R, ambient PM2.5, PM10, and SO2 concentrations were differentially associated with
disease severity in Taiwanese patients with COPD-E, and are highly-specific predictors
of COPD-E progression. For the first time, to the best of our knowledge, the present
study demonstrated that per geospatial levels, areas with high BMI and lnc-IL7R but low
ambient PM2.5, PM10, and SO2 were associated with fewer and ameliorated COPD-E cases,
while high PM2.5, PM10, and SO2 but low BMI and lnc-IL7R characterized regions with
more COPD-E cases and indicated disease exacerbation. The prediction pentad effectively
differentiates patients with mild/no COPD from moderate/severe COPD cases, (mean
AUC = 0.714) and exhibited very high stratification precision (mean AUC = 0.939).

2. Methods
2.1. Study Design and Patients

The study enrolled 168 subjects (patients with COPD, n = 125 and healthy participants,
n = 43) who presented and underwent high resolution computed tomography (HRCT) to
determine the presence and severity of COPD-E at the Department of Thoracic Medicine,
Shuang Ho Hospital, Taipei Medical University (New Taipei, Taiwan) between March 2015
and February 2021. Image attenuation on the acquired HRCT scans of participants’ entire
lung was assessed using the APOLLO workstation version 1.2 (VIDA Diagnostics Inc.,
Coralville, IA, USA) at a single reading center by two highly trained experts. Based on the
percentages of low attenuation area below −950 Hounsfield units (%LAA-950insp), patients
were classified as having no or mild emphysema (%LAA-950insp < 6), moderate emphysema
(6≤%LAA-950insp < 14), and severe emphysema (%LAA-950insp ≥ 14) [17]. COPD severity
assessment was consistent with the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) guidelines [5].

The present single-center, prospective, two-arm, non-randomized study was approved
by the Joint Institutional Review Board of Taipei Medical University (TMU-JIRB Approval
No.: N201803059, N201902021), and was compliant with the Declaration of Helsinki
guidelines on studies involving human subjects. Written informed consent was obtained
from all participants before sample collection.

2.2. Inclusion and Exclusion Criteria

Inclusion criteria: Participants were included in the COPD arm if they were
aged ≥ 40 years, had established COPD diagnosis, with a FEV1/FVC < 70% after adminis-
tration of a bronchodilator, according to the GOLD criteria, in stable condition, with no
COPD exacerbation in the last 1 month, had no diagnosis of cardiac disease, and accepted
to participate by providing written informed consent. For the healthy arm, participants
had FEV1 > 80% and FEV1/FVC > 75%, and no known systemic diseases in the previous
3 months.

Exclusion criteria: Participants were excluded if they had reversible airflow obstruc-
tion greater than 12% and 200 mL after inhalation of bronchodilator (according to the
American thoracic Society (ATS) guidelines), had documented clinical history of previous
or present asthma episodes, or coexisting abnormalities on the CT scan.

2.3. Geographic Information System (GIS) and Ambient Air Pollutant Exposure

Ambient air pollution data, namely, concentrations of PM2.5, PM10 (PM < 10 µm aero-
dynamic diameter), SO2, O3, NO2, NO, NOX, carbon monoxide (CO), total hydrocarbon
content (THC), non-methane hydrocarbons (NMHC), and methane (CH4), were obtained
from the Air Quality Monitoring (AQM) Networks of the Taiwan Environmental Protection
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Administration (https://airtw.epa.gov.tw/ENG/Sitemap.aspx; accessed 1 February 2021).
PM concentration is uninterruptedly measured by all AQM stations and recorded hourly.
PM exposure data per diem was assigned to participants based on their residential address.
The mean daily concentrations of ambient PM2.5 and PM10 in the preceding years were
computed for subsequent analyses. The nearest 3 AQM stations (stations I, II and III) were
identified using the ArcGIS server software version 10.8.1 (ESRI, Redlands, CA, USA),
and then air pollution data was extracted. The distance range between AQM stations
I, II, III, and participants’ residential addresses was 0.36–8.73 (mean = 2.35), 1.28–14.33
(mean = 3.55), and 2.56–35.93 (4.73) km, respectively. The mean daily concentrations of
PM2.5 and PM10 were determined using the inverse distance weighting (IDW) interpola-
tion method.

