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Abstract: Biomedical research seeks to generate experimental results for translation to clinical
settings. In order to improve the transition from bench to bedside, researchers must draw justifiable
conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human
clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such
as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone
surgery around intraoral dental implants. Dog models, well-known in the field of dental implant
research, tend now to be used for studies conducted under compromised oral conditions (biofilm).
Regarding small animal models, research studies mostly use rodents, with interest in rabbit models
declining. Mouse models remain a reference for genetic studies. On the other hand, over the last
decade, scientific advances and government guidelines have led to the replacement, reduction, and
refinement of the use of all animal models in dental implant research. In new development strategies,
some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches.
In this review, we summarize the key information on the animal models currently available for
dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional
procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible
non-animal options.

Keywords: pre-clinical research; murine dental implant; human-sized dental implant; osseointegration;
biocompatibility; implant models

1. Introduction

In the field of dental implant research, experiments have been mainly limited to
in vivo studies in so far as translational studies are a prerequisite for any clinical research.
Identification of the reasons for the failure and success of dental implant treatments remains
the most frequent question in clinical practice. By mimicking the biological condition of an
implant, pre-clinical research makes it possible to investigate aspects of peri-implant tissue
healing and peri-implant disease development [1].

Traditionally, two types of in vivo implant studies have been conducted depending on
the implant size used: (1) experiments in large animal models (dogs, pigs, and non-human
primates [NHPs]) for studying human-sized implants and (2) experiments in small animal
models (rabbits, mice, and rats) for studying adapted “implants” (Figure 1). Nonetheless,
taken separately, no animal model is able to shed light on all three levels of implant
osseointegration (macro/micro/nano). For example, assessment of implant occlusion
(macro level) is limited to large animal models, but these models do not allow the analysis
of molecular interaction at the bone/implant interface (micro level). Moreover, limiting the
selection criteria to animal size amounts to ignoring other species-specific characteristics
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(anatomy, physiology, etc.) of each model. Overall, animal model justification in implant
studies is complex and requires decision support tools.
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Since the 1950s, researchers have been widely encouraged to find alternatives to
animal testing and improve animal welfare and research quality. In many countries, the
principles of Replacement, Reduction, and Refinement (the “3Rs”) are now embedded in
national and international legislation, redefining the use of animals in scientific procedures
with the establishment of the ARRIVE (Animal Research: Reporting of In Vivo Experiments)
guidelines [1–3]. Nowadays, in vitro studies play a leading role in the development of
tissue bioprinting, organoids, or organ-on-a-chip, which have emerged as promising
approaches for replacing animal experiments in basic research. Guided by the principles
of the 3Rs, trends in use as a function of this size-based classification have changed, with
large animal models mainly being used for clinical studies, small animal models employed
preferentially for pathophysiological pathway analysis [4], and the substantial development
of in vitro methods.

The present review aims to clarify these trends in the use of animal models in dental
implant research and highlights the pros and cons of each of these models. It also discusses
the outlook for animal research and emerging decisional procedures regarding study
objectives, as well as currently available and promising non-animal options.

2. Large Animal Models in Implantology
2.1. Non-Human Primate Models

Many species of NHPs have been used as bone disease models due to similarities
of their physiology to that of humans. NHPs have considerable genetic homology with
humans, which allows the use of numerous human probes for genetic studies [5]. Further,
they develop similar bone diseases to humans, such as osteoporosis and age-related bone
loss [6,7].

Pros and Cons of the Models

NHPs were naturally chosen for dental procedures for their dental similarities with
two dentitions (deciduous and permanent teeth). Even if periodontitis does not often occur
naturally, plaque accumulation may occur, potentially progressing to gingival inflamma-
tion [8]. They are therefore one of the best models for oral procedures, including dental
implant surgery. On the other hand, these similarities are also considered a disadvantage in
fundamental research where procedures tend to be as short as possible, protocol duration
in NHPs being the longest compared to all other models (Figure 2, Appendix A.1).
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Figure 2. Representative duration of dental implant protocols by type of animal model. Time is
expressed in months (unless indicated otherwise) from birth to sacrifice (values for large animals
adapted from Schwarz et al. [9]).

Furthermore, for ethical reasons, in addition to costs and housing difficulties, NHPs
have almost completely stopped being used [10] in accordance with international legisla-
tion, except for the assessment of major innovations or new treatments already validated
in another large animal model. Consequently, the number of research studies using NHPs
has decreased (Figure 3A) with few articles on dental implant procedures, most published
before 2015 (Figure 3B). Pros and cons are summarized in Figure 4.
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Figure 3. Distribution of animal model studies in implant research (A) from 1990 to 2011 (adapted
from Stadlinger et al. [2]) and from 2010 to 2020 (NHP: non-human primate); (B) distribution of
publications over the past 10 years.
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2.2. Canine Models

Before the development of implantology and in contrast to NHPs, dogs were consid-
ered the natural model for periodontitis. Indeed, most canines can develop periodontal
disease with a conventional transition process from gingivitis to periodontitis [12,13]. This
natural periodontitis reproduces human periodontitis from both the microbiological [14]
and clinical [10] points of view. Clinically, this model makes it possible to investigate com-
monly used grading criteria: pocket depth with marginal alveolar bone loss and marginal
recessions [10]. Periodontitis severity normally decreases from the first premolar to the
first molar [15].

Pros and Cons of the Models

A recent report published by the National Association for Biomedical Research based
on the US Food and Drug Administration data has shown that dogs were key in devel-
oping 22 out of the 25 drugs most prescribed in the US in 2014 [16,17]. In implantology,
successful pre-clinical study designs in dogs have been used to test general approaches
and regenerative therapies, such as the use of growth factors and barrier membranes [18].
Advantages of dog models include the ease of management and manipulation before
surgery and during postoperative oral hygiene procedures and reducing bias between
animals; however, they have the disadvantage of dogs being companion animals with the
associated ethical implications [19]. As the use of these models was well established in
the periodontal research community, they were naturally transposed to the implantology
field [20,21] and validated in peri-implantitis models [22–24]. Such natural periodontal
lesions appear after several years which is a disadvantage, but they are usually accelerated
with a soft diet and submarginal ligatures [9].

Thanks to this extensive history of use in basic research over more than 40 years,
canine models have gained prominence and are now widely used in implantology, having
been employed in 215 out of 479 studies reported this last decade (Table A2). Dogs are
considered large animal models in implantology and the use of human-sized implants
is common [4]. Bones are similar to those of humans in terms of water, organic, volatile
inorganic, and ash fractions [25]. In addition, dogs have a mixed microstructure bone with
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secondary osteons mainly in the center of the cortical bone, with plexiform organization
on each side [26]. Plexiform bone is characterized by a rapid bone apposition process.
In humans, this organization is only found in children during rapid growth to improve
mechanical strength against fracture.

There are, however, notable differences in terms of weight and size between dog
breeds, in some cases, increasing discrepancies with human bones [19]. Furthermore, the
rate of trabecular bone remodeling differs between humans and dogs, and also between
bones in the same animal (with bone turnover rates from 12% for the talus to nearly 200%
for the lumbar vertebral body [19,27]). Similar differences have been observed in cortical
bone [19,28] and between oral bones, with a bone remodeling rate two-fold higher in the
mandible than the maxilla [29]. Aside from age, which affects bone turnover and response
to implants [30], this specificity has to be considered for determining the implantation site.

