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Abstract: The occurrence of cancer is closely related to the deregulation of certain pathways. Based on
pathway deregulation scores (PDS) inferred by the Pathifier algorithm, we analyzed transcriptomic
data of 13 different cancer types in The Cancer Genome Atlas database to identify cancer-specific
deregulated pathways and prognostic pathways. The results showed that the individual-specific
pathway deregulation scores can clearly distinguish different cancer types and their tumor-adjacent
tissues. In addition, the cancer-specific deregulated pathways and prognostic pathways of different
cancer types had high heterogeneity, and the identified cancer prognostic pathways have been
reported to be closely related to the corresponding cancers. Furthermore, we also found that
cancers with more deregulation pathways tend to be malignant and have worse prognoses. Finally,
a Cox proportional Hazards model was constructed based on the prognostic pathways; this model
successfully predicted survival and prognosis based on data from cancer samples. In addition,
the performance of the breast cancer prognostic model was validated with an independent data set
in the METABRIC database. Therefore, the prognostic pathways we identified have the potential to
become targets for the treatment of cancer.

Keywords: pan-cancer; pathway deregulation scores; cancer-specific deregulated pathways; prognostic
pathways; prognostic model

1. Introduction

The latest data released by the International Agency for Research on Cancer (IARC) of
the World Health Organization show that, in 2020, there were 19.3 million new cancer cases
diagnosed worldwide and nearly 10 million deaths from cancer [1]. Although there have
been a large number of studies related to the prevention, diagnosis, and treatment of cancer,
its complicated pathogenic mechanism is still unclear. With the continuous development of
high-throughput technology, a large amount of omics data have been generated, which pro-
vides unprecedented opportunities for in-depth study of the mechanisms underlying the
occurrence and development of cancer and of cancer prevention and treatment strategies.

Years of research have shown that cancer is generally considered to be driven by the
continuous accumulation of somatic mutations throughout an individual’s life, as well as
by changes in epigenetics and transcription. Genes do not exist in isolation but interact with
each other to form an organic biological network. The network-based cancer prognostic
prediction model is more robust than the prediction model based on a single gene. Dereg-
ulation of biological pathways or biological networks often leads to the occurrence and
development of cancer. Therefore, mining cancer-specific deregulated pathways can better
explain the mechanisms of cancer occurrence and development at the system level [2,3].

At present, there are many methods for performing pathway analysis by combining
high-throughput data. However, almost all of these methods can only characterize the
path activity of the entire sample set and cannot provide information about the individual-
specific related deregulated pathways in a specific cancer sample. For example, Efroni S
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et al. objectively identified pathways associated with malignancy, stage, and outcome in
cancer through application of an analytic approach that systematically evaluates differences
in the activity and consistency of interactions within canonical biologic processes [4].
Emmert-Streib F et al. discussed one popular way of integrating biological knowledge into
large-scale genome-wide measurements, namely, the identification of functionally related
genes (pathways) enriched or differentially expressed in gene expression data [5].

In response to the high heterogeneity of cancer among individuals, Drier Y et al.
introduced Pathifier, an algorithm that infers pathway deregulation scores (PDS) for each
cancer sample on the basis of expression data [6]. The algorithm transforms gene-level
information into pathway-level information, thereby quantifying the deregulation level of
each sample in terms of each biological pathway. The approach is phenomenological and,
unlike the method of Vaske et al. [7], requires neither knowledge of the inter-relations be-
tween thousands of “biomolecular entities” nor measurement of their status. Studies have
shown that (for glioblastoma and colon cancer), Pathifier can find the relevant pathways
for cancer individuals [6]. In addition, the PDS score of the pathway can also successfully
distinguish the subtypes of breast cancer, and the prognostic model based on the PDS score
can be utilized with accommodated crosstalk to identify disease-specific features in order
to predict prognosis from samples of hepatocellular carcinoma (HCC) [8–10].

