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Abstract: Routine monitoring of lithium levels is common clinical practice. This is because the lithium
prediction strategies available developed by previous studies are still limited due to insufficient
prediction performance. Thus, we used machine learning approaches to predict lithium concentration
in a large real-world dataset. Real-world data from multicenter electronic medical records were used
in different machine learning algorithms to predict: (1) whether the serum level was 0.6–1.2 mmol/L
or 0.0–0.6 mmol/L (binary prediction), and (2) its concentration value (continuous prediction).
We developed models from 1505 samples through 5-fold cross-validation and used 204 independent
samples to test their performance by evaluating their accuracy. Moreover, we ranked the most
important clinical features in different models and reconstructed three reduced models with fewer
clinical features. For binary and continuous predictions, the average accuracy of these models was
0.70–0.73 and 0.68–0.75, respectively. Seven features were listed as important features related to
serum lithium levels of 0.6–1.2 mmol/L or higher lithium concentration, namely older age, lower
systolic blood pressure, higher daily and last doses of lithium prescription, concomitant psychotropic
drugs with valproic acid and -pine drugs, and comorbid substance-related disorders. After reducing
the features in the three new predictive models, the binary or continuous models still had an average
accuracy of 0.67–0.74. Machine learning processes complex clinical data and provides a potential
tool for predicting lithium concentration. This may help in clinical decision-making and reduce the
frequency of serum level monitoring.

Keywords: bipolar disorder; lithium; machine learning; random forest; support vector machine;
therapeutic drug monitoring; XGBoost
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1. Introduction

Lithium is an important therapeutic drug and is considered an archetypal mood stabi-
lizer for the management of mood disorders or schizoaffective disorder [1–3].
Many international guidelines recommend lithium as a first-line drug, especially for bipolar
disorder [4,5]. Even though lithium has clear beneficial effects, the therapeutic range of
its serum levels is narrow (<1.2 mmol/L) [6]. Due to the narrow therapeutic index of
lithium, a routine monitoring of its serum levels is suggested. However, the need for
frequent monitoring may limit the clinical prescription of lithium. For example, in the acute
phase of treatment, clinicians first prescribed an initial low-dose lithium dosage regimen
that was titrated upwards based on the serum level and clinical response. This approach
usually takes days to weeks to reach the optimal serum concentration, which may delay
the therapeutic response [7]. Moreover, in the maintenance phase of lithium therapy, the
need for frequent blood draws to obtain serum levels may reduce patients’ willingness to
use lithium [3,8,9].

In the past few decades, some studies have attempted to solve this issue and provided
formulas to calculate the expected steady-state lithium levels for a specific dose [10]. How-
ever, these studies have great limitations that hinder their clinical application in real-world
settings. For example, the sample size of these previous studies is often small (usually
<200 participants) [11–13]; while others have included patients in a conditional experi-
mental environment, rather than patients from a real-world clinical environment [10];
prediction errors of these models were not enough to meet clinical needs (i.e., root-
mean-square error (RMSE) ≥0.37 mmol/L) [14]. Recently, algorithm-driven machine
learning models have been developed as important tools in mental health field [15–17].
These algorithms may provide programs that optimize performance under the guidance
of training experience, for example, using gender-specific gene expression biomarkers to
predict lithium treatment response [18]. Furthermore, with the increasing popularity of
big data, such as data from electronic medical records (EMRs), large-scale datasets provide
machine learning for training and have the potential to make better prediction models of
serum lithium levels more likely [19]. After independent replication, these models may
become clinically useful in routine psychiatric care.

This study used a large-scale blood sample derived from EMRs and different al-
gorithmic machine learning methods to develop predictive models of patients’ serum
lithium levels. This study aimed to predict serum lithium levels at a therapeutic level of
0.6–1.2 mmol/L (binary prediction) and blood concentration value (continuous prediction).
For further clinical applications, the importance of the features in these models was ranked,
and new reduced models with fewer features were reconstructed.