Experiments are usually performed in 1-year-old individuals with full adult dentition
but can be performed in dogs up to 2 years of age [31] (Figure 2, Appendix A.2, Table A1).
Pros and cons are summarized in Figure 4.

2.3. Swine Models

Swine, both pigs and minipigs, is one of the main species used in translational research.
Pigs have the advantage of anatomical, physiological, metabolic, and genetic similarities to
humans. Bone studies were mostly conducted on porcine models in the 1970s for studies on
infectious bone diseases, [32] surgery training and toxicology testing, [33] and researchers
rapidly extended this model to the field of implantology in the 1990s [34]. Their use in
biomedical research has been growing considerably in recent years as it has come to be
considered an optimal model for many human diseases. Pigs are now used in various
fields of biomedical research, including genetics [35] and clinical research (e.g., organ
transplantation and cancer [36]).

Pros and Cons of the Models

The use of pig models is justified in dental implantology by the similarities of the
periodontium to that of humans both anatomically and physiologically [37]. Indeed,
pig bone has a similar Haversian structure to that of humans [38] and also a similar bone
mineral density, [25] with minimal differences in minimum diameter and number of lacunae
per osteon [39], and bone remodeling rate (1.2–1.5 mL/day in pigs vs. 1.0–1.5 mL/day
in humans) [19]. Nonetheless, there are some differences: notably, pigs have a denser
trabecular network and a higher bone mass, [40] and the maximum diameter, perimeter,
area, and circularity of the osteons also differ [39].

Generally, from a research point of view, commercial breeds of pig, or farm pigs, have
multiple disadvantages. First, the development of pigs results in rapid growth rates and
excessive bone weight which is a disadvantage compared to other species [6]. Secondly,
pigs tend to be difficult to handle due to their potentially aggressive temperament, heavy
weight (up to 350 kg in the case of an adult domestic pig [5]) and high housing costs. Any
repetitive procedure, such as oral hygiene maintenance, cannot be carried out without
trained technicians [41]. Further, it is difficult to train pigs and postoperative healing may
be jeopardized if they can access materials to chew (e.g., metal grid bars) [42]. The breeding
of minipigs has resolved some of these issues [43] and has considerably helped to widen
the use of pig models.

Minipig models are nowadays a standard tool for dentistry research [4]. There are
almost 50 breeds of minipigs available worldwide [44]. As adults, depending on the breed,
mini-pigs weigh between only 35 kg (Göttingen breed) and 95 kg (Hanford breed) [45],
facilitating their housing. They reach sexual maturity early, at 4 to 6 months of age
(Table A1). As they result from selective breeding, they are not considered transgenic or
genetically modified animals [46] and their physiology and anatomy are not far different
from those of conventional pigs [33]. In implantology, both pigs and minipigs show
anatomic characteristics close to those of humans, allowing the placement of commonly
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used dental implants (6–10 mm in length/3 to 4.8 mm in diameter) which is a tremendous
advantage compared to small animal models [4]. Another major advantage of minipigs
is the ability to perform long follow-up with multiple surgical steps [47] and age-related
studies [48]. On the other hand, to avoid the costs of breeding, animals are usually ordered
from commercial laboratories for each experiment.

The duration of a conventional protocol differs between studies and between pig
models (farm pigs versus minipigs) (see Appendix A.3). Pros and cons are summarized
in Figure 4.

2.4. Other Large Animal Models

Other large animal models have not been widely used in implantology (Table A2). The
ovine long-bone model has been mainly used for research on surgical techniques (vertical
ridge augmentation [49], drilling procedures [50–52]), and implant surface properties [53].
Overall, in sheep, there have been relatively few studies with differing protocols and
objectives. Only one study has been conducted in the mandibular bone to assess the effect
of implant coating on a titanium implant [54]. Other large animal models have been tested,
such as the sika deer for their antlers [55], and the goat for surgical experimentation [56]
and implant osseointegration (mainly in the pelvic region) [57,58].

2.5. Conclusion on the Use of Large Animal Models in Dental Implant Research

Nowadays, within the binary “large vs. small animal models” classification (Figure 1),
a new level of decisional procedures has emerged regarding study objectives, with the
establishment of sub-classes according to species-specific characteristics of each large
animal model. Pre-clinical surgical procedures (e.g., sinus or bone augmentation) with
human-sized implants on large animals can be categorized (Figure 5):

• NHPs are no longer used in Europe and are only used elsewhere in already accredited
procedures. NHP models, particularly the baboon, should be considered a confir-
mation model reserved for studies on major advances providing substantial added
scientific value, already validated in another model.

• Pigs and minipigs are the new pioneers, having replaced dogs in procedures. The
minipig appears to be an ideal model for studies of bone regeneration around dental
implants when placed at intraoral sites.

• Dogs should only be used when pigs cannot be used to address the question of
interest (mainly for compromised oral conditions, sinus surgery, and peri-implantitis
procedures). In particular, dog models should be preferentially employed for studies
conducted under compromised oral conditions (biofilm).
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3. Small Animal Models in Implantology
3.1. Rabbit Models

The popularity of these models stems from the work of Sawin et al. in orthope-
dics in the 1940s, supported by descriptions of rabbit breeding, anatomy, and surgical
protocols [59,60]. At the end of the last century, approximately 35% of musculoskeletal
research studies were performed using rabbit models [61]. This widespread documentation
from biomedical research led to the use of this animal for in-vivo bone studies. In 1997,
Mori et al. used a rabbit model to improve our understanding of the physiological process
of osseointegration in rabbits with induced osteoporosis [62]. Since then, rabbits have been
used intensively, representing 27% of dental implant research in animals [1]. Interestingly,
however, this figure has fallen sharply with just 86 studies (11%) over the last decade
(Figure 3B), reflecting the overall decrease in their use in research [63].

Pros and Cons of the Models

According to the American Rabbit Breeders Association, there are 49 rabbit breeds [64].
Of the various breeds, the New Zealand White rabbit (5 to 6 Kg) is the most commonly
chosen for implantology research (Table A1). This species is of particular interest with
the advent of transgenic rabbits (for hormone regulation [65], diabetes [66], and osteo-
porosis [67]). Thanks to its accelerated skeletal maturity (at around 6 months of age) and
rapid bone turnover (faster than that in primates), the rabbit is a convenient model for
laboratory research [68]. On the other hand, this rapid turnover could introduce a bias in
long-term studies, making results difficult to interpret with respect to human biology [19].
Furthermore, the skeleton of the mature rabbit is fragile, representing only about 8% of its
body weight [69]. Histological analysis of compact bone has shown rabbit bone to be one
of the most different from humans, with major differences not only in Haversian canals
and secondary osteons but also in vascularization [70,71].

Surgical protocols to study osseointegration have been developed in two main areas
in rabbits: (i) extra-oral models in long bones (femur and/or tibia) and (ii) oral models
(mandible, maxilla, and sinus) (see Appendix A.4). Pros and cons are summarized in
Figure 4.