2.4. Sample Preparation and Quantitative Reverse Transcription PCR (RT-qPCR)

After the isolation of peripheral blood mononuclear cells (PBMC) from the whole blood
of patients with COPD and healthy participants strictly following the Ficoll—Hypaque
density gradient centrifugation protocol previously described by Chen TT, et al. [18], total
RNA was isolated from the cell samples using the TRIzol™ Plus RNA Purification Kit
(Cat. #12183555; Thermo Fisher Scientific, Waltham, MA, USA). Serum RNA was pu-
rified using the Plasma/Serum Circulating and Exosomal RNA Purification Kit (Slurry
Format) (Cat. #42800; Norgen Biotek Corp., Thorold, ON, Canada). Following deter-
mination of total RNA concentration using the NanoDrop ND1000 spectrophotometer
(Nyxor Biotech, Paris, France), PCR mix were prepared using the SYBR™ Green PCR
Master Mix (Cat. #4309155; Applied Biosystems Inc., Carlsbad, CA, USA). The PCR con-
tained the primers, the fluorogenic probe mix, and the TaqMan Universal PCR Master
mix (Applied Biosystems Inc.). All amplification reactions were performed in quadru-
plicates from 20 ng complementary DNA (cDNA) in the Bio-Rad C1000 real-time PCR
system (Bio-Rad, Cambridge, MA, USA) using the following conditions: 95 ◦C for 3 min,
35 cycles at 95 ◦C for 15 s, 60 ◦C for 30 s, 72 ◦C for 30 s, and 72 ◦C for 10 min. For
analysis of results, all values were normalized to the levels of the housekeeping genes
18S rRNA (cellular) or GAPDH (extracellular), which served as the internal control. All
procedures were consistent with manufacturers’ instructions, and the following PCR
primer sequences were used: lnc-IL7R (forward): 5′-CCAGCCTTTGCCTCTTCCTTCAAT-
3′, lnc-IL7R (reverse): 5′-CCGTA CCAAGTCTCTTAGCCCCTC-3′; 18S rRNA (forward): 5′-
TGTGCCGCTAGAGGTGAAATT-3′, 18S rRNA (reverse): 5′-TGGCAAATGCTTTCGCTTT-
3′; GAPDH (forward): 5′-ATGGGGAAGGTGAAGGTCG-3′, and GAPDH (reverse): 5′-
GGGGTCATTGATGGCAACAAT-3′.

2.5. Statistical Analysis

Results are expressed as means ± standard deviations. Pearson’s chi-squared (χ2)
test was used to determine the relationship or association between categorical variables.
The paired t-test was used for comparing continuous data. The Student’s t-test was
used to assess alterations in pulmonary function based on %LAA-950insp, concentration
levels of ambient air pollutants, and lnc-IL7R expression levels. p-value ≤ 0.05 defined
statistical significance. All statistical analyses were performed using IBM SPSS Statistics
for Windows, Version 25.0 (IBM Corp. Released 2017, Armonk, NY, USA: IBM Corp).
Geospatial visualization and analysis were performed using the ArcGIS server software
version 10.8.1 (ESRI, Redlands, CA, USA).

3. Results

Emphysema (COPD-E) severity correlates with GOLD stage, and is indicative of
disease progression in Taiwanese patients with COPD.

Table 1 contains the baseline characteristics of our cohort of patients with COPD (n = 125)
and healthy controls (n = 43). As shown in Table 1, the median age was 69 ± 7.76 years (range:
41–87), 88.8% of all patients with COPD were male and aged 41–87 years. Of these, 6.31%
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were never-smokers, while 47.75% and 45.94% were ex- and current smokers, respectively.
The median BMI was of 20.0 ± 4.46 kg/m2, and 23.66 ± 3.99 kg/m2 for female and male
COPD cases. Stratification of patients with COPD according to the GOLD-based stag-
ing showed that compared with GOLD stage I cases with median FEV1 of 84.55 ± 7.13%,
there was 23.1-fold (median FEV1 = 65 ± 9.27%), 53.8-fold (median FEV1 = 39.05 ± 5.53%),
and 70.4-fold (median FEV1 = 25 ± 3.85%) decrease in the pulmonary function indices
of their GOLD stages II, III, and IV peers, respectively. Regardless of smoking sta-
tus, compared with the healthy control (median FEV1: non-smoker = 101.00 ± 5.10 vs
smoker = 96.85 ± 6.68), significant decline in lung function was observed in the non-
stratified COPD group (median FEV1 = 57 ± 19.16%) (Table 1).

Table 1. Baseline characteristics of our cohort of healthy and COPD participants (n = 168).

Variables
Healthy Controls (n = 43) Patients with COPD (GOLD Stage, n = 125)

Non-Smoker
(n = 21) Smoker (n = 22) I (n = 18) II (n = 58) III (n = 38) IV (n = 11)

Age (years)
Mean ± SD
(Min-Max)

68.33 ± 7.02
(50.00–80.00)

67.45 ± 6.75
(47.00–80.00)

69.39 ± 5.78
(61.00–80.00)

67.97 ± 8.91
(41.00–9.00)

71.24 ± 6.95
(56.00–80.00)

67.09 ± 5.38
(61.00–79.00)

Median (IQR) 69.00
(67.00–73.00)

69.00
(65.25–71.00)

68.00
(65.25–71.50)

68.50
(62.25–73.00)

70.50
(67.00–77.25)

66.00
(63.00–69.00)

Sex, n (%)
Male 8 (38.10) 17 (77.27) 17 (94.44) 55 (94.83) 31 (81.58) 9 (81.82)

Female 13 (61.90) 5 (22.73) 1 (5.56) 3 (5.17) 7 (18.42) 2 (18.18)
BMI, kg·m−2

Mean ± SD
(Min-Max)

22.79 ± 2.15
(20.50–28.80)

23.14 ± 2.58
(19.11–29.20)

24.05 ± 3.12
(19.10–29.36)

24.33 ± 4.41
(16.40–34.80)

22.50 ± 3.77
(15.80–36.20)