2. Materials and Methods
2.1. Data Source and Study Subjects

The research protocol was approved by the institutional review board of Chang Gung
Memorial Hospital on 2 February 2021 (No.202100131B0). Figure 1 depicts a flowchart of
the selection process and the study design. We used data from the Chang Gung Research
Database (CGRD) medical claims between 1 January 2002, and 31 December 2019 to predict
serum lithium levels of inpatients with mental disorders. The CGRD is a multicentric
EMR, which includes deidentified personal data on demographics (age, sex), medical
visits (outpatient and inpatient), pharmacy records (medication type, dosage, frequency,
and duration of supply), disease diagnosis by the International Classification of Disease,
Ninth Revision (ICD-9) or ICD-10, and laboratory data (hematology tests, biochemical tests,
and blood draw time) from seven medical institutes throughout Taiwan [20]. The CGRD
covered 14% of inpatients with mental disorders in Taiwan’s total medical population from
1997 to 2010 [21]. Since inpatients routinely take medications under the supervision of
nurses (good medication compliance), we only included inpatient pharmacy and laboratory
data to develop machine learning algorithms. Patients’ lithium concentration records had
to meet the following inclusion criteria: (1) Patients should take the same daily dose for at
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least 5-day consecutively before the blood test was performed to achieve the steady-state
concentration of lithium therapy based on its half-life [22]; (2) Had no chronic kidney
disease (i.e., glomerular filtration rate ≥60 mL/min/1.73 m2) [23]; (3) Data on serum
lithium level ranging from 0.0–1.2 mmol/L [4]; (4) Serum lithium samples were drawn
8–16 h after the last dose [11,24,25]. Additionally, the same set of eligibility criteria to
extract additional data on serum lithium samples from outpatients was adopted.

Figure 1. Flowchart of the selection process for this study and outline of analytic procedures.

2.2. Definition of Outcome Targets, Predictive Features, and Analysis Subject

In this study, two outcome targets for binary and continuous variables were defined.
Since serum levels of lithium of 0.6–1.2 mmol/L have been considered the target range
for mood disorders [26] and covered most of the recommended treatment guidelines for
the manic and maintenance phases of bipolar disorder [4,5,27], binary variable results
of the prediction model are divided into 0.6–1.2 mmol/L group (proper treatment) and
0.0–0.6 mmol/L group (undertreatment). Additionally, the serum lithium level is directly
regarded as a target for continuous outcomes.

Based on the results of previous studies on lithium interaction and the available data
in the database [10,28], we included 114 features for analysis, including basic information
(age, sex, height, weight, blood pressure, characteristics of lithium prescription), con-
comitant medications, comorbidities, and laboratory data. The patient’s comorbidity was
defined as whether the disease was recorded in the CGRD within 2 years before admission.
Concomitant medication was considered if the patient had used other medications within
5-day before the lithium blood test. For different concomitant psychotropic medications,
we calculated the ratio of the average daily dose to the defined daily dose (DDD) used
for the modeling. The DDD determined by the World Health Organization Collaborating
Centers for Drug Statistics Methodology was used to assume the average maintenance
dose per day in adults [29]. Laboratory data were extracted at the same time as the lithium
blood sample was collected or at other times within a week. Due to the lack of laboratory
data for some patients, we kept patients with at least the other characteristics mentioned
above. We then adopted k-nearest neighbor (k-NN) imputation to fill in missing values
(laboratory data) [30]. We computed the median of the given variable in the five nearest
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neighbors of a given subject to fill these values. Detailed information on all features and
availability rates of laboratory data are provided in Supplementary Tables S1 and S2.

To obtain prediction models with high generalizability, the inpatient data were divided
into an internal development (training/validation) set and an external test set (inpatient
test set). First, we randomly selected 10% of the entire data as the test set for external
validation [15] and then implemented 1:9 propensity score matching (PSM) on the remain-
ing data to obtain the development set [31]. Development set was used to develop the
machine learning model and internal validation [15]. Additionally, we were interested in
the applicability of machine learning algorithms to outpatients, so the outpatient data were
used for the other external test set (outpatient test set). Finally, the development, inpatient
test, and outpatient test sets included 1505, 204, and 7 samples, respectively.

