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Abstract: Glioblastoma multiforme (GBM), a grade IV astrocytoma, is a lethal brain tumor with a
poor prognosis. Despite recent advances in the molecular biology of GBM, neuro-oncologists have
very limited treatment options available to improve the survival of GBM patients. A prominent
signaling pathway implicated in GBM pathogenesis is that of the mechanistic target of rapamycin
(mTOR). Attempts to target the mTOR pathway with first-generation mTOR inhibitors appeared
promising in the preclinical stage; however, results have been disappointing in clinical trials, owing
to the heterogeneous nature of GBM, escape mechanisms against treatment, the blood–brain barrier,
drug-related toxicities, and the imperfect design of clinical trials, among others. The development of
next-generation mTOR inhibitors and their current evaluation in clinical trials have sparked new
hope to realize the clinical potential of mTOR inhibitors in GBM. Meanwhile, studies are continuously
furthering our understanding of mTOR signaling dysregulation, its downstream effects, and interplay
with other signaling pathways in GBM tumors. Therefore, it remains to be seen whether targeting
mTOR in GBM will eventually prove to be fruitful or futile.
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1. Introduction

Multiple oncogenic signaling pathways are known to be deregulated in glioblastoma
multiforme (GBM), contributing to its pathogenesis. Among the signaling pathways that
have been pharmacologically targeted in GBM is the mechanistic target of the rapamycin
(mTOR) pathway. Although drugs modulating this pathway showed promising results
in preclinical studies, their application in clinical trials proved to be disappointing, as
a result of GBM heterogeneity, poor pharmacology, inherent and acquired resistance to
mTOR inhibitors, and molecularly unselected cohorts of GBM patients in these clinical
trials (Table 1) [1–3]. The failure of mTOR inhibitors to demonstrate clinical benefit until
now does not mean that this therapeutic strategy should be discarded, but rather raises
several important issues that need to be addressed in order to reach a verdict regarding
the future of such agents in GBM management: (a) further research is required to uncover
the intricacies of mTOR signaling in GBM, (b) preclinical studies assessing the therapeutic
potential of mTOR inhibitors should represent, as close as possible, the conditions of the
GBM tumor microenvironment, (c) rational subgroup selection of GBM patients in clinical
trials based on the molecular profile of their tumors, and (d) combining mTOR inhibitors
with other targeted agents.
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Table 1. Examples of novel mTOR inhibitors in GBM clinical trials.

mTOR Inhibitors Clinical Trials

Dual PI3K/mTOR inhibitors
NVP-BEZ235 Phase IIB (NCT02430363)

XL765 Phase I/II (NCT01240460)

mTORC1/mTORC2 inhibitors
INK128 Phase I (NCT02142803)

AZD8055 Phase I (NCT01316809)
AZD2014 Phase I (NCT02619864)
OSI-027 Phase I (NCT00698243)