Based on the Pathifier algorithm and its inferred PDS, we analyzed 13 different types of
cancer transcriptomic data and clinical data in The Cancer Genome Atlas (TCGA) database
to identify cancer-related deregulated pathways and further identify cancer prognostic
pathway. The results showed that the individual-specific PDS can clearly distinguish
different cancer types and their tumor-adjacent tissues. In addition, the deregulated
pathways and prognostic pathways of different cancer types have high heterogeneity,
and the identified cancer prognostic pathways have been reported to be closely related to
the corresponding cancers. Finally, a Cox-proportional Hazards (Cox-PH) model based
on the cancer prognostic pathways was constructed. In addition, we used the expression
data of breast cancer in METABRIC to validate the performance of the prognostic model
for breast cancer. The results showed that the model also predicted the prognosis of breast
cancer well in the independent validation set.

We proposed a pathway-based cancer prognostic prediction model based on the
Pathifier method. Through this model, individualized pathway risk scores were inferred
for the pathway deregulation in 13 cancer types in the TCGA database, and pathways
related to cancer prognosis were identified based on the PDS. The results showed that the
PDS can distinguish different cancer types well and that there are significant differences in
the prognostic pathways and cancer-specific deregulation pathways.

In this study, we used the Pathifier algorithm to calculate the PDS of a single sample
rather than an aggregate group of samples. This method converts gene-level information
into pathway-level information at the individual level, allowing the characterization of a
single sample in a biological system. The PDS was used to identify cancer-specific dereg-
ulated pathways and prognostic pathways. Then, we constructed a pathway-pathway
association network to explore the relationships among the prognostic pathways. Finally,
Cox-PH models were constructed based on the prognostic pathways. These models can
predict the survival states well in different cancer types respectively. In addition, the prog-
nostic model for breast cancer was validated with an independent data in the METABRIC
database. Thus, we believe that our pathway-based models are reliable for prognostic
prediction based on pan-cancer data. In addition, this work may improve the development
of precision medicine.
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2. Materials and Methods
2.1. Data

RNA-seq data and clinical data for 13 cancer types, including 6140 cancer samples
and 651 tumor-adjacent tissues, were downloaded from TCGA database (http://tcga-data.
nci.nih.gov/tcga/ accessed on 24 June 2020) [11] by using TCGA-Assembler 2 (ver 2.0.6,
http://www.compgenome.org/TCGA-Assembler/). Additional clinical data of all samples
were downloaded using the R package RTCGA (version 1.22.0). RNA-seq data and clinical
data for 1904 breast cancer samples were downloaded from the METABRIC database (http:
//www.cbioportal.org/study/summary?id=brca_metabric accessed on 1 April 2021) [12] for
validation, and these data were used as validation data. The number of the samples for
each cancer type can be seen in Table 1.

Table 1. The numbers of samples of 13 types of cancer downloaded from the TCGA and METABRIC databases.

Cancer Type TCGA RNA-Seq METABRIC RNA-Seq

Tumour Samples Normal Samples Tumour Samples

Breast invasive carcinoma(BRCA) 1102 113 1904
Colon adenocarcinoma(COAD) 287 41

Head and Neck squamous cell carcinoma(HNSC) 522 44
Kidney renal papillary cell carcinoma(KIRP) 291 32

Liver hepatocellular carcinoma(LIHC) 374 50
Lung adenocarcinoma(LUAD) 517 59

Lung squamous cell carcinoma(LUSC) 502 51
Prostate adenocarcinoma(PRAD) 498 52

Thyroid carcinoma(THCA) 513 59
Bladder Urothelial Carcinoma(BLCA) 408 19

Uterine Corpus Endometrial Carcinoma(UCEC) 177 24
Kidney renal clear cell carcinoma(KIRC) 534 72

Stomach adenocarcinoma(STAD) 415 35

Total 6140 651 1904

A total of 185 KEGG pathways were downloaded from the MSigDB database (http:
//www.gsea-msigdb.org/gsea/msigdb/, accessed on 2 March 2020) [13].

