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Abstract: The incidence of severe COVID-19 in children is low, and underlying mechanisms for
lower SARS-CoV-2 susceptibility and self-limiting disease severity are poorly understood. Severe
clinical manifestations in adults require SARS-CoV-2 inoculation in the lower respiratory tract,
establishing a pulmonary disease phase. This may be either accomplished by direct inoculation of
the thoracic region upon exposure to virion-laden aerosols, or by infection of the upper respiratory
system and aspiration of virion-laden aerosols originating right there into the lower respiratory tract.
The particularities of epithelial barriers as the anatomical site of first viral deposition specifically
determine the initial characteristics of an innate immune response, emerging respiratory tissue
damage and dysfunctionality, and hence, severity of clinical symptoms. We, thus, investigated by in
silico modeling whether the combined effect of juvenile lung morphometry, children’s ventilatory
pattern and the peculiarities of the virion-laden aerosols’ properties, render children more resilient
to aerosol deposition in the lower respiratory tract. Our study presents evidence for major age-
dependent differences of the regional virion-laden aerosol deposition. We identified deposition
hotspots in the alveolar–interstitial region of the young adult. Our data reveal that children are void
of corresponding hotspots. The inoculum quantum in the alveolar–interstitial region hotspots is
found to be considerably related to age. Our results suggest that children are intrinsically protected
against SARS-CoV-2 inoculation in the lower respiratory tract, which may help to explain the lower
risk of severe clinical manifestations associated with a pulmonary phase.

Keywords: aerosol; alveolar–interstitial region; droplets; pathogenesis; pathophysiology; pediatric;
pneumonia; risk factor

1. Introduction

Identifying factors driving the transmission and infectivity of the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) is critical for making the right choice among
possible infection control and containment measures. Each wavelike resurgence of coron-
avirus disease 2019 (COVID-19) pandemic has reawakened the intense debate about the
particular role of children and young adults in SARS-CoV-2 transmission. The incidence of
severe COVID-19 in children is low, although there is ample evidence that seroconversion
rates of children and adults are not different [1–3]. In a cohort of 742 pediatric patients
seeking medical advice in a specialized children’s hospital and being tested SARS-CoV-2-
positive during routine testing, with a median age of 6 years, 21% (156/742) presented with
upper respiratory tract (URT) symptoms and only 3.9% (29/742) with lower respiratory
tract (LRT) involvement [4]. This disparity may be co-founded by more than one factor.
It may include different expression patterns of viral docking receptors, a pre-activated
innate immunity, limiting SARS-CoV-2 replication and COVID-19 disease progression in
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children at an early stage [5], or differences in the predominant route of transmission and
anatomical sites of first inoculation.

As established by the World Health Organization’s COVID-19 Clinical management:
living guidance (WHO/2019-mCoV/clinical/2021.1), the clinical spectrum of COVID-19 in
adults with moderate, severe or critical manifestations is entirely linked to a pulmonary
phase. Thus, deposition of a disease-initiating SARS-CoV-2 dose in the thoracic region is a
key event. Direct inoculation at the LRT may result from exposure of susceptible individuals
to virion-laden respiratory aerosols with a high probability of depositing at hotspots in the
secondary pulmonary lobules of the peripheral lung upon inhalation, which we already
confirmed for adults in an earlier study [6]. Alternatively, infection of epithelia of the oral-
nasal cavity, the pharynx, and larynx may propagate, upon self-aspiration of virion-laden
aerosols originating right there, into the LRT. The mechanisms of aerosol generation and
anatomical sites of origination in the URT and LRT are well described [7]. Among these,
the most promising mechanism providing virion-laden aerosols for aspiration is fluid film
burst and shear-induced surface instability in the airway lining fluid at the larynx during
vocalization, because aerosols may be trapped in the residual URT volume at the end of the
expiratory phase. Thus, virus-laden aerosols are available for immediate aspiration at the
beginning of a new breathing cycle. Both coexisting scenarios, direct inoculation in the LRT
and SARS-CoV-2 propagation by aspiration subsequent to viral replication in the URT, link
aerosol transmission or displacement to LRT deposition of virion-laden aerosols, hence, to
a pulmonary phase of COVID-19 and more severe disease manifestations associated with
higher disease burden.

The general sentiment on pathogen-induced lung infections emphasizes that the
primary site of inoculation is the URT and a stepwise migration via conducting airways
towards the distal regions of the LRT has been proposed [8,9]. Although this might
be true for fomite or large droplet-transmitted pathogens, it can be challenged for the
pathogen-laden aerosol transmission route. From the perspective of an immunologist,
reversing this approach would come along with a major implication on pathogenesis
and disease severity. Initial replication of SARS-CoV-2 on epithelia of the URT would
be without severe clinical manifestations, but viral antigen exposure right there would
allow bridging the innate immune response to an adaptive immune response and, with
some delay, effectively preventing viral replication in the LRT and mitigating the stepwise
SARS-CoV-2 propagation to the smallest functional units, the second pulmonary lobules.
These are the anatomical sites of chest CTs anomalies in the peripheral lungs in early
phase COVID-19 pneumonia. In contrast, without the head start of an activated innate
immunity in the URT, initial deposition and replication of SARS-CoV-2 on epithelia in the
most vulnerable regions of the LRT, the alveolar–interstitial region, is neither effectively
hindered by physical or soluble barriers or by clearance through the limited number of
resident alveolar macrophages in early disease. Hence, initial viral damage to pneumocytes
and the inflammatory immune response to pathogen- and danger-associated molecular
patterns will induce alveolar–interstitial edema, alveolar filling and collapse, recruitment of
neutrophils and monocytes and will finally compromise oxygenation, all before an arising
adaptive immune response can regain control on viral replication.