2.3. Machine Learning Models and Model Evaluation

Five common machine learning algorithms were used in this study (logistic regres-
sion (LogR), linear regression (LinR), support vector machine (SVM) with radial basis
function kernel, random forests (RF), and extreme gradient boosting (XGBoost) [18,32–35].
These algorithms were used to develop predictive models of binary outcomes (LogR, SVM,
RF, and XGBoost) and continuous outcomes (LinR, SVM, RF, and XGBoost). The LogR
model uses probabilities for classification problems with two classes of dichotomous crite-
ria, and the LinR model predicts the continuous value as a weighted sum of the feature
inputs. SVM constructs a set of hyperplanes in a higher-dimensional space to achieve
the maximum separation distance of the nearest training data points of any class [36].
RF operates by constructing multiple decision trees during training and outputting a com-
prehensive prediction based on the mean prediction of individual trees (110 trees with a
depth of 7 layers were used in the analysis) [37]. XGBoost builds an ensemble of decision
trees by iteratively focusing on harder to predict subsets of the training data (200 trees
with a depth of five layers were used in the analysis) [38]. We first apply the regularization
method to all features to maintain a common scale range (0–1), so that we can avoid distor-
tion of the value range and overfitting and improve the prediction accuracy of the model.
Then, we used the 5-fold cross-validation method to develop the above machine learning
models and evaluate their performance through two test sets.

Different performance parameters were calculated for binary and continuous out-
comes. We mainly used sensitivity, specificity, the area under the curve of receiver operator
characteristic (AUC-ROC), and accuracy for binary prediction and mean absolute error
(MAE), mean square error (MSE), RMSE, and accuracy for continuous prediction. For better
clinical practice, we defined the accuracy of continuous results (i.e., if the difference be-
tween the predicted value and true value is within 0.2 mmol/L, the predicted result will be
regarded as a correct prediction). See Supplementary Tables S4 and S5 for all performance
parameters. In addition, we conducted Y randomization (Y scrambling) test on the contin-
uous result prediction model to ensure its robustness [39,40]. The lithium concentration
value was randomly shuffled once, and a new prediction model was developed using the
original features. If the primary predictive model is acceptable, the new predictive model
is expected to have a lower R2 value than the primary model.

2.4. Model Interpretation and Statistical Analysis

We used three methods to rank the importance of features and interpret the model
predictions. First, LogR and LinR adopt the least absolute shrinkage and selection operator
(LASSO) algorithm. LASSO is a regression analysis that uses the L1 constraint to perform
variable selection [41]. Second, we used a backward stepwise method to determine the
importance order among the features. This process uses a series of steps to allow features
to leave the SVM model one at a time, which allows for interactions between residual
features [42]. Third, RF and XGBoost chose Shapley additive explanation (SHAP) to
interpret the model predictions. SHAP comes from game theory, and its interpretation
is based on the SHAP value of each feature, which represents the contribution of the
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feature to predicting the event risk. A positive or negative SHAP value indicates that the
corresponding feature has an increase or decrease in the lithium concentration, respectively.
The SHAP value of each variable is additive, allowing the contribution of each variable to
be converted into a part of the output classification probability [43].

We selected three different feature combinations to reconstruct the prediction model to
evaluate the clinical applicability of the model with fewer variables. First, we only applied
basic information in prediction Model 1. Second, we combined basic information and
concomitant psychotropic medications as predictive features in Model 2. Finally, we used
the top 10 ensemble features (close to 10% of 114 features) in Model 3, selected from the
feature importance ranking results of the different machine learning algorithms mentioned
above (consensus features obtained by combining the results of different models).

The independent t-test and χ2 test were used to compare the baseline characteristics
of the development and test data and the difference between the primary model and
the secondary analysis in different feature combinations. We also used a one-way anal-
ysis of variance to check the accuracy differences between the four prediction models.
All statistical analyses were performed using SAS software (v. 9.4; SAS Institute Inc.,
Cary, NC, USA). Statistical significance was set at p-value < 0.05. All machine learning
models were established with Windows Python 3.8 (scikit-learn package v. 0.24.2), and the
codes were provided on the GitHub website (github.com/harwic/LithML01) accessed on
18 October 2021.