3.2. Rat Models

Rats are a good starting point for testing new procedures thanks to the ease of housing
and relatively low costs, compared to those of large animal models, as well as the extensive
history of their use in scientific experiments [25]. Rat physiology, especially in bone tissue,
suggests it would be useful for research in certain areas. The growing rat is a well-known
model for evaluating the effects of endocrine, nutritional and environmental factors on
peak bone mass but is not appropriate for adult human skeleton studies due to the presence
of cellular pathways not present in human adults [72]. Bone mass gain, in parallel with
the long bone elongation, mainly occurs during the first 6 months of life [72], though some
authors consider that the long bone grows continuously for at least 1 year with a gradual
transition from modeling to remodeling with age [73], a transition that does not occur
uniformly across bones [74]. Due to this longitudinal bone growth, a margin of at least
1 mm from the growth plate of the tibia should be left intact if experimentation starts
around 10 months of age, an issue to be considered in dental implant studies [74]. Sex and
hormones are also key parameters in rat research. At 8 months of age, males were found
to have 22% greater bone width and 33% greater breaking strength than females in the
tibia [75]. The role of hormones has been put to good use in an ovariectomy model. Rats,
as for any rodents, do not have natural menopause, but the ablation of the gonad is a good
model for artificial menopause [76] and therefore for the analysis of osseointegration in a
model of pathological bone.
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Pros and Cons of the Models

For implantology purposes, the size of the rat is a mixed blessing. The lower costs
and ease of housing and handling favor the use of this animal. On the other hand, only
small human implants can be used, and most of the time, implants need to be adapted.

Two rat breeds are commonly used: (1) Wistar rats (from the Wistar Institute) are
one of the oldest and still considered one of the best rat models. By adulthood, they
reach 500 g [77] which places them in the mid-upper range of small laboratory animals.
(2) Sprague Dawley rats, developed from Wistar rats, have an adult weight of up to 300 g [5]
and are one of the breeds most widely used in pre-clinical studies [78]. They have been
used as a model for osteoporosis, and for analyzing the effects of calcium supplementation
on bones [79] (Table A1). Various protocols have been developed in rats depending on
the implantation site (see Appendix A.5). The number of research studies using rats has
increased during the last decade (Figure 3A) and confirms the scientific interest in this
model [80]. Pros and cons are summarized in Figure 4.

3.3. Mouse Models

The mouse is the animal most commonly used in laboratory research. It was the first
laboratory animal model established for genetic- and aged-related changes in bone [81]
and used for full genomic analysis.

Pros and Cons of the Models

Among all mouse strains, C57BL/6 is the most commonly used, almost 20,000 papers
having been published referring to research using this strain in 2019 [82]. Within the same
strain, different sub-strains show notable genetic and phenotypic differences [83]. It is
therefore important to determine, when planning a research study, which type of animal
is needed.

From a bone point of view, mice have similar growth characteristics to rats, with
even more marked size-related advantages and disadvantages. It is therefore inappro-
priate to carry out an implant study in mice if the same model has been developed in
rats. Nonetheless, mice have some characteristics which distinguish them from other
laboratory animals.

The main advantage they offer over other small animal models is the existence of
numerous knockout and transgenic mice. This factor is even more important with the
emergence of new tools to develop genetically engineered mouse models. Transfection or
viral vector transduction are routinely applied methods for random DNA integration [84],
while the CRISPR-cas9 system for gene editing [85] is an emerging technology that extends
the scope of research in this field [86].

In implant studies, this model has been used for a long time but primarily for extra-
oral approaches due to technical and surgical complications [4], the reason most often
mentioned being the difficulty of access due to the mouth size and range of opening of
mice. Some authors opted to develop a more accurate model by working on the mouse
maxilla [87]. A limitation of this model is the limited cortical bone remodeling and the
lack of the Haversian structure in cortical bones. Indeed, rodent long bones are mainly
composed of primary bone and a minimal proportion of cancellous bone [6]. The counter-
part of this biological issue is the small amount of cancellous bone site for implantation
studies [88].

As for rats, protocols are markedly heterogeneous, and it has not been possible to
establish a gold standard (See Appendix A.6). Pros and cons are summarized in Figure 4.

3.4. Conclusion on the Use of Small Animal Models in Dental Implant Research

Smaller-sized implant models and biocompatibility studies should be performed on
small animal models as cell toxicity does not require implant-shaped material (Figure 6).
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• Rabbits should be recommended for biocompatibility studies if large numbers of
implants are needed per animal, their availability in large numbers appearing to be
the only advantage of this model.

• Other questions should be addressed using rats, which are suitable for biocompatibility
and common bone analysis in healthy models.

• Mice are still the best option for human disease models with the existence of numer-
ous knockout and transgenic mice models. Peri-implantitis procedures are also an
emerging field in this species.
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4. Future Challenges and Strategies
4.1. The Outlook for Animal Models

The framework of the 3Rs re-defined animal model applications in implantology by
completely rethinking our way of operating Although in vivo studies remain essential to
investigate specific challenges in implantology, in vitro approaches play a leading role in
developing protocols.

Overlaying diagrams by model size (small or large) shows that models within each
category offer similar characteristics. Interestingly, rating comparable criteria for each
model, (i) although mice are small, the mouse model seems to have numerous advantages
for implant studies and (ii) in vitro/in silico models and analyses of biomaterial proper-
ties are ranked top, highlighting their great potential in the field of dental implantology
(Figure 7).

4.2. Development of Replacement Strategies

The principles of the 3Rs were developed over 50 years ago, aiming to encourage
alternatives to animal testing and improve animal welfare and research quality where the
use of animals could not be avoided.
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[1, outer line] to worst [6, inner line] (Table A3). Overlaying diagrams by animal size also shows that small and large
models have very similar characteristics to others in the same size group. The diagrams indicate that the in vitro/in silico
and biomaterials study type was ranked first for four criteria (cost, housing and husbandry requirements, ethical issues,
and protocol duration) and last for two criteria (surgical relevance and implant model), as they are not addressed by
such studies, while two criteria were not applicable to this last category (biological relevance and number of implants per
animal). Comparison with the global diagram shows that the mouse model diagram is the closest to that of the in vitro/in
silico/biomaterial models.

4.2.1. In Vitro Biocompatibility and Cytotoxicity Analyses

In vitro human or animal cell-based studies on modified surfaces for dental implants
allow the assessment of toxicity and characterization of osteoblast adhesion to the implant,
or the impact of any added processing steps on the implant surface [89,90]. For example,
when a new nanoparticle treatment is developed, in vitro studies are needed to test implant
treatment viability during cell interaction [91]. Similar studies are needed to test bioac-
tive [92–94] or peptide (e.g., RGD [95]) coatings, or the incorporation of antibiotics [96] or
growth factors (e.g., bone morphogenetic proteins [97]).