21.31 ± 3.60
(16.20–27.70)

Median (IQR) 22.00
(21.20–24.00)

22.76
(21.85–23.95)

23.90
(21.63–26.29)

24.14
(21.16–26.60)

22.30
(20.00–24.50)

20.60
(19.90–22.98)

Tobacco Smoking, n (%)
Current smoker 0 (0.00) 13 (59.09) 5 (27.78) 31 (53.44) 11 (28.95) 2 (18.18)

Ex-smoker 0 (0.00) 9 (40.91) 13 (72.22) 23 (39.66) 22 (57.89) 8 (72.73)
Never-smoker 100 (100) 0 (0.00) 0 (0.00) 4 (6.90) 5 (13.16) 1 (9.09)

Smoking pack-years
Mean ± SD
(Min-Max) 0 (0.00–0.00) 65.00 ± 31.43

(30.00–145.00)
48.89 ± 35.19
(5.00–150.00)

49.02 ± 36.34
(0.00–180.00)

49.30 ± 35.66
(0.00–156.00)

56.73 ± 37.65
(0.00–123.00)

Median (IQR) 0 (0.00–0.00) 57.00
(40.00–79.50)

42.50
(20.50–60.00)

40.00
(23.00–60.00)

40.00
(25.00–75.00)

46.00
(35.00–85.00)

Pulmonary function indices
FEV1 (L)

Mean ± SD
(Min-Max)

1.98 ± 0.37
(1.26–2.76)

2.18 ± 0.42
(1.74–3.47)

1.95 ± 0.26
(1.55–2.56)

1.67 ± 0.40
(1.01–3.07)

0.98 ± 0.25
(0.61–1.51)

0.61 ± 0.13
(0.43–0.87)

Median (IQR) 1.97 (1.80–2.06) 2.09 (1.90–2.29) 1.90 (1.74–2.11) 1.61 b’ (1.38–1.90) 0.99 a’b’c’d’

(0.74–1.12)
0.58 a’b’c’d’

(0.52–0.66)
FEV1 %

Mean ± SD
(Min-Max)

101.43 ± 5.10
(95.00–117.00)

98.60 ± 6.68
(90.00–111.00)

85.42 ± 5.24
(80.00–97.70)

63.81 ± 8.57
(50.00–79.00)

40.01 ± 5.71
(32.00–49.80)

24.85 ± 3.98
(17.50–29.90)

Median (IQR) 101.00
(98.00–103.00)

96.85
(93.00–103.00) 84.55 (81.3–86.68) 65.00 a’b’c

(57.38–72.00)
39.05 a’b’c’d’

(35.00–45.00)
25.00 a’b’c’d’

(22.10–27.95)
FEV1/FVC %
Mean ± SD
(Min-Max)

100.76 ± 9.42
(80.00–125.00)

100.45 ± 8.01
(90.00–120.00)

63.49 ± 4.05
(54.64–68.26)

59.33 ± 6.86
(45.00–69.72)

47.93 ± 8.60
(28.00–65.00)

38.84 ± 8.41
(27.00–49.61)

Median (IQR) 100.00
(98.00–105.00)

98.00
(95.25–107.75)

63.68
(61.25–66.87)

59.25 a’b’

(54.12–65.50)
46.50 a’b’c’d’

(42.11–55.25)
41.41 a’b’c’d’

(30.93–45.67)
Emphysema severity

Null/Mild (%) 66.67 19.05 0.00 0.00
Moderate (%) 33.33 66.67 69.23 20.00

Severe (%) 0.00 14.28 30.77 80.00

COPD, chronic obstructive pulmonary disease; GOLD, Global Initiative for Chronic Obstructive Lung Disease; M, male; F, female; FEV1,
forced expiratory volume in 1 s; FVC, forced vital capacity; BMI, body mass index; IQR, interquartile range. The values of FEV1/FVC %
and FEV1 % were analyzed by Kruskal–Wallis tests and Dunn’s multiple comparisons (a’ p < 0.01, compared with non-smoker; b’ p < 0.01,
compared with smoker; c p < 0.05, c’ p < 0.01, compared with COPD patients with GOLD stage I; d’ p < 0.01, compared with COPD patients
with GOLD stage II.
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Furthermore, based on the working hypothesis that a phenotype-based categorization
of COPD which takes into account presence/severity of COPD-E and exacerbation history,
rather than solely on level of airflow limitation (FEV1) better reflects the nosological
complexity and constitutive heterogeneity of COPD, based on %LAA-950insp, we found
66.67% and 33.33% of the GOLD 1 cases had mild and moderate COPD-E, respectively.
72.73% of all patients with severe COPD-E were GOLD 3–4, 27.27% were GOLD 2, and
0.00% were GOLD 1 (Table 1). Conversely, all mild COPD-E cases were GOLD 2 (100%),
while 17.24% of all moderate COPD-E was found to be GOLD 1 (Table 1). These data do
indicate that COPD-E is not only diagnostic of COPD, but is also indicative of disease
progression or exacerbation.