3. Results
3.1. Characteristics of Study Participants

A total of 1709 inpatient data were included in this study (mean age, 43.1 years, 45.8%
female). Table 1 presents further clinical characteristics after PSM. There was no significant
difference between development and inpatient test data. The demographic data of the
seven outpatient data are listed in Supplementary Table S3.

Table 1. Characteristics of lithium-treated patients, comparing inpatient development data and
inpatient test data.

Characteristics Development
(n = 1505)

Test
(n = 204) t or χ2 p

Lithium serum levels, mmol/L 0.69 ± 0.21 0.70 ± 0.22 −0.51 0.612
Basic Information

Age, year 43.13 ± 13.70 42.95 ± 13.82 0.18 0.856
Sex, female 696 (46.25) 87 (42.65) 0.94 0.333

Clinical Characteristics
Height, m 1.64 ± 0.08 1.64 ± 0.09 −0.90 0.370
Weight, kg 69.64 ± 14.73 70.35 ± 14.54 −0.65 0.517

Systolic blood pressure, mmHg 122.00 ± 10.86 122.30 ± 10.42 −0.38 0.706
Diastolic blood pressure, mmHg 76.28 ± 7.48 76.21 ± 7.76 0.14 0.890

Lithium Prescription
Daily dose, mg/day 867.70 ± 266.70 896.30 ± 257.20 −1.44 0.148

Dosing frequency, time/day 2.57 ± 0.78 2.60 ± 0.73 −0.57 0.568
Last dose, mg 354.60 ± 125.20 362.50 ± 131.30 −0.84 0.401

Time interval, hour 13.08 ± 1.44 13.11 ± 1.32 −0.26 0.796
Concomitant Psychotropic Drugs
Mood Stabilizers

Carbamazepine 73 (4.85) 11 (5.39) 0.11 0.737
Lamotrigine 64 (4.25) 7 (3.43) 0.30 0.581
Topiramate 110 (7.31) 15 (7.35) 0.001 0.982

Valproic acid 524 (34.82) 67 (32.84) 0.31 0.578
Antidepressants

SSRI 175 (11.63) 24 (11.76) 0.003 0.954
SNRI 88 (5.85) 10 (4.90) 0.30 0.586

Trazodone 38 (2.52) 4 (1.96) 0.24 0.625
Mirtazapine 45 (2.99) 7 (3.43) 0.12 0.731
Bupropion 62 (4.12) 8 (3.92) 0.02 0.894

Agomelatine 48 (3.19) 7 (3.43) 0.03 0.854
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Table 1. Cont.

Characteristics Development
(n = 1505)

Test
(n = 204) t or χ2 p

Antipsychotics
Typical antipsychotics 177 (11.76) 23 (11.27) 0.04 0.839

The benzamides 49 (3.26) 7 (3.43) 0.02 0.895
The -dones 295 (19.60) 49 (24.02) 2.18 0.140
The -pines 1033 (68.64) 129 (63.24) 2.41 0.121

Aripiprazole 157 (10.43) 23 (11.27) 0.14 0.713
Anxiolytics, Sedatives, or Hypnotics

Benzodiazepines 1252 (83.19) 169 (82.84) 0.02 0.901
Non-benzodiazepines 208 (13.82) 32 (15.69) 0.52 0.472

Acetylcholinesterase inhibitors 12 (0.80) 1 (0.49) 0.22 0.636
Mental Disorders

Bipolar disorders 1108 (73.62) 150 (73.53) 0.001 0.978
Laboratory Data

Serum creatinine, mg/dL 0.79 ± 0.16 0.80 ± 0.16 0.12 0.469
BUN, mg/dL 9.99 ± 2.64 9.97 ± 2.58 −0.72 0.902

Abbreviations: BUN; blood urea nitrogen; SNRI, serotonin norepinephrine reuptake inhibitor; SSRI, selective
serotonin reuptake inhibitor. Data was expressed as N (percentage) or mean ±standard deviation. Time interval
is the time between the blood draw and last lithium dose.