In vitro studies can also assess the impact of given clinical methods on a device [98].
By applying a procedure directly to the implant, for example, studying the effect of various
polishing methods on bacterial colonization [99–101], the need for an animal model can be
reduced and it may be easier to focus on the interaction of interest. As titanium is the main
material used in dental implant surgery, experiments have mainly focused on titanium
powder or titanium disks. For example, in vitro studies showed that some surfaces induce
the generation of toxic particles, certain surfaces being more toxic than others to oral
epithelial cells [102]. Other materials, such as zirconium implants, have also been tested
for cell biocompatibility and mechanical properties [103].
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4.2.2. In Vitro Models of Response to Implant and Associated Biofilm

For more biological issues, in vitro models were developed at the end of the 1990s to
assess the possibility of answering simple questions without the use of animals [104,105].
According to Mombelli et al., in vitro models were relevant for studying: (i) the reaction
of micro-organisms to the presence of implants, (ii) the reaction of implant-associated
micro-organisms to antimicrobial agents, and finally, (iii) the reaction of the host tissues to
the presence of implants contaminated with micro-organisms [105,106]. In vitro studies
have subsequently been applied to the issues of hypersensitivity, and immune and pro-
inflammatory responses [107]. Biofilm assays are also a common in vitro procedure for the
analysis of antibiotic resistance. Adapted to implantology, complete implants or titanium
chips are used in cell culture in the presence of bacteria, allowing the analysis of bacteria
adhesion and biofilm construction. Once the biofilm is stable, chlorhexidine [108] or
antibiotics can be added to the medium to observe their performance. In the same process,
infected implants can be placed in contact with animal or human cells to study their
interaction [106].

4.2.3. In Vitro Physical and Mechanical Evaluation

Once biocompatibility and cytotoxicity have been demonstrated, protocols for physical
and mechanical testing can assess the resilience to different loads in pre-load models,
monitoring numerous variables related to the implant–abutment connection [109], such as
force used for screw tightening [110], ability to withstand a long-term load (assessed by
direct strength testing) [111], and chewing cycle (simulated by an artificial mouth) [112,113].
Further, esthetic comparisons can be made in terms of abutment titanium visibility [114].

Finally, in vitro rather than animal models should be used to study the improvement
and/or development of future technologies, such as computer-guided navigation for
implant placement [115], laser procedures [116], or comparisons between different scanning
methods [117].

The 3Rs are now widely embedded in national and international legislation and
regulations on the use of animals in scientific procedures. Following these principles,
before conducting an in vivo study, it has to be considered whether it is possible to replace
the use of animals with alternative methods. Indeed, in implantology, before any in vivo
test, in vitro analysis is essential for implant development. Before choosing which animal
is needed for a procedure, the first decision is whether we can avoid using animals at all
(Figure 8).

Figure 8. Research protocol selection in dental implant research: in vivo vs. in vitro.
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5. Conclusions

Biological advances in large animals have narrowed the gap between large and small
animal model applications, as it is now possible to perform genetic analysis in dogs while
it was previously only possible in small animal models, and at the same time, technological
advances have enabled reductions in instrument size, and therefore the manufacturing of
small implants is compatible with mouse size. The distinctions between these two groups
are small, but the specificities of dental implant models allow rational decisions concerning
their use to maximize scientific impact and benefits.

Last but not least, nowadays any decision-making process dealing with animal sacri-
fice in research raises the key question of its scientific necessity, especially in the develop-
ment of dental implant protocols dealing with elective surgeries (Figure 4). Considerable
efforts have been recently made to replace animal studies with in vitro studies, which en-
able mechanical and physical characterization of dental implants. Thus, when the question
of the use of animals in implant surgery research nowadays arises, another question must
always follow: “can we do otherwise”?
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Appendix A

Appendix A.1. Research in Non-Human Primates

In 2010, the European Parliament issued a directive which is still in force: “The use
of non-human primates should be permitted only in those biomedical areas essential for
the benefit of human beings, for which no other alternative replacement methods are yet
available” [118].

Furthermore, there are risks associated with handling due to the possibility of zoonotic
disease transmission [41,119] but also biological and behavioral responses due to stressors
such as separation from their familial environment [120].

The duration of a conventional protocol is around 6 to 9 months with a first healing
time of 3 months after tooth extraction and 3 to 6 months after implantation (Figure 2).
Protocols are usually performed on adult animals, from 7 to 10 years old, this allowing
the use of human-sized implants (Figure 5). Laboratory breeding and reproduction are
therefore not feasible, and animals are acquired for the protocol. Such studies have investi-
gated the healing process after sinus floor elevation [121–123], improvements of analysis
techniques [124], and clinical questions concerning soft-tissue response around combined
tooth–implant-supported prostheses [125,126]. Old World monkeys such as baboons, man-
drills, and macaques are preferred, as their long bones have a dense Haversian structure,
with thin layers of endosteal and periosteal bone [127]. For anatomical reasons, the use of
Rhesus macaques has to be avoided, their adult size and weight (6.5 to 12 kg vs. 21.5 kg for
male baboon) [5] being too small to be considered a “large animal model”.

Summary: In accordance with international legislation, NHPs should no longer be
used except for the assessment of major innovations or new treatments already validated
in another large animal model (Figure 5).

Appendix A.2. Research in Canine Models

The most commonly used dog breed is the beagle due to the ease of care. Its mean
adult weight is around 16 kg [5] allowing the use of human-sized implants. For this type
of study, all animals are acquired from accredited laboratories. Mainly carried out in
long bones in the past, protocols have now been developed for oral bone models which
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have more appropriate characteristics for the analysis of osseointegration. Similarly, peri-
implantitis has been successfully transposed to oral implant studies, facilitating the use of
oral bone models (Table A1).

The duration of a conventional protocol is slightly shorter than in NHPs, with a first
phase of 3 months after tooth extraction and 2 to 3 months of implant healing (Figure 2).

Table A1. Summary of species characteristics and use in implant protocols.

Non-Human
Primates Pigs Canines Rabbits Rats Mice

Species most
frequently used

Baboon, mandrill
and macaques

Pigs: Domestic pigs
Minipigs: Hanford
of Göttingen breed

Beagle New Zealand White
rabbit

Wistar rats, Sprague
Dawley rats C57 Black/6

Age of use 7 to 10 years old 2 to 3 years old 1 to 2 years old 6 to 9 months old 2 to 3 months old 8 weeks old

Protocol
duration 6 to 9 months 12 months 5 months

2 to 4 weeks (long
bone) Up to 3

months (oral bone)

2 to 6 weeks (long
bone) 2.5

months(oral bone)

4 weeks (long bone) 2 to
3 months (oral bone)

Weight 21.5 kg
Pig: 350 kg

Mini-Pig: 35 to 95
kg

15 kg 5 to 6 kg
Sprague dawley: 70
to 300 g Wistar rats:

up to 500 g
30 g

Implant size Human-sized Human-sized Human-sized Human-sized
Adapted implant

Adapted implant:
1.5 mm diameter,

2.5 mm length

Adapted implant: 1 mm
diameter, 2 to 3 mm

length (long bone) 0.6
mm diameter, 2 mm

length (maxilla)

Trend Falling into disuse

Any study related
to implant surgery

under healthy
conditions

Peri-implantitis,
sinus and genetic

studies
Falling into disuse

Systemic conditions
(diabetes,

hormones), poor
bone quality

models, ease of
breed and use

Genetic studies,
knock-out protocols,

peri-implantitis

Appendix A.2.1. Long Bone Models

To evaluate implant osseointegration, dental implants were placed in dog leg bones,
but this is rare nowadays, less than 20 studies having been reported over the past 10 years
(Table A2).