3.1. Emphysema Risk Modulators in Taiwanese Patients with COPD

Observing that COPD-E reflects the nosological complexity and disease progression
in patients with COPD, we explored for COPD-E-specific determinants of disease sever-
ity, and treatment success in Taiwanese patients with COPD. Establishing a significantly
strong correlation between the imaging emphysema severity indices, total LAA% and
%LAA-950insp (r = 0.82, p < 0.001) (Figure 1A), we next probed for probable correlation
between emphysema severity and ambient air pollutants, epigenetic, spirometric, an-
thropometric, and clinical variables. The %LAA-950insp was inversely correlated with
epigenetic lnc-IL7R (r = −0.30, p = 0.002), post-bronchodilator FEV1/FVC (r = −0.41,
p < 0.001), and BMI (r = −0.47, p < 0.001) (Figure 1B–D). Ambient PM2.5 (r = 0.31, p < 0.001),
PM10 (r = 0.30, p = 0.001), NO2 (r = 0.18, p = 0.043), SO2 (r = 0.25, p = 0.004), and THC
(r = 0.20, p = 0.024) concentrations were positively correlated with %LAA-950insp, while
O3 (r = −0.09, p = 0.341) was inversely correlated (Figure 1E–K). In addition, and equiv-
ocal association was found between %LAA-950insp and pack-year (r = 0.17, p = 0.057) or
age (r = 0.11, p = 0.240) (Figure 1L,M). These data are suggestive of a multifactorial risk
modulatory cluster for COPD-E in Taiwanese patients with COPD.

3.2. Delineating Predictors of Disease Severity in Taiwanese Patients with COPD-E

Consistent with earlier data, using a supervised machine learning algorithm, artificial
neural network (ANN) modelling based on the hyperbolic tangent activation (TanH) model
with random holdback validation showed that ambient air pollutants (PM2.5, PM10, NO2,
SO2, THC, O3), epigenetic (lnc-IL7R), anthropometric (Age, BMI), lifestyle (smoking history,
pack-year), and geospatial components (longitude and latitude of participants’ residential
addresses) all contribute differentially to emphysema (COPD-E) severity (%LAA-950insp)
(Figure 2A,B). The initial fitting of the ANN model on training dataset (80% of our COPD
cohort) for variable selection and parameter estimation to predict %LAA-950insp indicated
strong association between listed variables and COPD-E severity (R2 = 0.49; root mean
square error, RMSE = 0.64; mean absolute deviation, MAD = 0.460) (Figure 2A). This
was validated by the unbiased evaluation and hyper-parameter fine-tuning of the train-
ing dataset-fitted ANN model using the validation dataset (20% of our COPD cohort)
(R2 = 0.65; root mean square error, RMSE = 0.60; MAD = 0.37) (Figure 2A). Interest-
ingly, our prediction profile analysis indicate that BMI < 23.62 kgm−2, blood lnc-IL7R
level < 0.53, smoking history (ex or current) with pack-year > 50.58, SO2 > 3.08 parts
per billion (ppb), O3 < 26.27 ppb, NO2 > 20.08 ppb, THC < 2.18 parts per million (ppm),
PM10 < 40.10 mg m−3, and PM2.5 > 22.18 mg m−3 define an exacerbated COPD-E pheno-
type (Figure 2B). Though not optimal, goodness of fit analysis showed that the ANN model
can relatively predict COPD-E (%LAA-950insp) severity fairly accurately (RMSE = 0.58,
R2 = 0.46, p < 0.0001) (Figure 2C). In parallel unsupervised machine learning analysis
using the hierarchical clustering model, the COPD cohort was pooled into three clusters
reflecting COPD-E severity, with cluster 0, 1, and 2 representing no emphysema, mild-
moderate emphysema, and moderate-severe emphysema (R2 = 0.39; Pearson’s g = 0.47;
Dunn index = 0.17; Silhoutte = 0.250; Entropy = 0.41, Calinski-Harabasz index = 20.84)
(Figure 2D). The relatively low R2, Dunn index, Pearson’s g, and silhouette index, coupled
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with high entropy score necessitated model optimization. For optimal variable selection,
the effect of BMI (t-ratio = −5.75, F-ratio = 33.01, p < 0.0001), lnc-IL7R (t-ratio = −2.07,
F-ratio = 4.28, p = 0.042), and SO2 (t-ratio = 2.00, F-ratio = 3.99, p = 0.049) on COPD-E
severity were statistically significant, while smoking history (t-ratio = 1.94, F-ratio = 3.75,
p = 0.056), PM10 (t-ratio = −1.51, F-ratio = 2.30, p = 0.133), and PM2.5 though exhibiting
good effect (F-ratio ≥ 2), were statistically non-significant (Figure 2E,F).
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(%LAA-950insp < 6); 2, moderate emphysema (6 ≤ %LAA-950insp < 14); and 3, severe emphysema (%LAA-950insp ≥ 14).
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Figure 2. Delineating predictors of disease severity in Taiwanese patients with COPD-E. (A) Artificial neural network
(ANN) model schema (upper panel) and statistics chart (lower panel) showing the 13 disease-related variables of interest
input, 3 auto-determined hidden, and predicted %LAA-950insp-based COPD-E severity output layers. (B) Prediction profiler
showing the effect of age, BMI, smoking history, pack-year, longitude, latitude, SO2, O3, PM2.5, PM10, NO2, THC, and
lnc-IL7R on predicted %LAA-950insp-based COPD-E severity. Cut-off values are indicated in red. (C) Actual vs. predicted
%LAA-950insp-based COPD-E severity plot. (D) Hierarchical clustering dendrogram and statistics of severity-stratified
COPD-E cases. (E) Parameter estimates, and (F) effect test charts of the panel of variables. R2, coefficient of determination;
RMSE, root mean square error; SSE, sum of squared estimate of errors; Hx, history; ppb, part per billion; ppm, part
per million; N, number of cases; AIC, Akaike’s Information Criteria; BIC, Bayesian Information Criteria; Values in red,
statistically significant.