3.2. Predictive Model Performance

Table 2 first shows the binary outcomes (0.6–1.2 mmol/L vs. 0.0–0.6 mmol/L) of the
four algorithms. For inpatient test data, these models had high sensitivity (LogR, 0.89; SVM,
0.94; RF, 0.96; XGBoost, 0.90), low specificity (LogR, 0.43; SVM, 0.32; RF, 0.22; XGBoost, 0.38),
with an average AUC-ROC exceeding 0.75 (LogR, 0.75; SVM, 0.76; RF, 0.78; XGBoost, 0.78).
The average accuracy of the four algorithms was 0.70–0.73 with no significant differences
between them (F = 2.36, p = 0.110, data not shown). When the four models were applied
to outpatient test data, their model performances were similar to the inpatient test data,
such as average accuracy (inpatient: 0.70–0.73; outpatient: 0.77–1.00). The detailed model
performance of the binary results is listed in Supplementary Table S4. Table 2 shows the
continuous results of the four algorithms. For the inpatient test data, the average MAE,
MSE, and RMSE of the four algorithms was 0.14–0.16 mmol/L, 0.03–0.04 mmol/L, and
0.17–0.20 mmol/L, respectively. The average accuracy was 0.68–0.75, and the SVM had the
highest accuracy (F = 15.52, p < 0.001, data not shown). When the four models were used
to predict outpatient test data, the average accuracy was 0.67–0.78, and no differences were
observed between the four models (F = 1.33, p = 0.299, data not shown). Supplementary
Table S5 shows the detailed model performance of continuous results. Additionally, the R2

of the new models had lower values than the primary models after Y randomization test
(new models: 0.117–0.148, primary models: 0.209–0.370, data not shown).

Table 2. The model performance of the binary and continuous outcomes between different algorithms
in inpatient test data.

Binary LogR SVM RF XGBoost

Sensitivity 0.89 (0.84–0.93) 0.94 (0.91–0.97) 0.96 (0.95–0.97) 0.90 (0.87–0.94)
Specificity 0.43 (0.36–0.51) 0.32 (0.24–0.41) 0.22 (0.13–0.31) 0.38 (0.34–0.41)
AUC-ROC 0.75 (0.73–0.76) 0.76 (0.74–0.77) 0.78 (0.75–0.81) 0.78 (0.74–0.81)
Accuracy 0.73 (0.71–0.75) 0.73 (0.71–0.75) 0.70 (0.68–0.73) 0.72 (0.70–0.74)

Continuous LinR SVM RF XGBoost

MAE 0.16 (0.16–0.16) 0.14 (0.13–0.15) 0.15 (0.15–0.16) 0.15 (0.15–0.16)
MSE 0.04 (0.04–0.04) 0.03 (0.03–0.03) 0.04 (0.03–0.04) 0.04 (0.04–0.04)

RMSE 0.20 (0.19–0.20) 0.17 (0.17–0.18) 0.19 (0.18–0.19) 0.19 (0.19–0.20)
Accuracy 0.69 (0.68–0.70) 0.75 (0.71–0.79) 0.68 (0.67–0.70) 0.68 (0.67–0.70)

Abbreviations: AUC-ROC, area under the curve of receiver operator characteristic; LinR, linear regression;
LogR, logistic regression; MAE, mean absolute error; MSE, mean-square error; RF, random forests; RMSE,
root-mean-square error; SVM, support vector machine; XGBoost, extreme gradient boosting.
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3.3. Feature Importance and Model Performance under Different Feature Combinations

Table 3 summarizes the top 10 features of the different algorithms. Among the
top 10 ensemble features of the binary and continuous algorithm models, seven features
appeared together and were associated with higher lithium concentrations: older age, lower
systolic blood pressure, higher daily and last doses of lithium prescription, concomitant
psychotropic medications with valproic acid and -pines drugs, and comorbid substance-
related disorders. Of these seven features, the daily dose of lithium prescription and age
were the first two important features in predicting serum lithium levels. For detailed
information on feature selection, such as LASSO, backward stepwise, and SHAP, as well
as the importance ranking and positive-negative relationship of all features of different
algorithm models, see Supplementary Materials.

Table 3. Top 10 features of the binary and continuous outcomes between different algorithms.