2.2. Overview of the Approach

There are three major steps in our method (see the flowchart in Figure 1). Step 1:
Transform the gene expression matrix into the PDS matrix by using the Pathifier algorithm
for each cancer type. Step 2: Identify cancer-specific deregulated pathways based on
statistic model and prognostic pathways for each cancer type based on a Cox-PH model.
Step 3: Analyze the distribution of the PDS in different cancers, identify the deregulated
pathways in the cancer sample and all cancer samples with deregulation of this pathway,
analyze the correlations among the prognostic pathways, and build prognostic prediction
models for different cancer types based on the prognostic pathways.

http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/
http://www.compgenome.org/TCGA-Assembler/
http://www.compgenome.org/TCGA-Assembler/
http://www.cbioportal.org/study/summary?id=brca_metabric
http://www.cbioportal.org/study/summary?id=brca_metabric
http://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/msigdb/
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2.3. Calculating the PDS

For any given pathway, Pathifier calculates a PDS for each cancer sample based on
gene expression data [6]. The score represents the extent to which the activity of the
pathway in a particular cancer tissue differs from that in normal cells of the same tissue.

Pathifier first calculates a score DP(s), which measures the extent to which the behavior
of pathway P in sample s deviates from that in normal tissue. To determine the pathway
deregulation score (PDS) of this pathway, the expression level of the dP gene belonging to
pathway P is used. Each sample s is a point in the dP dimensional space, and the entire
sample set forms a point cloud. A (nonlinear) “principal curve” [14] is calculated to capture
the variation of this cloud. Then, each sample is projected onto the curve, and the PDS
is defined as the distance DP(s) measured along the curve between the projection of the
sample s and the projection of the normal sample [6].

Based on the above process, the PDS of each sample in each pathway can be calculated.
For each pathway, we calculate the mean and standard deviation of the PDS of all samples of
each cancer type. If the mean PDS of a cancer sample Xc

i (i = 1, 2, · · · , 13, where i is one of
13 cancer types) differed from the PDS mean Xn

i of a normal sample by two or more
standard deviations si, that is, ∣∣∣ Xc

i − Xn
i

∣∣∣ ≥ 2si (1)

then this pathway is deregulated in the cancer sample; that is, the deregulated activity of
this pathway in the cancer sample is significantly different from its activity in the normal
sample. In this case, this pathway is defined as a deregulated pathway in the cancer sample,
and the cancer sample is also called deregulated in this pathway.

2.4. Constructing Classifier to Distinguish Cancers from Normal

For better quantifying the differences between cancer samples and their tumor-
adjacent tissue, we constructed random forest classifiers. Specifically, for each cancer type,
we randomly selected 70% of all samples to train the random forest module, and tested the
remaining 30% of samples. The performance ability was evaluated by the sensitivity (SN),
specificity (SP), and accuracy (ACC), given by
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Sn = TP/TP + FN
Sp = TN/(TN + FP)

Acc = TP + TN/TP + FN + TN + FP

where TP is True Positive, FP is False Positive, TN is True Negative, and FN is False
Negative. This process was performed 100 times, and the mean values of Sn, SP, and ACC
were calculated finally.

2.5. Identifying Deregulated Cancer-Specific Deregulated Pathways

Based on the PDS scores, we use the R package “heatmap” (version 1.0.12) to perform
unsupervised hierarchical cluster analysis on all cancer samples by a statistical model.
For a certain pathway, the mean PDS of all cancer samples Yc and the mean PDS of all
cancer samples of a certain cancer, Yc

i , i = 1, 2, · · · , 13, is calculated. If∣∣∣Yc
i − Yc

∣∣∣ ≥ 2s (2)

then the cancer type is deregulated in this pathway, which is called a cancer-specific
deregulated pathway, where s represents the standard deviation of the mean PDS Yc of
this pathway in the 13 cancer types, that is,

s =

√√√√ 1
13

13

∑
i=1

(
Yc

i − Yc
)2

(3)

2.6. Identifying Prognostic Pathways

According to the clinical data corresponding to the cancer samples, the survival outcomes
(survival time and survival status) of the patients corresponding to the cancer samples were
used as dependent variables, and a univariate Cox-PH model was established based on the
PDSs. Pathways with p values less than 0.05 were identified as prognostic pathways.