Despite an obvious bias of studying implants loaded on a quadrupedal gait model,
protocols involving implant placement on limbs allow the use of a large number of implants,
thus reducing the sample size (in one study, up to 75 implants having been tested in
the radius of just 6 dogs [128]). Though front limbs can also be used, [128] most of
the time both tibias are used, as they offer a large quantity of bone. For this kind of
study, implants 3.75 mm in diameter and 10 mm in length are the most common, two to
three implants being used per tibia [129]. The large amount of bone available allows the
creation of surgically created defects to analyze bone regeneration associated with dental
implants. Properties of membranes [129] or new grafting compounds [130] have been
tested. New implant devices such as implant extenders have also been tested before clinical
use [131]. The proximal tibia is commonly used for drilling protocols, to test the impact
of drilling in early stages of osseointegration and implant stability [132–137], different
implant surfaces [138–142], and biomechanical properties (insertion torque [133], response
to compressive stress [143]).
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Table A2. Distribution of implant location by animal and year over the past 10 years based on research articles in MEDLINE,
including all experimental implant studies on animals.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Sum

Canines 12 4 17 18 24 40 37 26 20 10 7 215
Long bone 1 5 3 2 3 2 1 2 19
Oral bone 12 3 12 15 22 37 35 25 18 10 7 196

Non-human
primates 1 1 1 1 4

Oral bone 1 1 1 1 4

Mice 1 2 3 3 1 5 5 2 1 23
Long bone 1 1 1 1 1 1 1 7
Oral bone 1 2 2 1 4 4 1 15

Other 1 1

Pigs 4 1 4 6 10 7 11 7 3 1 54
Long bone 1 1 2 4
Oral bone 4 1 3 2 9 4 10 2 3 38

Skull 1 4 1 2 3 1 12

Rabbits 6 6 5 4 14 12 8 10 11 6 4 86
Long bone 6 6 5 4 11 9 6 10 9 4 3 73
Oral bone 3 2 2 2 2 1 12

Skull 1 1

Rats 6 7 5 9 7 11 7 7 5 1 3 68
Long bone 3 5 4 7 4 9 6 6 4 1 1 50
Oral bone 3 2 2 1 2 1 1 1 2 15

Skull 1 2 3

Other 3 2 2 5 3 4 2 6 1 28
Long bone 2 1 1 2 2 2 1 1 12
Oral bone 3 2 1 2 8

Other 1 1 1 1 3 1 8

Sum 33 20 32 41 63 77 69 57 50 21 15 478

Appendix A.2.2. Oral Bone Models

Thanks to anatomical similarities, oral bones have been intensively used for research
on surgical techniques (Table A2).

• Studies in the maxilla: Rehabilitation of the posterior area is still challenging in
clinical practice. Due to sinus pneumatization, the use of small implants versus sinus
augmentation is a routine clinical question. The main advantage of the maxillary bone
in dogs is the possibility to perform sinus grafting or sinus augmentation procedures.
The model is now well established [144] and provides data on, for example, the effect of
different depth implant penetration [145], utility of bone grafts [146], and the effect of
new materials such as platelet-rich fibrin [147] which inform clinical decision making.
Guided bone regeneration substitutes have been tested for augmentation at peri-
implant defects to assess the biocompatibility and efficiency of new materials [148],
membranes [149], and different implant compositions [150]. The anterior area has also
been used to test ridge expansion. This type of surgery can be followed by vertical and
horizontal resorption of the bony wall. As histological measurements are not possible
in humans for ethical reasons, the performance of such techniques in the dog maxilla
has made it possible to investigate the healing process and bone remodeling [151,152].

• Studies in the mandible: Healing patterns of the mandible, both of the bone [31,153]
and soft tissue compartment, are now well characterized [154–157]. As a result, new
techniques have been developed to standardize or even to automate [158] osseoin-
tegration analysis. New robotization tools have been developed for biomechanical
testing in parallel with 3D modeling [159]. Combined technologies, like the overlaying
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of micro-computed tomography and STL images of an implant, have been developed
to analyze hard and soft tissue volume [160].

• Successfully applied to the mandible, conventional protocols have provided clues
to answering other clinical questions concerning issues such as the importance of
the vertical position [161–163], the implant–crown ratio [164], and implantation in
residual roots [165]. Drilling protocols with new techniques [166], sizes [167] or
speeds [168] have been analyzed. New surgical methods, like the socket-shield tech-
nique [169,170], bone-ring technique [171,172], flapless protocols, and ridge aug-
mentation have improved our understanding of peri-implant tissue healing. The
influence of immediate/delayed implant placement on the peri-implant bone [173]
and soft-tissue [174] formation has been well documented [175,176]. Post-extraction
socket healing, with or without implants [177], has been tested, allowing the basic
protocol to be modified to prevent dehiscence [178] or manage the jumping distance
between implant and vestibular bone [179]. Bone response to biomechanical loading
over time [180,181] or compressive stress [143], excessive loading [182], or lateral
force [183] has been studied.

• Biomaterials is a major field of implant research in dogs, especially for tissue augmen-
tation with membranes [184–186], xenografts (DBBM [187–190]), allografts [191], or
alloplastics [18,192], but also biotherapeutic proteins (rhBMP-2) [193–196], progenitor
cells [197], and stem-cells [198,199], and the use of platelet-rich fibrin [200–202].

• Studies in the mandible have also allowed comparisons between implants. The
mandible is large enough to test different implant systems [203], as well as implants
with different shapes [204,205], lengths [206], surfaces, and grooves [207–209]. The
race to find the best alloy, or surface finish, is still open. New materials like zirco-
nium [210], PEEK [211], tentalum [212], and titanium alloys [213] have also been
used to enhance osseointegration. Implant surface properties is a field that attracts
the attention of many researchers. Old techniques have been improved with the
addition of molecules like magnesium [214], plasma projection [215], or chemical
treatment [216] and new techniques have been developed with nanocoatings [217]
or biofunctionalization [218]. Comparisons have been made between implants with
differing abutment shape [219,220], composition [221,222], or microstructure, [223]
and different protocols, e.g., platform switching [224,225], have been tested to support
the best peri-implant tissue healing.

• Finally, only a few articles were found combining implants and drugs. Pilot studies
have been performed to test topical use of implant surface treatments with mela-
tonin coating or vitamin D [226,227] and the efficacy of mouth rinses for preven-
tion of peri-implant mucositis and peri-implantitis, and more recently, the impact of
hyperbaric oxygen on tissue healing was analyzed [228]. From a systemic point
of view, vaccines have been developed seeking to prevent alveolar bone loss in
peri-implantitis [229,230].

• Contribution of peri-implantitis studies in dog models to implantology: A specific
strength of this model is the ability to perform periodontitis and peri-implantitis
protocols, the dog being the large animal model most widely used in periodontitis
studies [231]. A new line of research is the characterization of the peri-implantitis
microbiota and changes therein during and after ligature placement, as well as after
treatment [232–235]. Silk and cotton ligatures have been extensively used to initiate
plaque formation and therefore an inflammatory process in gingival tissues [236].
New protocols have been developed to accelerate or exacerbate the inflammatory
process [237]. For their flexibility and ease of handling, stainless steel ligatures have
been proposed to replace soft ligatures which can be tricky to place and retain on the
implantation site in the long term. Immediate induction of peri-implantitis has shown
similar results to conventional methods with a shorter 6-month protocol [238].

• A better understanding has been obtained of implants’ susceptibility to bacterial
contamination depending on the surface condition or composition [239] and char-
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acteristics [240–242] and tools have been developed to treat them mechanically (Ti-
Brush [243], ER:YAG laser [243]) or with drugs (antimicrobials [244], chlorexidine [245],
mouth rinse [246], or even plasma [247]) and to reconstruct bone tissue lost [248].