3.3. Severity-Stratified Spatiofunctional Interaction between Individual Predictors of COPD-E

To determine if and to what extent these COPD-E-associated factors interact and/or
form a pathogenic cascade, we performed a bootstrapped network analysis (bootstrap
n = 1000). Of pathophysiological relevance, we found no interaction between any of the
COPD-E pathognomonic factors in patients with no or mild emphysema (%LAA-950insp < 6)
(Figure 3A, left). For the moderate emphysema cases (6 ≤ %LAA-950insp < 14), we found



Biomedicines 2021, 9, 1833 9 of 18

that ambient SO2, NO2, THC, PM10, PM2.5, and O3 form a loose cascade with endogenous
factors BMI, lnc-IL7R, and Age in the context of patients’ geolocation, while smoking his-
tory and pack-year were non-contributors to the cascade (Figure 3A, middle). Conversely,
a tight-knit cluster was observed between all variables in patients with severe COPD-E
(%LAA-950insp ≥ 14), with relatively high interaction density (Figure 3A, right). This
partial deciphering of the structural and functional networks of COPD-E on a spatiotem-
poral scale, was corroborated by the Barrat, Onnela, Watts and Strogatz (WS), and Zhang
clustering coefficients [19,20], which measure the propensity to which the nodes/factors
tend to cluster together, and quantify the abundance of connected triangles in the weighted
severity-based pathogenic networks (Figure 3B). Next, exploiting the ability of the central-
ity plot to identify important nodes/variables that determine disease severity, as well as
the nature of their influence, we identified SO2, PM10, PM2.5, O3, and lnc-IL7R tetrad as an
important predictor of disease progression and severity, and that while SO2, PM10, and
PM2.5, drove disease progression and were positively correlated with COPD-E severity, O3
and lnc-IL7R attenuated progression and were negatively associated with disease severity
(Figure 3C).
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3.4. BMI, lnc-IL7R, PM2.5, PM10, and SO2 Levels Are Excellent Classifiers for Accurate Patient
Stratification and COPD-E Management Triage in Taiwan

Finally, receiver operating characteristic (ROC) curve analysis was used to evaluate
the discriminatory power of all COPD-E-associated factors, namely geospatial variables
(longitude, latitude), ambient particulate matter and pollutants (PM2.5, PM10, SO2, O3,
THC, NO2), lifestyle (pack-year), anthropometric (BMI), and endogenous (age, epigenetic
lnc-IL7R) factors. All factors, except latitude (area under the ROC curve, AUC = 0.55), age
(AUC = 0.51), O3 (AUC = 0.58), and pack-year (AUC = 0.57), exhibited acceptable capabil-
ity to discriminate between patients with COPD-E and those with non-emphysematous
COPD phenotype, regardless of severity status (Figure 4A,B). In parallel analysis of our
COPD cohort using precision–recall curves, we found the latitude (AUC = 0.89, associated
criterion ≤ 25.06), longitude (AUC = 0.93, associated criterion ≤ 121.80), SO2 (AUC = 0.95,
associated criterion ≥ 2.14), THC (AUC = 0.94, associated criterion ≥ 2.14), PM2.5 (AUC = 0.95,
associated criterion≥ 16.24), PM10 (AUC = 0.95, associated criterion ≥ 16.24), BMI (AUC = 0.95,
associated criterion ≤ 29.36), and lnc-IL7R (AUC = 0.91, associated criterion ≤ 1.23) excel-
lently stratified patients into COPD-E and non-COPD-E groups (Figure 4C–G). Since a
high AUC represents both high recall (related to low false negative rate) and high precision
(associated with low false positive rate), where 0.5 denotes a bad classifier and 1, an ex-
cellent classifier, these results indicate that BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are
excellent classifiers for accurate patient stratification and management triage for COPD-E
in Taiwan.