Furthermore, a multifactorial Cox-PH model [15] for each cancer type was established
based on the PDSs of the cancer prognostic pathways. According to the median risk score,
the samples were divided into high-risk groups and low-risk groups, and Kaplan-Meier
curves were generated. The “survival” (version 3.2-13) and “survminer” (version 0.4.9)
packages in R/Bioconductor were used in the prognostic analysis.

In addition, gene expression data of breast cancer samples from the METABRIC
database were used to verify the prognostic model for breast cancer, and the corresponding
gene expression data of normal samples were also obtained from data for the 113 breast
tumor-adjacent tissues in TCGA. Prognostic analysis was conducted after data standard-
ization (min-max normalization) of the two databases.

For the identified prognostic pathways, the frequencies of the cancer prognostic
pathways and their related pathways were determined based on the related pathway
information in the KEGG database. The pathways with higher frequencies were used to
construct a pathway-pathway association network to explore the relationships among the
prognostic pathways.

3. Results
3.1. The Heterogeneity of the PDS

For tissues from 13 cancer types and the corresponding tumor-adjacent tissues in
TCGA, the PDS score of each pathway in KEGG was calculated by the Pathifier algorithm.

The t-SNE plot for the tissues from the 13 cancer types and the corresponding tumor-
adjacent tissues is shown in Figure 2. We can easily see that samples of the same cancer
type are clearly clustered together and that different cancer types are separated from each
other well, indicating the high heterogeneity of the PDS across cancer types. In addition,
we found that there is a good distinction between the tissue samples of different cancer
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types and the corresponding tumor-adjacent tissues and that the tumor-adjacent tissues
also cluster together (the tumor-adjacent tissues are circled in red in Figure 2).
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We constructed random forest classifier to distinguish cancer samples from their
tumor-adjacent tissues. We can see that the performance of the random forest classifier
is excellent to identify the cancer samples from their tumor-adjacent tissues. This result
also shows that there is huge distance between cancer and adjacent tissue in terms of PDSs
(see Table 2).

Table 2. The performance of the random forest classifier based on PDSs in 13 types of cancer.

Cancer BRCA COAD HNSC KIRP LIHC LUAD LUSC PRAD THCA BLCA UCEC KIRC STAD

Sn 0.966 0.986 0.972 0.973 0.943 0.987 0.992 0.904 0.973 0.985 0.969 0.968 0.965
Sp 0.998 1 0.991 0.992 0.999 1 1 0.928 0.969 0.82 0.995 0.984 0.999

Acc 0.968 0.988 0.973 0.975 0.949 0.988 0.993 0.906 0.972 0.977 0.971 0.984 0.967

Cancer-specific deregulated pathways were identified by a statistical model, and the number of cancer-specific deregulated pathways
varied greatly (see Figure 3). The cancer-specific deregulated pathways of each cancer type are shown in Supplementary Table S1.
The numbers of COAD-specific and PRAD-specific pathways are as high as approximately 30, while the numbers of LUAD-specific and
STAD-specific pathways are relatively low. The cluster heatmap of the PDS scores of all cancer samples is shown in Figure 4, which also
shows cancer-specific deregulated pathways in dark red and dark blue. It is easy to see that samples of the same cancer type are well
clustered, that samples of different cancer types are separated from each other, and that cancer-specific deregulated pathways in different
cancer types are significantly different.
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In addition, we found that cancer-specific deregulated pathways are related to the
corresponding cancer. For example, the genes in MAPK signaling pathway, a COAD-
specific pathway, encode a MAPKKK (Raf ) and a MAPKK (MEK1/2), which are frequently
mutated in colon cancer [16]. The JAK/STAT signaling pathway is identified as both a
STAD-specific and THCA-specific pathway. The JAK/STAT signaling pathway has been
shown to be aberrantly activated in thyroid cancer. In addition, the role of deregulated
JAK/STAT signaling in the molecular pathogenesis of gastric cancer has been shown [17,18].
The Wnt signaling pathway, a COAD-specific pathway, is significantly deregulated in
COAD. Studies have shown that mutations and defects in the Wnt signaling pathway
are often found in colon cancer. In addition, the Wnt signaling pathway is constitutively
deactivated by the destruction complex, which is assembled around the tumor suppressors
APC and Axin and targets β-catenin for destruction [19].
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In addition, we observed the heterogeneity of different cancers by analyzing the
distribution of the proportion of cancer samples deregulated in each pathway. As shown
in Figure 5A, among the 13 cancer types, there is a significant difference in the percentage
of cancer samples deregulated in each pathway. COAD, LUSC, and KIRC have relatively
high percentages of deregulated cancer samples, with averages of approximately 89%, 86%,
and 86%, respectively. The percentage of UCEC samples (85%) is also very high. In contrast,
PRAD has the lowest percentage (42%).