Summary: A natural tendency to develop periodontal disease and the ease of re-
producing peri-implantitis make the dog a strong model for dental implant research.
Nonetheless, animal care regulations and husbandry requirements (exercise, need for envi-
ronmental enrichment) [249] limit the use of dog models to research for which other animal
models cannot be used (e.g., large models of peri-implantitis, microbiological studies)
(Figure 5, Table A3). Interestingly, the emergence of new evidence demonstrating the
similarity of dogs and humans in rare diseases [250] widens the field of application of this
model, building a dual model with advantages of both large models (clinically relevant)
and small models (genetic disorders).

Table A3. Overall appeal weighted by animal model. Rankings for each criterion from 1 to 6.

Models Cost Housing/Husbandry
Requirement

Biological
Interest

N per
Animal

Ethical
Issues

Protocol
Duration

Surgical
Relevance

Implant
Model Total

Mice 1 1 1 5 1 1 5 6 21
Rats 2 1 4 4 2 2 4 6 25

Rabbits 3 3 6 3 3 3 3 3 27
Pigs 4 4 4 1 4 5 2 1 25

Canines 5 5 3 2 5 4 2 1 27
Non-human primates 6 6 2 2 6 6 1 1 34

In vitro/in
silico/biomaterials 1 1 - - 1 1 7 7 /

Appendix A.3. Research in Pig Models

Usually, 2- to 3-year-old animals [250] are used for implant insertion 3.5 months after
tooth extraction and analysis 8.5 weeks after implantation, if a second stage is needed
(Figure 2). Due to the substantial bone thickness and the presence of numerous adequate
sites in the oral region, tibias have only been used in a few studies. Similarly, several
protocols were developed in the skull (frontal bone or calvaria) but have now mainly been
transposed to oral bone. The large amount of bone in the maxilla and mandible allows the
use of several implants in a single protocol, and the performance of implant surgery in
bone with more appropriate properties.

Appendix A.3.1. Oral Bone Models

Due to substantial oral bone thickness and the presence of other more appropriate
areas, tibias have only been used in a few studies (Table A2). On the other hand, they allow
researchers to (i) insert multiple implants in the same bone (up to 6 per tibia [251,252]),
given their large surface area, and (ii) use a split design with both tibias, reducing the
number of animals required.

Implant surgery can be performed following human protocols and using human-sized
implants (mean of 4 mm in diameter and 11 mm in length). Therefore, primary stability,
implant stability quotient, and removal torque can be measured in the same way as in
clinical practice [252]. This model can also be used to test the viability and mechanical
properties of new implants [253] or compare different models [251,254].

Appendix A.3.2. Skull Bone Models

Reports have been found of several studies the skull (frontal [255] or in calvaria [256]).
These models allow implant osseointegration and healing without mastication constraints
or tongue movement and are suitable for multiple-step protocols [257] or surgery with
large instruments. This area also permits the implantation of up to 12 devices in the same
animal. Nonetheless, the length of the implant has to be carefully selected to avoid brain
damage. In terms of protocols, the scope for research is similar to that for the mandible:
surface conditioning [258–261], implant composition [262], implant macro-design [263]
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and abutment [264], pull-out strength [265], and bone augmentation with [256] or without
grafts [266], but also diseases (e.g., diabetes [267]).

Appendix A.3.3. Oral Bone Models

Most pig oral bone models use either the maxilla or mandible for implantology
research. Not surprisingly, the maxillary sinus has been poorly studied due to its position
(distal to the last molar) making it difficult to access. The maxilla and mandible can be
used in the same protocol, often with teeth extractions in all four quadrants to maximize
the number of implants [268]. In systemic disease processes, it seems that the pig model is
poorly suited and only used for obesity/metabolic syndrome and/or diabetes [269–271].
Peri-implantitis also appears to have been poorly investigated [272].

A range of surgical techniques can be performed, such as (i) site preparation with
different osteotomies [273], (ii) flap procedures [274,275], or (iii) bone surgery with osteodis-
traction [276], creation of bone defects [277], and bone grafting [271,278,279]. Biomaterials
such as scaffold [280] and disc-shaped matrices for vertical bone regeneration [254,280]
have been tested in pigs prior to use in human surgery. Biological coating functionalization
with chondroitin sulfate and sulfated hyaluronan with collagen molecules [281–283] is
often tested on this model, avoiding the process of miniaturization of a new model to be
put on the market.

In oral bones, implants are almost always placed in a socket or healed site after tooth
extraction [284]. There are numerous protocols for healing time (ranging from 9 weeks [285]
to 8 months [273]), with a mean time of 3–4 months after tooth extraction. Notably, 3 to 4
implants can be anchored per quadrant [284] with human or human-like implants 4 mm in
diameter and 11 mm in length [286].

As for the tibia, the oral model may be useful for histological analyses such as cy-
totoxicity and viability of new compositions [287–290] but also for assessments on 1:1
scale models of mechanical properties [47,268,291], stress distribution [287,288], and the
effects of different implant and abutment shapes [264,284,292–295]. Thanks to pigs having
similar bone properties to those of humans, resistance to insertion [273] or removal torque
can be measured during [296] or after healing [268]. It is possible to perform classical
analysis such as measurement of bone area [273], marginal bone level [273], crestal bone
loss [275], resonance frequency [273], or implant stability quotient [297]. However, the
main reason for selecting this site is almost always its suitability for bone-to-implant contact
analysis [273,281,282,286,289,290,294]. This model is also used to assess the accuracy of
new techniques, such as ultrasound imaging [298], comparison of intra-oral and cone
beam computed tomography [299,300], magnetic resonance imaging [301], and resonance
frequency analysis [302]. In addition, it can be used to investigate not only bone but also
soft tissues [295] as in immunohistochemical analysis of blood vessels in peri-implant mu-
cosa [274], cell quantification, and fiber orientation [292], or pangenomic gene-expression
analysis [293] of implant tissues.

Summary: Supported by a strong history of use, pig oral bone models are suitable for
pre-clinical studies, allowing the testing of different implant surface properties or surgical
procedures under physiological conditions. The benefits of minipigs in terms of costs and
ease of housing make them the model of choice, overcoming the limitations of other large
animal models (Figure 7).

Appendix A.4. Research in Rabbit Models

Experiments are usually shorter than those in large animal models: (i) as previously
described, bone maturity occurs at around 6 months of age, and hence, protocols use
rabbits from 6 to 9 months of age, (ii) surgery is mainly performed in long bones, and
hence, no healing time is needed, unlike protocols involving tooth extraction, and (iii) bone
healing is faster. Protocols can stop 2 to 4 weeks after implantation for bone-to-implant
contact analysis (Figure 2).
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Appendix A.4.1. Long Bone Models

The great majority of studies in rabbits correspond to long bone experiments (69/86),
with 50/69 on the tibia and 19/69 on the femur (Table A2).