3.5. BMI, lnc-IL7R, PM2.5, PM10, and SO2 Are Highly Specific Predictors of COPD-E Severity
and Disease Progression in New Taipei City

Furthermore, predictor screening and effect ranking for predictive factor optimization
showed that the highest ranked contributors to or determinants of emphysema (COPD-E)
severity were BMI (contribution: 2.31, portion: 0.21, rank: 1), lnc-IL7R (contribution: 2.04,
portion: 0.19, rank: 2), PM2.5 (contribution: 1.33, portion: 0.12, rank: 3), PM10 (contribution:
0.98, portion: 0.09, rank: 4), and SO2 (contribution: 0.81, portion: 0.07, rank: 5) (Figure 5A).
Next, using the Gaussian Processes (GP) generic supervised learning algorithm which is
designed to solve regression and probabilistic classification problems, we generated contour
and surface profile plots for the GP prediction model of COPD-E (%LAA-950insp) severity. First,
for geospatial relevance, we found that most non-COPD-E or mild/ameliorated COPD-E
cases, as defined by %LAA-950insp, were resident above longitude 121.496◦ along latitude
24.996◦, while the largest proportion of exacerbated or severe COPD-E cases were resident
beyond this geographical level (Figure 5B). These exacerbated or severe COPD-E cases were
defined by serum lnc-IL7R levels ≤ 0.54, BMI ≥ 23.54 kgm−2, and resident under ambient
PM2.5 ≥ 22.48 mg/m3, PM10 ≥ 40.46 mg/m3, and SO2 ≥ 3.13 ppb (Figure 5C,D). More so,
understanding that sensitivity implies the ability of any test to designate a subject with COPD-
E as positive, our GP model of COPD-E severity showed that PM2.5 (total sensitivity = 0.833,
theta = 1.70 × 10−9, nugget = 0.001), longitude (total sensitivity = 0.997, theta = 0.005,
nugget = 0.001), BMI (total sensitivity = 0.633, theta = 8.21 × 10−6, nugget = 0.001), and SO2
(total sensitivity = 0.317, theta = 8.75 × 10−5, nugget = 0.001) are independent determinants
or drivers of COPD-E in New Taipei City, Taiwan (Tables 2–4). Since the lower the sensitivity,
the greater the ability of the GP model to designate a case without COPD-E as negative, we
confirmed that lnc-IL7R (total sensitivity = 0.167, theta = 0.000, nugget = 0.001), and latitude
(total sensitivity = 0.001, theta = 0.000) are factors of amelioration in the specified region
(Tables 2–4). The very low theta values and nugget parameter are of statistical and predictive
relevance, as they rule out measurement error and short scale variability [21].



Biomedicines 2021, 9, 1833 11 of 18

Biomedicines 2021, 9, 1833 11 of 19 
 

Since a high AUC represents both high recall (related to low false negative rate) and high 
precision (associated with low false positive rate), where 0.5 denotes a bad classifier and 
1, an excellent classifier, these results indicate that BMI, lnc-IL7R, PM2.5, PM10, and SO2 
levels are excellent classifiers for accurate patient stratification and management triage for 
COPD-E in Taiwan 

 
Figure 4. Combined BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classifiers for accurate patient stratification and 
COPD-E management triage in Taiwan. Visual representation (upper panel) and statistics chart (lower panel) of the area 
under the receiver operating characteristics curves for (A) longitude, latitude, PM10, PM2.5, BMI, lnc-IL7R, (B) age, NO2, O3, 

Figure 4. Combined BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classifiers for accurate patient stratification and
COPD-E management triage in Taiwan. Visual representation (upper panel) and statistics chart (lower panel) of the area
under the receiver operating characteristics curves for (A) longitude, latitude, PM10, PM2.5, BMI, lnc-IL7R, (B) age, NO2,
O3, pack-year, THC, and SO2. Precision–recall curves showing the tradeoff between precision and recall for (C) longitude,
latitude, (D) THC, SO2, (E) PM2.5, PM10, (F) BMI, and lnc-IL7R. (G) Statistics chart of the precision–recall curves for (C–F).
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Figure 5. BMI, lnc-IL7R, PM2.5, PM10, and SO2 are highly specific predictors of COPD-E severity and disease progression in
New Taipei City. (A) Predictor screening chart showing the contribution and ranking of each variable in predicting COPD—E
severity. Contour profile (upper left), surface profile (upper right), and predictor profiler (lower panel) plots for (B) longitude,
latitude, (C) PM2.5, PM10, lnc-IL7R, (D) SO2, and BMI based on the Gaussian process model of %LAA-950insp-based COPD-E
severity. Fit used Gaussian correlation function. Nugget parameter was set to avoid singular variance matrix.
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Table 2. Gaussian process model of %LAA-950insp-based COPD-E severity and progression: lnc-IL7R, PM2.5, and PM10.

Column Theta Total
Sensitivity Main Effect lnc-IL7R

Interaction
PM10

Interaction
PM2.5

Interaction

lnc-IL7R 0.0003 0.1667 0.1667 - 0 5.35 × 10−9

PM10 4.82 × 10−9 0 0 0 - 0
PM2.5 1.70 × 10−9 0.8333 0.8333 5.35 × 10−9 0 -

µ σ2 Nugget
1.3155 470.0283 0.001

−2*Loglikelihood
240.6087

Table 3. Gaussian process model of %LAA-950insp-based COPD-E severity and progression: longitude, and latitude.

Column Theta Total Sensitivity Main Effect Longitude
Interaction

Latitude
Interaction

Longitude 0.0046 0.9986 0.9986 - 0
Latitude 0.0003 0.0014 0.0014 0 -

µ σ2 Nugget
1.4838 520.33 0.001

−2*Loglikelihood
285.8087

Table 4. Gaussian process model of %LAA-950insp-based COPD-E severity and progression: BMI, and SO2.