Similarly, the distribution of the deregulated pathways in each cancer sample is also
significantly different across cancer types (Figure 5B). COAD, LUSC, KIRC, and UCEC
have greater deregulation than other cancer types, and PRAD has significantly lower
deregulation than other cancer types. This pattern is consistent with the results of related
studies showing that COAD has the third highest incidence but second highest mortality [1].
In contrast, due to its slow growth, PRAD causes less damage to the human body and less
distant metastasis, and most prostate cancers never cause symptoms or death [20,21].
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Figure 5. Violin plot showing deregulation in each cancer type: (A) the percentage of samples deregulated in each pathway
in the 13 cancer types. The different colors represent different patient samples of each cancer type. COAD, LUSC, and KIRC
showed deregulation of 89%, 86%, and 86% of pathways, respectively; (B) percentage of deregulated pathways in each
patient. High percentages were observed in patients with COAD, LUSC, and KIRC.

3.2. Prognostic Pathways

Prognostic pathways for each cancer type were identified by univariate Cox-PH re-
gression analysis. There were significant differences in the number of prognostic pathways
among the different types of cancer. There were more prognostic pathways in KIRC, THCA,
STAD, and HNSC and fewer in LUAD, PRAD, and UCEC. For example, 60 and 7 prognos-
tic pathways were identified in KIRC and in PRAD, respectively, which were the highest
and lowest numbers (see Supplementary Table S2). This difference may arise because the
clinical outcomes of different cancer types are very diverse.
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In addition, different cancer prognostic pathways rarely overlap. Thus, prognostic path-
ways have strong cancer specificity, as confirmed by Uhlen et al. [22]. Here, the prognostic
pathways in the 13 cancers are distributed among different types, including pathways re-
lated to metabolism, organismal systems, environmental information processing, genetic
information processing, cellular processes, and human diseases (see Supplementary Table S3).

Among the prognostic pathways and their related pathways, the MAPK signaling
pathway, apoptosis, glycolysis/gluconeogenesis, PI3K-Akt signaling pathway, and cell
cycle pathway have higher frequencies in the 13 cancer types. In addition, other known car-
cinogenic pathways, such as the p53 signaling pathway, Wnt signaling pathway, and TGF-
beta signaling pathway, also show high connectivity. In particular, the MAPK signaling
pathway shows the highest connectivity among these prognostic pathways and is related
to the prognostic pathways in all cancers. In addition, the MAPK signaling pathway
promotes cell survival by a dual mechanism comprising the post-translational modification
and inactivation of a component of the cell death machinery and the increased transcription
of pro-survival genes [23].

Based on the assumption that similar diseases may be caused by deregulation of
common oncogenic pathways, we constructed a cancer–cancer association network and
found that most cancer types have very few shared prognostic pathways. In other words,
most prognostic pathways are cancer specific. However, KIRC and KIRP shared the most
common pathways, which indicates that cancer types with similar origin cell types share
more oncogenic pathways (Table 3). In addition, a pathway-pathway association network
for the prognostic pathways and their related pathways was constructed (Figure 6). MAPK
signaling pathways and apoptosis, cell cycle, PI3K-Akt, TGF-beta, Wnt, Jak-STAT, and p53
signaling pathways were tightly connected, indicating that synergistic deregulation of
these oncogenic pathways may contribute to tumorigenesis. However, we found that
cytokine–cytokine receptor interaction with higher frequencies has less contact with other
pathways, which may also be an important pathway. There is not enough relevant research
on this pathway, so further exploration and study are needed.