• Protocols using the tibia: The anatomy and histology of rabbit tibia are well known,
the rabbit being used for the first attempt to develop an animal model of osteomyeli-
tis [303] for bone fracture analysis [304]. Numerous research protocols have been
developed on the tibia, as the relatively good volume accessible has allowed analysis
of as many as 112 implants in 28 rabbits in one study [305]. In this area, 3- to 4-mm
diameter implants can be used with lengths of up to 7 mm [306]. Rabbit tibia has
been widely used to analyze the osseointegration of zirconia implants [307], titanium–
zirconium implants [308], implants coated with calcium carbonate [309], and implants
with surface modifications [306,310,311].Bilateral procedures are generally described
including (i) two implants per animal with one implant in each tibia [311]; (ii) four
implants per animal with two implants in each [312] or (iii) six implants per animal
with three implants per tibia [313,314]. The metaphysis and diaphysis of the bone
can be used. Thanks to fast healing, osseointegration can be analyzed 1 month after
implantation [312]. The tibia has also been used for drilling studies seeking to im-
prove implant stability [315] with drilling speed [316] or drill diameter and implant
torque [312] analysis. The large volume of the tibia and ease of surgery have allowed
this bone to be used for the creation of peri-implant defects [317] and the use of a bone
substitute model [318] and spacers [319], as well as for pathophysiological purposes,
mainly for reduced bone models (osteopenic or osteoporotic conditions) [320–323]. En-
vironmental parameters have been investigated in contexts such as a high-fat diet [324]
and irradiation [325].

• Protocols using the femur: the femoral bone has been chosen by researchers for many
reasons: Easy access and the small amount of soft tissue [326]. Rabbit long bones are
composed of 70–80% compact bone [68], allowing good implant stability.

• The femur is thicker than the tibia and the medullary space is large [326], allowing
multiple implant fixations [63]. Experiments can also be performed on both sides of the
knee (distal part of the femur and proximal part of the tibia) [327]. The disadvantages
of this model are related to the general differences between humans and rabbits as
mentioned above. In particular, rabbit long bones show a distinctive physiological
variability of the bone architecture with a longitudinal vascular pattern [26]. Another
point to consider is the age of the animal. Indeed, due to endosteal bone remodeling,
the bone shows cortical thinning and an increase in bone marrow volume by as much
as 24% with age [328]. It has also been reported that rabbit bone marrow contains
a significant proportion of adipose tissue [5], a characteristic not present in the oral
cavity in humans, and this reduces the usefulness of the model.

Appendix A.4.2. Skull Bone Models

For the calvaria, only one study has been found. It sought to analyze the influence
of nonsteroidal anti-inflammatory drugs on osseointegration of dental implants in the
calvaria [329]. The model found no significant differences in the use of this type of drug
and only one rabbit out of the 19 used died in the postoperative period.

Appendix A.4.3. Oral Bone Models

The rabbit skull is mainly composed of spongy bone and contains wide spaces [69].
The mandible is formed by two symmetrical bones joined by a fibrous or fibrocartilaginous
symphysis. As for humans, two parts can be described: (i) the horizontal part, which
houses the teeth, and (ii) the vertical posterior part, called the ramus. The maxilla is
also formed by two bones fused on the sagittal line. The dental formula of the rabbit
is: two pairs of incisors on the maxilla and one on the mandible; no canines; three pairs
of premolars on the maxilla and two on the mandible; and two to three pairs of molars
on the maxilla and three on the mandible. The total number of teeth ranges from 26 to
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28 [69]. Rabbit incisors grow continuously [330], which is of great interest for longitudinal
mineralization studies [331].

As previously described, oral bone, in addition to the obvious difficulty of access due
to the small mouth opening, has a poor cortical/spongy bone ratio with mainly spongy
bone and wide spaces. There is a paucity of literature in this area and the models seem
to be avoided by researchers (Table A1). Out of the 86 studies, 12 were performed in oral
bone: 3 in the maxilla, 1 for sinus augmentation, and 8 in the mandible (Table A2).

• Studies in the maxilla: Studies in the maxilla are mainly used for related sinus aug-
mentation therapies. Medications such as anti-inflammatory drugs and painkillers
can be tested for postoperative pain [332]. Newly formed bone height is measurable
following sinus floor elevation using a blood clot [333] or for pre-clinical testing of
new bone substitute [334], giving an idea of how such materials are accepted in in vivo
models. The poor bone quality of the maxillary sinus is also exploited for studying
the impact of innovative surface properties in poor quality bone [335].

• Studies in the mandible: Procedures are short, immediate extraction/implantation
protocols being the most common. The healing period after implantation is at least
3 weeks [336] and up to 3 months [337]. The incisor area provides a great volume
for osseointegration in immediate extraction/implantation protocols with 3-mm di-
ameter and 12-mm length implants [338]. Except for the study by Schiegnitz et al.
using 9-month-old New Zealand rabbits (4–5 kg) [336], the age of rabbits is generally
not specified accurately; rather, it is reported as “adult age” which corresponds to
2.5 to 6 kg. Only one study found was performed in younger rabbits (4 months old),
these having been exposed to fluoride since 2 months of age [337]. Studies in the
rabbit mandible have been used to assess osseointegration of implants with different
surface properties [339] or positions [336,340], and the systemic effect of exposure
to molecules like fluoride [337] or the effect of thyroid hormone production [65]. It
should be noted that one proof of concept study for a peri-implantitis model was
conducted on the first mandible anterior tooth with silk ligatures in 2015 (reported
only in Chinese, except for the abstract [341]). In the mandible, an extra-oral approach
by opening a flap from the skin to the mandible angle has been used for vertical bone
growth, making it possible to extend the scope of already known materials [342]. The
great volume available in this area allows the use of human-sized implants, with a
length of 8 mm and a diameter of 4.1 mm.

Summary: Rabbit models have an extensive history of use and well-developed pro-
tocols in studies in orthopedics and more recently periodontal diseases. The weak bone
quality around the oral cavity, however, limits the use of long bone in this model for
implantology, biocompatibility, or osteoinduction [6].

Nonetheless, rabbit models allow analysis of numerous implants per animal, thereby
reducing the total number of animals needed per protocol (Table A1). Their application
remains limited due to the small number of genetic models.

Appendix A.5. Research in Rat Models

Protocol durations depend on the site, with substantial differences between studies.
The average age of animals is around 2 to 3 months for the first surgery. For long bone
procedures, 2 to 6 weeks is needed before assessing osseointegration. In the case of implant
placement at a healed extraction site, 1.5 months of healing is generally allowed after
extraction and another month for implant osseointegration (Figure 2). In the maxilla,
protocols are shortened, with implantation performed immediately after extraction.

Appendix A.5.1. Long Bone Models

• Studies in the tibia: The rat tibia is suitable for bone implantation due to the ease of
access and relatively good volume. Notably, 32 out of the 68 studies found have been
performed with this bone. The medial tibial plate of the bone is commonly used as it
is flat and can receive implants [343]. Depending on the prototype used, the number
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of tests and their size differ. At least one implant per tibia can be tested with a nearly
human-size implant (2.0 mm in diameter and 4- to 5-mm in length [83,344–346]). On
this kind of model, bi-cortical anchorage can be achieved. For multi-implant protocols,
a diameter of 1.5 mm and length of 2.5 mm are more appropriate [343,347].