Binary Ensemble LogR SVM RF XGBoost

Top 1 Daily dose * Daily dose Daily dose Daily dose Daily dose
Top 2 Age * MCHC Topiramate MCHC Age
Top 3 Last dose * Valproic acid NSAIDs Last dose Valproic acid
Top 4 The -pines * Renal diseases Hyperlipidemia Dosing frequency Height

Top 5 Valproic acid * Age Elimination
disorders Age Time interval

Top 6 Weight Weight Age The -pines Benzodiazepines

Top 7 SBP * Substance use
disorders The -pines Valproic acid RBC

Top 8 Hypertension Hypertension Time interval Benzodiazepines WBC

Top 9 MCHC The -pines Sleep-wake
disorders Hemoglobin MCHC

Top 10 Substance use
disorders * Last dose Last dose Serum creatinine RDW-SD

Continuous Ensemble LinR SVM RF XGBoost

Top 1 Daily dose * Daily dose Daily dose Daily dose Daily dose
Top 2 Age * Valproic acid Age Age Age
Top 3 Valproic acid * Age Beta blockers Valproic acid Valproic acid
Top 4 The -pines * Weight Hyperlipidemia Weight The -pines

Top 5 Substance use
disorders * Topiramate Depressive

disorders RBC SBP

Top 6 SBP * ARB SBP Height Weight
Top 7 Beta blockers MCHC Valproic acid RDW-SD Height
Top 8 Last dose * Hypertension Mild DM SBP Time interval
Top 9 Potassium Ocular bleeding Sex Last dose Topiramate

Top 10 NSAIDs Substance use
disorders

Sleep-wake
disorders Topiramate Benzodiazepines

Abbreviations: ARB, angiotensin receptor blockers; LinR, linear regression; LogR, logistic regression; MCHC, mean corpuscular hemoglobin
concentration; Mild DM = diabetes mellitus without end organ damage; NSAIDs, non-steroidal anti-inflammatory drugs; RBC, red
blood cell; RDW-SD, red cell distribution width-standard deviation; RF, random forests; SBP, systolic blood pressure; Substance use
disorders = substance-related and addictive disorders; SVM, support vector machine; WBC, white blood cell; XGBoost, extreme gradient
boosting. * indicated simultaneous occurrence in the top 10 ensemble features of binary and continuous machine learning models.

Supplementary Figure S9A shows the accuracy of binary outcomes using four algo-
rithms with different feature combinations. The accuracy could be above 0.70 (range from
0.70 to 0.73) regardless of the algorithm or feature combination used. The predictive perfor-
mance of the three new models was similar to that of the primary model, and no statistical
differences were observed. Moreover, Supplementary Figure S9B shows the accuracy of
continuous outcomes (0.67–0.75). For the LinR and SVM algorithms, the accuracy of the
primary model using all features was significantly higher than that of Model 1/Model 2
and Model 1/Model 3, respectively. However, the models with fewer features performed
nearly as well as the primary model in the RF and XGBoost algorithms. Additionally,
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detailed performance data for various feature combinations are shown in Supplementary
Materials. In addition, Figure 2 summarizes the step-by-step decisions recommended for
clinicians using the binary or continuous predictive model of this study.

Figure 2. The suggested workflow for clinicians to use the predictive models of this study. (A) binary prediction,
(B) continuous prediction.

4. Discussion

This study used machine-learning algorithm-driven models to predict serum lithium
levels. We collected a large number of blood samples from hospitalized patients to develop
machine learning models and used independent inpatient and outpatient data to make
predictions. Whether it is binary prediction or continuous prediction, the accuracy was
67–100% (binary, 70–100%; continuous: 67–78%). Moreover, we analyzed the feature
rankings of these models and found seven important features. Furthermore, we reduced
the number of features required to reconstruct the prediction model. The accuracy of most
of the new models is close to that of the primary model, with no significant difference.