Table 3. The prognostic pathways shared by KIRC and KIRP.

Starch and sucrose metabolism
Riboflavin metabolism
TGF-beta signaling pathway
Prostate cancer
Thyroid cancer
Small cell lung cancer

In COAD, Notch signaling pathway was identified as prognostic pathway, which
is consistent with the studies showing that the misregulation or loss of Notch signaling
underlies a wide range of human disorders, from developmental syndromes to adult-onset
diseases and cancer [24]. As an identified prognostic pathway, Toll like receptor signaling
pathway is supported by a recent study showing that it is a potential therapeutic target in
COAD, and correlated with COAD prognosis [25]. In addition, Toll like receptor signaling
is involved in activating innate and adaptive immune responses and plays a critical role
in COAD [25]. Elsewhere, we identified Cell cycle pathway as a prognostic pathway for
HNSC. Cell cycle regulators are considered attractive targets in cancer therapy, and over
expression of several of these cell cycle proteins induces or contributes to tumorigenesis,
revealing their prominent oncogenic roles [26]. VEGF signaling pathway was identified as
a prognostic pathway in HNSC. VEGF inhibitors play an increasingly important role in the
management of solid tumors, and anti-VEGF therapy has established itself as one of the
most important classes of drugs for the treatment of human cancer [27]. VEGF correlates
with worse prognosis or outcome in general [28].

Moreover, N-Glycan biosynthesis, amino sugar, nucleotide sugar metabolism, and so
on were prognostic pathways in BRCA; steroid hormone biosynthesis, insulin signaling
pathway, and so on were prognostic pathways in KIRC; and other prognostic pathways
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among the different types of cancer may be specific pathways of different cancers. Our re-
search indicates that they may be repurposed for the treatment of these cancers.
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3.3. Prognostic Models Based on Pathways

The Kaplan-Meier curves for all cancers are shown in Figure 7. It can be seen from
the figures that the prognoses of patients in the high-risk score group are significantly less
favorable (p < 0.05) than those of patients in the low-risk score group in 12 cancer types
(except BLCA) in TCGA; this finding verifies the effectiveness of the prognostic model
based on prognostic pathways.

In addition, the validation data in the METABRIC database were analyzed using the
same process. The breast cancer samples in METABRIC were divided into a high-risk score
group and a low-risk score group based on the prognostic model constructed from the
21 breast cancer prognostic pathways identified in TCGA. There was a significant difference
in survival between these two groups (log-rank test, p < 2.2 × 10−16, see Figure 8).
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3.4. Behavior of Prognostic Pathways among Cancer Subtypes

In addition, we computed the mean values of PDS for the 21 identified prognostic
pathways among breast cancer Pam50 subtypes and plotted their distribution in Figure 1.
Obviously, the PDS scores of the identified prognostic pathways are higher in Basal-like
subtype with poor prognosis than other subtypes, while the PDS sores of subtypes of
LumA and Normal-like are relatively lower. As we all know, these two subtypes LumA
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and Normal-like are usually correlated with low degree of malignancy and good prognosis.
This means that the PDS score of the identified prognostic pathways can reflect the degree
of malignancy and prognosis of breast cancer among subtypes. The higher the PDS score
of the prognostic pathways, the more serious the pathway deregulated and the worse the
prognosis (see Figure 9).
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3.5. Genes in Prognostic Pathways

We examined the annotations of the gene sets of these 21 pathways in breast cancer.
The occurrence frequency of genes in all prognostic pathways of breast cancer was sta-
tistically analyzed, and the genes with the highest frequency were selected, for example,
the mitogen-activated protein kinases MAPK1, MAPK3, and MAP2K1; G-protein-related
genes GNAQ and HRAS; and other oncogenes, such as RhoA, ROCK1, and ROCK2. Increased
expression and/or activation of HRAS is often associated with tumor aggressiveness in
breast cancer. HRAS induces the invasion and migration of MCF10A human breast ep-
ithelial cells, and HRAS induces cell proliferation and phenotypic transformation [29].
The KRAS, BRAF, and PIK3CA genes activate the ERK/MAPK pathway [30]. The activation
of NHE1 and subsequent invasion induced by serum deprivation in metastatic human
breast cells is coordinated by a sequential RhoA/p160ROCK/p38 MAPK signaling pathway
gated by direct phosphorylation of protein kinase A and inhibition of RhoA [31]. In addi-
tion, HRAS, KRAS, AKT1, PIK3CA, TP53, and 24 other genes (see Supplementary Table S4)
in these 21 prognostic pathways of BRCA have been proven to be BRCA driver genes,
accounting for 28.3% of the total complement of BRCA driver genes [32].