Column Theta Total Sensitivity Main Effect BMI
Interaction

SO2
Interaction

BMI 8.21 × 10−6 0.6833 0.6833 - 2.74 × 10−7

SO2 8.75 × 10−5 0.3167 0.3167 2.74 × 10−7 -
µ σ2 Nugget

1.1118 390.41 0.001
−2*Loglikelihood

248.4064

3.6. Low BMI, and lnc-IL7R, with Concomitant High PM2.5, and SO2 Levels Is Pathognomonic of
Exacerbated/Severe COPD-E in New Taipei City, Taiwan

For geospatial contextualization and visualization of the effect of the delineated de-
terminants of COPD-E severity in New Taipei City, after digitizing our study areas at
landscape, regional, and national scales on a global map as polygons, site and cases were
marked as point features. The generated site-of-interest map is shown in Figure 6A, with
COPD-E cases were concentrated around the Wanhua, Banqiao, Tucheng, Xinzhuang, Hsin-
tien, Zhonghe, and Yonghe Districts. Consistent with Figure 5, the most severe COPD-E
cases were in the Wanhua, Banqiao, Zhonghe, and Yonghe Districts, located below longi-
tude 121.496◦ latitude 24.996◦, with %LAA-950insp ≥ 10 (i.e.,≥ 1.3 on a statistical scale of 1–3)
(Figure 6B), ambient PM2.5 > 24.0 mg/m3 (Figure 6C), and SO2 > 3.5 ppb (Figure 6D), cou-
pled with endogenous lnc-IL7R levels < 0.8 (Figure 6E), and BMI < 25.0 kgm−2 (Figure 6F).
These data indicated that low BMI, and lnc-IL7R, with concomitant high PM2.5, and SO2
levels is pathognomonic of exacerbated/severe COPD-E in New Taipei City, Taiwan.
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Figure 6. Low BMI, and lnc-IL7R, with concomitant high PM2.5, and SO2 levels is pathognomonic of exacerbated/severe
COPD-E in New Taipei City, Taiwan. (A) Image of the geospatial mapping patients with COPD-E in New Taipei City.
Contour-based polygon plots and heatmap aerial view maps of case distribution according to (B) disease severity, and
levels of (C) PM2.5, (D) SO2, (E) lnc-IL7R, and (F) BMI in patients with COPD-E in New Taipei City.

4. Discussion

Severe emphysema (COPD-E) remains a therapeutic challenge, especially in the light
of the limited efficacy of contemporary anti-COPD therapeutic strategy. The present study
accentuates the role of a multifactorial risk modulatory cluster for development and/or
progression of COPD-E in Taiwanese patients with COPD. We showed that ambient air
pollutants (PM2.5, PM10, NO2, SO2, THC, O3), epigenetic (lnc-IL7R), anthropometric (Age,
BMI), lifestyle (smoking history, pack-year), and geospatial components (longitude and
latitude of participants’ residential addresses) all contribute differentially to emphysema
(COPD-E) severity (%LAA-950insp). This is in part consistent with reports by Wang M, et al.
suggesting a significant association between observed increase in COPD-E severity over
time and baseline concentration of ambient PM2.5, NOX, THC, or O3 [7].

While we cannot fully explain the inverse correlation between COPD-E status/severity
and ambient O3 concentration in our study, we posit that this may be corollary to the signif-
icantly enhanced concentration of PM2.5 in the study sites, and this rationalization would
be consistent with results of a recent study showing that a 40% reduction in PM2.5 over a
period of 5 years in the North China Plains was in part responsible for a 1–3 ppb annual
increase in O3 observed in megacity clusters of eastern China [22]. It is also possible
that the geospatial localization of the study sites allows for enhanced natural influx of
“good O3

′ from the stratosphere into the troposphere, due to heightened vertical air move-
ments, causing this “good O3

′ to contribute immensely to the background concentration of
ground-level O3 in the districts of New Taipei City specified in the present study [23]. Thus,
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rather than the increased ambient O3 concentrations exerting detrimental effects such as
“breathing problems, triggering asthma attacks, reducing lung function, and increasing in-
cidence of respiratory diseases” [23], which are characteristic of troposphere-O3-associated
COPD-E, an inversely correlation was found between the O3 and COPD-E, suggesting a
protective effect consistent with those reported by Alberto Hernández’s team in the context
of COVID-19 [24].

The BMI, indirectly representing an individual’s degree of obesity, is a vital indicator
or determinant of the phenotypic expression of COPD, its course, and prognosis [25–28].
Our study found that high BMI was associated with less incidence and severity of COPD-
E. While this contradicts the prevalent forgone conclusion that obesity or high BMI is
associated with disease exacerbation or progression in an array of theme-relevant pub-
lications [25–28], our finding is consistent with recent reports that patients with COPD
with high BMI exhibit reduced dyspnea symptoms, relatively better lung function, and
quality of life, health-wise [28]. More so, our findings corroborate those from a nationwide
analysis of the Taiwan Obstructive Lung Disease study data from 12 hospitals in Taiwan,
which showed that high BMI (BMI ≥ 24 kgm−2) is associated with a lower frequency of
COPD exacerbation in Taiwan [29]. Furthermore, a systematic review of available literature
supporting the evolving obesity paradox in COPD, concluded that compared with normal
BMI (18.5–24.9 kgm−2), “low BMI is a risk factor for accelerated lung function decline,
whilst high BMI has a protective effect” [30].