2. Deconstructing mTOR Biology in GBM

A deep understanding of the molecular circuitry of mTOR signaling in GBM is cru-
cial in order to improve the clinical outcome of mTOR inhibitors. Research efforts have
already provided a great amount of information on the role of the mTOR pathway in GBM
pathogenesis [4,5]. Compared to mTORC1, less is known about mTORC2; however, the
latter is emerging as a significant player in GBM, contributing to numerous oncogenic
processes [6–8]. New data regarding the two complexes are helping to construct a more
detailed picture of mTOR biology in GBM. For example, a recent study revealed that GBM
stem cells (GSCs) can activate the mTOR pathway in GBM-associated microglia, resulting in
an immunosuppressive microenvironment that promotes GBM growth [9]. As the authors
state, these findings suggest that mTOR inhibitors could also act on microglia to sup-
press their tumor-promoting effects. Another recent study discovered that both mTORC1
and mTORC2, acting downstream of oncogenic epidermal growth factor receptor (EGFR)
signaling, are cooperatively involved in the epigenetic regulation of GBM progression.
More specifically, mTORC1 was shown to increase the protein levels of the enhancer of
zeste homolog 2 (EZH2), a histone methyltransferase that constitutes the catalytic subunit
of polycomb repressive complex 2 (PRC2) and catalyzes the tri-methylation of histone
H3 at lysine 27 (H3K27me3), whereas mTORC2 functions to upregulate the intracellular
concentration of S-adenosylmethionine (SAM), the substrate for histone methylation. The
coordinated activity of both mTOR complexes was demonstrated to promote H3K27me3
and drive GBM growth in vitro and in vivo [10]. Furthermore, mTORC2 functions as an
epigenetic regulator of iron metabolism to promote GBM cell survival [11]. Knowledge of
the complexity of mTOR signaling in GBM, including regulatory mechanisms and molecu-
lar cross-talks with other pathways, is increasingly growing. For example, there is crosstalk
between PI3K/mTOR and MEK/ERK signaling that drives the self-renewal maintenance
and tumorigenicity of GBM stem cells (GSCs) [12]. Evidence also suggests an interaction
between mTORC2 and Hippo signaling that leads to the promotion of GBM growth and
invasiveness [13,14]. Concerning regulatory mechanisms, mTORC2 is implicated in a
feed-forward loop, involving Akt, heat-shock transcription factor 1 (HSF1), human antigen
R (HuR), and Rictor, which enhances mTORC2 activity and GBM growth [15]. All these
aspects of mTOR signaling have opened new avenues for research in GBM biology and
have provided opportunities for targeting the mTOR pathway through different strategies.

3. Novel mTOR Inhibitors

First-generation mTOR inhibitors include rapamycin and chemical compounds de-
rived from rapamycin (rapalogs) that act to specifically block the mTORC1 complex via
binding to FK506 binding protein 12 (FKBP12) [16]. Several aspects related to the molecu-
lar architecture of mTOR signaling have been found to be responsible for its incomplete
suppression by first-generation mTOR inhibitors and the failure of the latter in GBM clini-
cal trials. These include disinhibition of mTORC1-mediated negative feedback loops by
rapamycin, which results in the activation of protein kinase B (Akt), eukaryotic transla-
tion initiation factor 4E (eIF4E), and mitogen-activated protein kinase (MAPK) survival
pathways [17–19]; the presence of mTORC1 kinase-dependent activity that is resistant to
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rapamycin [20]; and the insensitivity of mTORC2 to acute treatment with rapamycin, which
allows Akt to be activated [21,22]. The limited capacity of first-generation mTOR inhibitors
led to the development of second-generation mTOR inhibitors that bind to the ATP-binding
pocket in the mTOR kinase domain of both mTORC1 and mTORC2 and repress their ac-
tivity. Second-generation mTOR inhibitors include dual phosphatidylinositol-3 kinase
(PI3K)/mTOR inhibitors (e.g., PI-103, GNE-477, NVP-BEZ235, BGT226, XL765, SF-1126,
and WJD008) and mTORC1/2 inhibitors (e.g., Torin1, Torin2, PP242, PP30, Ku-0063794,
WAY-600, WYE-687, WYE-354, INK128, AZD8055, AZD2014, and OSI-027) [23]. Many
second-generation mTOR inhibitors have now progressed to GBM clinical trials, and the
results of these trials are eagerly awaited. The inevitable emergence of resistance mech-
anisms to first- and second-generation mTOR inhibitors has fueled research efforts to
develop third-generation mTOR inhibitors: bivalent compounds that link rapamycin to
second-generation mTOR inhibitors [24]. RapaLink-1, a third-generation mTOR inhibitor
capable of crossing the blood–brain barrier, was shown to be more potent in in vitro and
in vivo GBM models than earlier generation mTOR inhibitors [25]. Another promising
class of mTOR inhibitors that is still in the early phase of drug development is selective
mTORC2 inhibitors. The rationale behind the development of such compounds is that the
selective blockade of only mTORC2 will not interfere with mTORC1-dependent negative
feedback loops and, thus, may be more effective in inhibiting tumor growth [26]. A study
identified CID613034 and its analog JR-AB2-011, small molecule inhibitors that are highly
selective for mTORC2, which displayed potent anti-tumor effects in GBM cell lines and
xenografts, respectively [27]. These novel mTOR inhibitors bring mTOR inhibition in GBM
back to the spotlight and offer hope for future GBM clinical trials (Table 2).