Several studies have developed predictive lithium dose equations [11–13,25,44,45].
Compared to previous studies, this study with large-scale blood sample data in real-world
settings is more complicated. For example, participants in this study took various con-
comitant drugs, such as mood stabilizers, antidepressants, and antipsychotics, which
may interact with the pharmacokinetics of lithium (Table 1) [28]. Under such an arduous
task, this study has better sensitivity (previous studies, 0.80–0.90; inpatient data result,
0.89–0.96) [14] or RMSE (previous studies, 0.21–0.59 mmol/L; inpatient data result,
0.17–0.20 mmol/L) [14,46], but lower specificity (previous studies, 0.67–0.76; inpatient
data result, 0.22–0.43) [14], or higher MAE (previous studies, 0.13 mmol/L; inpatient data
result, 0.14–0.16 mmol/L) [25]. Furthermore, these primary models of the inpatient data
performed equal or better in most of the outpatient data (Supplementary Tables S4 and S5),
indicating that our model has a certain generalization. Notably, the SVM algorithm of the
continuous model exhibited the best performance in the inpatient test data among the four
algorithms. Clinicians may consider using the SVM algorithm first to predict an inpatient’s
lithium concentration.

Compared with previous studies, the predictive performance of the current machine
learning algorithm-driven model should be acceptable and useful for real-world clinical
practice (Figure 2). Here, we assume that two clinical scenarios are recommended for these
predictive tools. First, the binary prediction model can help clinicians track whether lithium
treatment reaches the therapeutic concentration in the outpatient setting and reduces the
frequency of blood draw. Many studies have indicated that patients receiving lithium
treatment should monitor their plasma concentration regularly throughout their life [47,48],
but this is a burden on patients. The proportion of patients who receive regular blood
lithium monitoring is often lower than the recommended standard [8,9,49]. Therefore, we
can use patient information to predict whether the level of lithium treatment is sufficient.
If the prediction is sufficient, we may not draw blood (higher sensitivity); otherwise, we
draw blood to recheck the lithium concentration (lower specificity). Second, the continuous
predictive model can help clinicians adjust the medications of their patients. The current
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model of this study can estimate the concentration value and increase or decrease the daily
dose of lithium to reach the appropriate therapeutic range [6].

The interpretable machine learning model is an important issue; hence, this study
summarizes the top 10 features of different algorithms with binary and continuous out-
comes. First, it is easy to understand that increasing daily and last doses of lithium
elevate its serum level. Second, our study found that the older the age, the higher the
lithium concentration. There is evidence that older people have lower lithium clearance,
which may explain the results of this study [50,51]. Third, the simultaneous use of val-
proic acid or -pines drugs is also an important feature in predicting serum lithium levels.
Previous clinical trials have shown that valproic acid or quetiapine may interact with
lithium and slightly increase serum concentration [28,52,53]. Some studies also indicated
that lithium plus valproic acid or quetiapine has a better therapeutic response than lithium
monotherapy [54,55]. Compared to lithium monotherapy, lithium plus valproic acid or
-pine drugs can enhance therapeutic effects by increasing lithium concentration, partially
supporting our findings. In addition, some case reports have found that the combined
use of lithium and antipsychotics can cause neurotoxicity, but serum lithium levels may
not increase at the same time [56–58]. The feature importance ranking of our model can
also partially explain it, that is, different types of antipsychotics have different effects on
lithium concentration. For example, the most influential drugs in our models are -pine
drugs (Supplementary Tables S6 and S7). Fourth, a higher systolic blood pressure reduces
the lithium concentration. Increased blood pressure is related to the excessive activity
of sodium-lithium countertransport in red blood cells, leading to a decrease in serum
lithium levels [59,60]. Finally, a previous study reported that drinking alcohol increases
lithium concentration [61], which may reflect the importance of substance use disorders in
predictive models. In summary, factors affecting lithium concentration proved by previous
studies may play an important predictive role in the machine learning model of real-world
data. Furthermore, it is worth noting that true indicators of kidney function, such as blood
urea nitrogen or serum creatinine, are not a priority feature to predict lithium concentration
in this study [10]. This may be due to the inclusion criteria (glomerular filtration rate
≥60 mL/min/1.73 m2), indicating that the renal function of the study participants was
relatively normal.