• Research using the rat tibia model has commonly investigated the effects of the implant
surface on osseointegration [343,344], but a new trend has emerged, with growing
numbers of studies in the areas of the drug delivery and/or physiopathology: effects
on osseointegration of different doses of drugs in rats that are healthy [345] or have
certain diseases, e.g., diabetes [348–354], or in peri-implant bone defects [346]. Never-
theless, the framework of choice is implantation osseointegration in poor quality bone
with drug treatments [355,356]. Research into bisphosphonates [347,355,357–359] or
agonists like selective estrogen receptor modulators [347,360] is typically conducted in
the rat as it is an excellent model of osteoporosis. Other diseases, such as arthritis [361]
or Crohn’s disease [362] and the effects of severe dietary magnesium deficiency on
systemic bone density, have been investigated [363]. Finally, the rat tibia can also be
used for mechanical testing, including in dynamic loading models [364,365], as well
as for exploring the effects of pulsed ultrasound [366] or laser therapy [367].

• Studies in the femur: Only a few studies have been conducted in femoral bone mainly
due to (i) the short length of the bone and (ii) the amount of muscle and tissue
surrounding it. Nonetheless, titanium mesh [368] and implants have been placed
for surface testing [369] in diabetic rats [370–372] or in combination with dietary
supplements [373] or cell therapy [374].

Appendix A.5.2. Oral Bone Models

Research in implantology tends to focus on oral bone for the sake of model legitimacy.
In small animals, like rats, protocols have to be adapted to be suitable. Various strategies
for the maxilla and mandible have been developed in the rat and illustrate some ways
protocols can be adapted. Tooth extraction and subsequent dental implant placement is the
best proxy procedure in terms of “human-like protocols”.

• Studies in the maxilla: Numerous studies have assessed the validity of the maxil-
lary molar site, but with no established guidelines and considerable heterogeneity
between protocols. For this procedure, the implants or “mini-screws” measure ap-
proximately 1 mm in width and 2 mm in length, though some authors prefer longer
and wider implants for good primary stability despite the increase in the risk of si-
nus perforation [375]. In any case, maxillary molars seem to be an adequate place
for implant–prototype anchorage immediately after extraction [376] or with a de-
lay [375,377]. Another possibility is to use the maxillary diastema, mesial to the
molars. A recent study has successfully shown a model of peri-implantitis in this
area [378], but the validity of this model has yet to be demonstrated [379]. The maxilla
is also used for classic implant surface comparisons [376], mechanical testing [380],
and analysis of pathophysiological processes [381–385].

• Studies in the mandible: Beyond the maxilla, two studies have been found that used
the mandibular region: one protocol used the posterior part of the mandible in the
ramus through an extra-oral approach [386]; and in the other, the implant took the
place of the first mandibular molar after extraction and healing for a month [387].
Both protocols led to significant osseointegration, but the latter seems to be more
physiologically relevant as it replaces a previous tooth in alveolar bone.

• Contribution of peri-implantitis studies in rat models to implantology: In periodon-
tology, in humans, as in many other animals, chronic inflammation needs to be
produced at the sulci of the tooth (with silk ligatures and/or microbial gavage) to
produce periodontal destruction [388]. In the same way, peri-implantitis can be
induced with a mixed bacterial infection (Streptococcus oralis and Aggregatibacter
actinomycetemcomitans) [378].
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Summary: The rat offers numerous advantages for implantology studies: it is a
well-known model for systemic variation (diabetes, hormones), and therefore, for osseoin-
tegration in models of poor bone quality (Table A1). On the other hand, opportunities for
genetic studies remain limited compared to those with mouse models.

Appendix A.6. Research in Mouse Models

It seems that 8 weeks is the minimum age of mice for implantation. For protocols
in oral bone, 4 to 8 weeks are needed for alveolar healing and 3–4 weeks for implant
osseointegration. This is the same length of time as for osseointegration in the tibia
(Figure 2).

Appendix A.6.1. Back of the Mouse

Only one study was found using the back of mice. It sought to analyze the potential
bacterial infection originating from the implant itself during surgery. This model was used
as it offered a closed environment with no potential interaction, unlike in the case of the
mouth [389].

Appendix A.6.2. Long Bone Models

• Studies in the tibia: with only two studies found from this decade, it seems that
the shin has fallen into disuse. One was considered a mouse study but the animal
species used was actually Rattus norvegicus, that is, the article had been erroneously
classified [390], and the other was conducted to analyze peri-implant bone density in
senescence-accelerated mice, but the choice of the shin over femur was not explained
in detail [391].

• Studies in the femur: The femur is more commonly used, but nonetheless only a few
studies were found. The most common topic is the evaluation of implant osseointegra-
tion associated with disease. Diabetes is the most studied disease in association, for
example, with drug therapies (1α,25-Dihydroxyvitamin D3 [392]; transcription factors
[HIF-1α] [393]). Innovative genetic technologies for lentiviral vector transfection are
also useful for testing new treatments [394], or a specific molecular pathway [395]. For
this bone, the common prototype is an implant-like model, mostly with a pin-shaped
implant 1 mm in diameter and 2- to 3-mm in length [392,394]. Titanium discs are also
used if the aim is to test the biocompatibility of the material [395].

Appendix A.6.3. Oral Bone Models

• Studies in the maxilla: No studies were found on the mandible due to the difficulty of
access and mechanical difficulties for manufacturing miniature implants [4]. The max-
illa is a relatively recent model, having been developed during the last 10 years [396].
It has become the most common model used in mice (Table A2). Nonetheless, due
to the recent description of this model, research is focused on the development of
the model itself more than on its implementation. The first model in the dental area,
reported in 2014, used “retopins” (0.6-mm diameter cut to a 2-mm length, NTI Kahla
GmbH, Germany) positioned in the mesial part of the first maxillary molar. This
model demonstrated that osseointegration in oral bone cannot be compared to long
bone studies [87,397], but it has recently been shown to be a suitable tool for the as-
sessment of biological events associated with the osseointegration process [398]. This
protocol has also been adapted for analysis of (i) immediate post-extraction implant
placement [399–401] and (ii) the involvement of different pathways [397,402]. This
site can also be used to test new implant compositions, such as a bio-implant [403].

• Contribution of peri-implantitis studies in mouse models to implantology: In order
to investigate how to manage infectious conditions, there is also a need to identify a
new model of peri-implantitis in the maxilla. Five different studies have proposed
different peri-implantitis models:
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o The first one was also the first study to anchor an implant in the oral cavity [396].
The pin-shaped implant was placed in the medial line of the hard palate and peri-
implantitis was induced with a special diet enriched with sugar and flavorings.
o Pirih et al. developed two new peri-implantitis models with a 1-mm length/0.5-mm
diameter implant placed in the second and third maxillary molar area: (1) using silk
ligatures placed apically to the implant head [404] and (2) using lipopolysaccharide
injections on the implant surface [405].
o Another silk model validated the maxillary molars as a potential site for peri-
implantitis [406]. This model was later used for the comparison of peri-implantitis
and periodontitis progression [407].
o Peri-implantitis was also obtained in a recent study of oral infection with Porphy-
romonas gingivalis [408]. Since the model has been well established, some applications
have emerged, namely, analysis of the impact of different implant surfaces on peri-
implantitis [409] or inflammation pathways [410].

Summary: Mice seem to be a promising model for genetic research thanks to the
ability to perform knock-out studies and the availability of models of human disease.
New approaches are emerging, such as peri-implantitis protocols, extending the range of
possibilities in this model (Table A1).

On the other hand, mice have obvious limitations typical of small animal models.
Implant adaptation in the oral cavity is a limitation both from a surgical and industrial
point of view (Figure 4). This disadvantage should be seen as a challenge and may be
addressed thanks to technological advances.
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