Table 2. Next-generation mTOR inhibitors.

mTOR Inhibitors Mechanism of Action

Second-generation mTOR inhibitors
• Dual PI3K/mTOR inhibitors

(PI-103, GNE-477, NVP-BEZ235, BGT226,
XL765, SF-1126, and WJD008)

Bind to ATP-binding pocket of both mTOR and
PI3K

Second-generation mTOR inhibitors
• mTORC1/mTORC2 inhibitors

(Torin1, Torin2, PP242, PP30, Ku-0063794,
WAY-600, WYE-687, WYE-354, INK128,

AZD8055, AZD2014, and OSI-027)

Bind to ATP-binding pocket in the mTOR kinase
domain of both mTORC1 and mTORC2

Third-generation mTOR inhibitors
RapaLink-1, RapaLink-2

Bind to FKBP12 and ATP-binding pocket of
mTORC1 (pharmacophores connected via a linker)

4. Biologically Relevant Preclinical GBM Studies Accessing mTOR Inhibitors

Ideally, preclinical studies should use in vitro and in vivo models that reflect, as much
as possible, the biology of GBM tumors in order to evaluate the effect of targeted drugs and
proceed to clinical trials. A recent study that highlights the significance of this concept used
the mTORC1/2 inhibitors Torin2, INK-128, and NVP-BEZ235 to investigate their effects on
GBM metabolism. Interestingly, the authors discovered that under hypoxic and nutrient-
poor conditions, mTORC1/2 inhibitors—much like rapamycin and rapalogs—protected
GBM cells by increasing their tolerance to nutrient and oxygen deprivation [28]. GBM
tumors are primarily characterized by a nutrient-deficient hypoxic microenvironment;
hence, mTOR inhibitors should be used cautiously in GBM patients. This study also hints
at the following ideas: (a) combining mTOR inhibitors with other therapies that block the
pro-survival effects induced by the former or (b) developing selective mTOR inhibitors
that only promote GBM growth inhibition without eliciting a protective response against
hypoxia and nutrient deficiency.
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5. Designing Appropriate GBM Clinical Trials for mTOR Inhibitors

A major drawback of the clinical trials that failed so far is the inclusion of GBM
patients without molecularly defining their tumors in terms of mTOR signaling activity. If
the clinical outcomes of mTOR inhibitors for GBM are to be improved, the identification and
incorporation of predictive biomarkers that can define patients who are most likely to show
a response to mTOR inhibitors in clinical trials is of utmost importance. A paradigm of such
a molecularly informed clinical trial is that of the novel German N2M2 trial, which evaluates
molecularly matched targeted therapies for newly diagnosed unmethylated isocitrate
dehydrogenase (IDH) wild-type GBM patients. Specifically, one of the goals of this trial is to
molecularly analyze patient tumor samples, identify and select those patients whose tumors
exhibit activated mTOR (mTOR phosphorylated at Ser2448), and subsequently administer
temsirolimus along with standard radiotherapy to this particular patient subgroup [29].
Nevertheless, the fact that patients’ brain tumors harbor particular molecular alterations
that are used as potential predictive biomarkers does not automatically translate into a
sensitivity to drugs targeting these alterations because GBM tumors present remarkable
spatial and temporal heterogeneity.

Phase 0 and window of opportunity clinical trials are also a step forward toward
accelerating the development of effective mTOR inhibitors and other drugs for GBM;
however, it is not without its challenges, given the obstacle of delivering drugs to the central
nervous system due to the blood–brain barrier and the difficulty of acquiring brain tumor
biopsies [30]. Such studies, if their clinical protocols are standardized, can rapidly assess the
pharmacokinetic and pharmacodynamic properties of mTOR-targeting compounds on a
patient’s tumors. Therefore, if a compound demonstrates poor pharmacology early on—for
example, not being able to penetrate the blood–brain barrier—its further development can
immediately be halted.