For further clinical applications, we attempted to reduce the features of the algorithm.
Even though the new model and the primary model had differences in the accuracy
performance of the different algorithms, the overall accuracy of all new models was
approximately 70%. This finding inspired us to consider using basic information with or
without concomitant psychotropic drugs to predict serum lithium levels of the patient.
Furthermore, using only the top 10 features in the predictive model may also be another
option. Our findings show that this flexible feature combination of algorithm-driven
machine learning models is clinically more practical. For example, clinicians can only use
10 predictors, such as basic information or the top 10 features mentioned in this study, to
build a simple model with predictive performance similar to the original model that used
114 predictors.

This study had several limitations. First, we used PSM to select independent inpa-
tient data to reduce the bias of background characteristics between development and test
data [16], but collecting development and test data from the same dataset may reduce the
generalizability of our models. Second, we extracted outpatient data as another test set
to verify reproducibility [16]. Compared to the inpatient test set, the model performance
was still acceptable; however, the outpatient test set only included seven blood samples,
which may reduce validity. Third, we extracted the patient’s laboratory data with a 1-week
buffer period and used the k-NN method to fill in the missing values. What we do may
obscure the true value of individual laboratory data and reduce its usefulness in algorithms.
For example, renal function is not a priority feature in the current model compared to a
previous study [10]. Finally, this study excluded some extreme or outlier data from the
database, such as patients with chronic kidney disease, serum lithium levels exceeding
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1.2 mmol/L, or blood samples collected less than 8 h or more than 16 h after the last
dose; the domain of applicability of our models cannot be extended to those with these
conditions [39,62].

5. Conclusions

We used real-world EMR data to develop machine learning models to predict serum
lithium levels. The average accuracy of binary results or continuous results was
68–75%. Older age, lower systolic blood pressure, higher daily and last doses of lithium
prescription, concomitant psychotropic medications with valproic acid and -pines drugs,
and comorbid substance-related disorders were important features associated with higher
lithium concentrations. We altered the prediction models with fewer features, and the
average accuracy was still close to 70%. Our model processed more complex clinical data
and provided useful clinical tools for predicting serum lithium levels.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9111558/s1. Figure S1: LASSO method for selecting the top 10 features in logistic
regression, binary outcomes. Figure S2: Backward stepwise method for selecting the top 10 features
in support vector machine, binary outcomes. Figure S3: Shapley additive explanations method
for selecting the top 10 features in random forests, binary outcomes. Figure S4: Shapley additive
explanations method for selecting the top 10 features in extreme gradient boost, binary outcomes.
Figure S5: LASSO method for selecting the top 10 features in linear regression, continuous outcomes.
Figure S6: Backward stepwise method for selecting the top 10 features in support vector machine,
continuous outcomes. Figure S7: Shapley additive explanations method for selecting the top 10
features in random forests, continuous outcomes. Figure S8: Shapley additive explanations method
for selecting the top 10 features in extreme gradient boost, continuous outcomes. Table S1: Detailed
drug name with codes and diagnostic codes for mental disorders or medical diseases. Table S2:
Proportion of laboratory data with no missing test values in inpatient data. Table S3: Characteristics
of lithium-treated patients, comparing inpatient test data and outpatient test data. Table S4: Detail
information of binary outcomes in inpatient test data and outpatient test data. Table S5: Detail
information of continuous outcomes in inpatient test data and outpatient test data. Table S6: 114
feature importance ranking results of the 4 different machine learning algorithms in binary outcomes.
Table S7: 114 feature importance ranking results of the 4 different machine learning algorithms in
continuous outcomes. Table S8: Detail information of binary outcomes of logistic regression algorithm
under different feature combinations. Table S9: Detail information of binary outcomes of support
vector machine algorithm under different feature combinations. Table S10: Detail information of
binary outcomes of random forests algorithm under different feature combinations. Table S11: Detail
information of binary outcomes of extreme gradient boosting algorithm under different feature
combinations. Table S12: Detail information of continuous outcomes of linear regression algorithm
under different feature combinations. Table S13: Detail information of continuous outcomes of
support vector machine algorithm under different feature combinations. Table S14: Detail information
of continuous outcomes of random forests algorithm under different feature combinations. Table S15:
Detail information of continuous outcomes of extreme gradient boosting algorithm under different
feature combinations.
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