Impressively, for prognosis-related signaling pathways with high correlations, key
genes in the MAPK and TGF-β signaling pathways are associated with many cancer types.
Through mutation of the pathway members or aberrant activation of the downstream
genes (i.e., RAS, SRC, and PI3K) and receptor kinases, the MAPK signaling pathway is
overactivated in different malignancies. The activators and components of the MAPK
pathway—Raf, RAS, BRAF, MEK, and ERK—are frequently mutated in colon, melanoma,
ovarian, thyroid, colorectal, and non-small cell lung cancers [33]. The TGF-β signaling
pathway has multiple gene targets, and TGF-β performs its critical functions in proliferation
and suppression by targeting the c-Myc, Cyclin A/B/D/E, CDK1/2/4/6, p15INK4B, p21CIP1,
and p27KIP1 genes [34].
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4. Discussion

We applied Pathifier, a recently introduced method for analysis of transcriptomic data,
to perform a comprehensive pan-cancer study across 13 different tumor types with more
than 6000 cancer samples in TCGA. For each cancer type, the cancer-specific deregulated
pathways and prognostic pathways were found to differ greatly among cancers, reflecting
the heterogeneity across cancer types. In addition, we constructed a prognostic pathway-
based prognostic model, which was well validated in an independent data set in the
METABRIC database. The prognostic model accurately distinguished the high-risk and
low-risk score groups, indicating the broad applicability of our model as a prognostic model.
Then, for any given pair of cancer types, we found that there is little overlap between the
two lists of pathway-based biomarkers. These results highlight the observation that cancer
is a highly heterogeneous disease and that, therefore, personalized treatment is necessary
for patients with different cancer types.

Although we developed an approach for the classification and identification of prog-
nostic pathways in different cancer types, our study has a few limitations. We only used
normal samples in TCGA, and a certain number of normal samples are needed to estimate
PDS more accurately. In addition, some types of cancer with high heterogeneity can be
studied further by subtyping based on pathways.

In summary, Pathifier-based research can allow more accurate and robust identification
of prognostic pathways in cancer samples and is expected to improve precision treatment
for different cancers. We also expect that our method, with its good performance, will be
applicable to other cancers. Future validation in other cancer types with large sample sizes
is desired.

5. Conclusions

In this study, we analyzed transcriptomic data of 13 different cancer types in TCGA
database to identify cancer-specific deregulated pathways and prognostic pathways based
on pathway deregulation scores. First, individual-specific pathway deregulation scores
for each sample were inferred. Second, the cancer-specific deregulated pathways and
prognostic pathways of different cancer types were identified. Finally, we constructed and
evaluated the pathway-based prognostic prediction model.

There are indeed several papers building PDS-based Cox models, and all of them
are focused on a single type of cancer [35]. However, we performed the pathway based
personalized analysis on pan-cancer including 13 types of cancer. The results showed that
the individual-specific deregulated pathways score can clearly distinguish different cancer
types and their tumor-adjacent tissues. The cancer-specific deregulated pathways and prog-
nostic pathways of different cancer types have high heterogeneity. The cancers with more
deregulation pathways tend to be malignant and have worse prognoses. The prognostic
model based on pathways successfully predicted survival and prognosis both on training
data and validation data. We believe that our prognostic models based on pathways are
reliable for prognostic prediction. Most of these results cannot be obtained by PDS-based
analysis on only a single cancer type. These are the highlights of our study. In addition,
this work may improve the development of precision medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biomedicines9111502/s1, Table S1: The cancer-specific deregulated pathways of each cancer type.
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