Obtaining brain tumor tissues from GBM patients at relevant time points during
treatment in clinical trials to assess the adequacy of target inhibition is difficult, but it can
provide vital information about the biological effects of targeted drugs on patient-derived
GBM cells as well as the molecular mechanisms of resistance to targeted therapy. Despite
the challenges, a Phase I trial successfully applied this strategy to evaluate the antitumor
activity of rapamycin in patients with recurrent phosphatase and tensin homolog (PTEN)-
deficient GBM [31]. Similar trials in the future will help pave the way toward developing
effective mTOR inhibitors.

Another innovation that will assist in the improvement of the clinical outcome of
mTOR inhibitors is the development of noninvasive methods that are able to directly or
indirectly assess whether these drugs are, in fact, hitting their intended target. For example,
a recent study identified 2-hydroxyglutarate (2HG), via magnetic resonance spectroscopy,
as a metabolic biomarker of IDH-mutant GBM response to the dual PI3K/mTOR inhibitor
XL765. Additionally, the decreased 2HG levels detected after treatment with XL765 were
correlated with improved survival in a GBM mouse model [32]. Further preclinical and
clinical studies are required to validate this biomarker.

6. mTOR Inhibition in Combination with Other Targeted Therapies

GBM is not a single-pathway disease. Either due to intrinsic multiple oncogenic
pathways or the activation of cross-talk and feedback mechanisms in response to targeted
therapy, monotherapies are not sufficient to inhibit GBM tumor growth. Unfortunately,
much like the disappointing results of the GBM clinical trials using only mTOR inhibitors,
the combination of mTOR inhibition with standard chemoradiation yielded poor results [3].
However, preclinical data indicate a synergistic effect of mTOR inhibition with TMZ that
may be based on crosstalk between the mTOR pathway and the TMZ-mediated cell death
pathway [33,34]. Deciphering the molecular details of this crosstalk may reveal why this
therapeutic combination did not translate into an improved clinical outcome. Hence,
combining mTOR inhibitors with different drugs targeting other signaling pathways
is a much more effective therapeutic approach against GBM, as it improves responses
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to therapy, overcomes therapy resistance, and addresses GBM heterogeneity. Research
on polytherapies for GBM has proposed various combinations, such as pairing mTOR
inhibitors with mitogen-activated protein kinase (MEK), cyclin-dependent kinase 4 and 6
(CDK4/6), mouse double minute 2 homolog (MDM2), signal transducer and activator of
transcription 3 (STAT3), or growth hormone-releasing hormone (GHRH) inhibitors [35–39].
These and other combination therapies warrant further evaluation to validate which ones
are worth positioning for clinical development.

7. Conclusions

mTOR represents a hallmark-signaling pathway in GBM and there is a strong rationale
for its therapeutic targeting in this aggressive brain tumor. The unexpected results from
recent clinical trials of mTOR inhibitors were met with disappointment from the neuro-
oncology community. However, rather than abandoning the road for mTOR inhibition in
GBM, physicians and researchers in the field should view this outcome as an opportunity
to learn, improve, and subsequently pivot to the most promising path forward. As outlined
here, it becomes evident that in order to unleash the full potential of mTOR inhibitors
in GBM, an integrated approach is required, encompassing improvements in clinical
trial design and preclinical studies, a deep understanding of mTOR biology in GBM, the
development of more selective mTOR inhibitors, and the identification of the most effective
combination therapies based on mTOR inhibitors. Only when all the above are considered
and addressed will we arrive at a solid conclusion with respect to the future of mTOR
inhibitors in GBM therapy. Results from each front will help direct our next steps on this
challenging road of mTOR inhibition in GBM. Most likely, mTOR inhibitors will prove to be
effective for a subset of GBM patients with a relevant molecular profile and will eventually
be springboarded into the neuro-oncology clinic.
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