The present study provides some evidence that BMI, lnc-IL7R, PM2.5, PM10, and SO2
levels are excellent classifiers for accurate patient stratification and management triage
for COPD-E in Taiwan. Our results revealed that emphysema in patients with COPD is
positively correlated with particulate matter and noxious gases exposure, and that high-
level exposure to PM2.5, PM10, and SO2 causes greater decline in pulmonary function.
Interestingly, we also showed that alongside the ambient pollutants, endogenous lnc-IL7R
is a highly specific predictors of COPD-E severity and disease progression in New Taipei
City. This is corollary to our previously published work indicating that downregulated
expression of plasma or tissue lnc-IL7R in patients with COPD enhances inflammation and
is associated with acute exacerbation, and more so frequently [16]. Moreover, lnc-IL7R
RNA expression in the serum and lung tissues of patients with COPD-E was positively
correlated with BMI, but negatively correlated with PM2.5, PM10, and SO2 exposure. This
aligns with the assumption that the large variability in COPD-E onset and progression
is driven principally by a compound gene–environment cascade. As succinctly put by
Devadoss et al., “the transcriptomic and epigenetic memory potential of lung epithelial
and innate immune cells drive responses, such as mucus hyperreactivity and airway
remodeling, that are tightly regulated by various molecular mechanisms, for which several
candidate susceptibility genes have been described” [31]. We posit that by interacting
with and suppressing lnc-IL7R expression, the ambient PM2.5, PM10, SO2, facilitates aryl
hydrocarbon receptor (AHR)-mediated CYP1A1 activation, enhances generation of reactive
oxygen species (ROS), induces oxidative stress with associated inflammatory responses,
and consequently elicits chronic inflammatory diseases, including COPD-E [32]. This
is corroborated by our data suggesting that lnc-IL7R induction may have a potential
regulatory role in normal bronchial cells exposed to PM2.5 because endogenous lnc-IL7R
expression was upregulated in normal but not COPD lung epithelial cells or PBMC, and
lower lnc-IL7R expression was associated with emphysema in COPD (unpublished data).

Furthermore, our finding indicating that Low BMI, and lnc-IL7R, with concomitant
high PM2.5, and SO2 levels is pathognomonic of exacerbated/severe COPD-E in New
Taipei City, Taiwan, corroborates the conclusions of a recent comprehensive analysis of two
large cohorts that a panel of disease-related variables improve predictive value for disease
outcomes, compared with lone clinical variables and individual biomarkers [33].

Against the background of the findings documented herein, we are cognizant of
and do point out that there are suggestions that chronic or longterm exposure, rather
than momentary exposure to ambient air pollution significantly affects the incidence and
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prevalence of both emphysematous and non-emphysematous COPD, however, such reports
remain inconclusive, howbeit with plausible biological mechanisms [34]. Consistent with
conclusions drawn by Tamara Schikowski and her team [34], there is probable substantial
evidence for a causal link between ambient air pollution and development of COPD, to
the extent that diminished pulmonary function earlier in life translates into COPD with
age. While we concur that a case for causality may be substantiated should the critical
role of ambient air pollutants in repeated or cumulative exacerbation be considered in
the development of COPD-E [3,5,10,34,35], the extent to which such cumulative or long-
term exposure to ambient air pollution outweighs current or short-term exposure, in the
development of COPD-E remains largely inconclusive.

Limitations

As with studies of this nature, the present study has some limitations. First, the use of
a relatively small sample size (n = 168) and single-center nature of the study may harbor
suggestions of high variability and low reliability of the findings reported herein. A larger
cohort from a multi-center setting with varied characteristics may be warranted for more
accurate representation of the disease population, and for deriving robustly generalizable
inferences. This will help to establish more accurate prediction tools and clinical decision
support systems for COPD-E management. Secondly, considering the heterogeneous
nature of the classifiers, namely ambient air pollutants (PM2.5, PM10, NO2, SO2, THC, O3),
epigenetic (lnc-IL7R), anthropometric (Age, BMI), lifestyle (smoking history, pack-year),
and geospatial components (longitude and latitude of participants’ residential addresses),
the inclusion of a bridging factor such as blood oxidative stress marker may have been
appropriate for mechanistic insight; however, this was omitted. Studies on this bridging
factor is currently ongoing.

5. Conclusions

In conclusion, combined BMI, lnc-IL7R, PM2.5, PM10, and SO2 levels are optimal classi-
fiers for accurate patient stratification and management triage for COPD-E in Taiwan. Low
BMI, and lnc-IL7R, with concomitant high PM2.5, PM10, and SO2 levels is pathognomonic of
exacerbated/aggravated COPD-E in Taiwan. These findings may help inform management
efforts and environmental health policy formulation for lowering disease risk and severity
in Taiwan.
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