Children’s lungs are not just miniaturizations of adult lungs. Thus, the anatomy
and physiology of breathing might involve a very different regional selectivity for the
retainment and deposition of virion-laden aerosols compared to an adult’s respiratory
tract. A dissimilar risk of LRT disease and COVID-19 severity upon aerosol transmission,
given identical exposure conditions, should be expected. A child, in comparison to an
adult, has an increased basal metabolic demand, which has to be matched by an increased
respiratory turnover, relative to the body mass [10]. Hence, children were found to be
more susceptible for developing adverse pulmonary effects upon inhalation of urban air
pollutants [11], of toxic gaseous substances, or of respirable particulate matter [12,13],
which could include fungal spores, bacteria and possibly virions. These arguments should
hold true for airborne transmission and thoracic deposition of SARS-CoV-2-laden aerosols,
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but this notion is not supported by the observed rare evidence of LRT clinical manifestations
in children, although the role of aerosol transmission [14] and the particular implications for
the etiology of COVID-19 is increasingly acknowledged as the major route for SARS-CoV-2
spreading in crowded and confined spaces [15].

A minimum infectious dose for SARS-CoV-2 is not established. However, most recent
studies, using deep sequencing of the SARS-CoV-2 genome variability and considering
intra-host evolution during human-to-human transmission, elucidated a very narrow
genomic transmission bottleneck by investigating the mutational SARS-CoV-2 diversity
in confirmed infector–infectee pairs [16–18]. These studies report a bottleneck-size of
one to eight virions in validated transmission events, which is of major importance for
understanding SARS-CoV-2 transmission dynamics. Low disease-initiating doses favor
a high selectivity of different anatomical regions of the respiratory tract for initial viral
replication, caused by inequalities of virion-laden aerosol deposition probabilities. This
implies a strong predilection of aerosol deposition hotspots, which might be a result of
age-specific lung morphometry or pre-existing conditions.

We, thus, investigated, by in silico modeling of a preschool child at the age of three
(3y-child), a child at the age of eight (8y-child), and an adult at the age of 21 (21y-adult),
the age disparity of initial virion-laden aerosol deposition resulting from (i) differences in
the lung morphometry, (ii) differences in the ventilatory pattern, and (iii) physiochemical
properties of ambient air virion-laden aerosols. To mimic a realistic exposure situation,
we applied virion-laden ambient air aerosols, originating from breathing and vocaliza-
tion of infected individuals. We aimed to identify age-specific variations in SARS-CoV-2
susceptibility to airborne transmission, co-founding the differences in the frequency of a
pulmonary COVID-19 phase between children and adults, thus, in COVID-19 pathogenesis
and disease severity.

2. Materials and Methods

A combined in silico simulation and data analysis approach was performed. First, the
deposition probability of ambient air and respiratory virion-laden particles (VLPs) in the
size range between 0.3–100 µm was determined for the thoracic region. We considered
the lung morphometry of a 3y-child, an 8y-child, and a 21y-adult. Second, deposition
heatmaps, with detailed data on all lung generations, were established. Third, VLPs
originating from specific expiratory activity, vocalization and breathing, most relevant
for indoor aerosol transmission, were investigated. Particular aerosol size distributions
reflecting these expiratory maneuvers were used to establish lung lobe-, lung generation-,
and age-specific VLP deposition heatmaps.

2.1. Ambient Air Respiratory Aerosol Particle Modeling

For establishing the deposition probability data by in silico modeling the physico-
chemical properties of VLPs and an age-specific anatomical regions and airway generation
model were defined. For investigation of virion-laden aerosol deposition the size range
lower bound for VLPs was set at 0.3 µm, because the probability of virion adsorption to
smaller particles is negligible. The airborne time for VLPs with a size larger than 100 µm,
the selected upper bound, is limited due to gravitational settling; thus, these will not
contribute to long-distance aerosol transmission. For our modeling purpose, a VLP is
composed of evaporated mucus remnant in equilibrium with ambient air, relative humidity
lower than 60% and room temperature, considering an evaporation shrinkage factor of
0.5, according to Nicas et al. [19], and Holmgren et al. [20], and with one single virion
adsorbed. In the moment of exhalation, respiratory aerosol particles are in an evaporation
equilibrium with the breath cloud (90% relative humidity, 28 ◦C) [21]. For particles with
a size smaller than 20 µm a transition to a new evaporation equilibrium with ambient
air conditions takes place in the order of milliseconds to tenths of seconds [7,22]. This
single virion approach is well supported by literature which reports 106 to 1011 viral RNAs
per milliliter [23]. Following aerosolization and random adsorption of virions and using
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the highest concentration, most respiratory aerosol particles in the low µm size range
contain just one virion or are void of virions. This observation was long before confirmed
by Couch et al. [24] in the context of adenoviruses, where the vast majority had only one
virion and this broadly concurs with Poon et al. [25] and Stadnytskyi et al. [16]. The mucus
and VLP composition and the thereof derived density, before and after evaporation, was
adopted from Hofer et al. [6] to be 1.04 g/mL and 1.3 g/mL, respectively. SARS-CoV-2
virion diameter was defined at 0.12 µm and the density at 1.2 g/cm3 [26].

2.2. Deposition Simulation and Lung Modeling

VLP deposition was determined using the Multiple Path Particle Model (MPPD V3.04;
Applied Research Associates, Inc., Huntsville, AL, USA) [27,28] and the age-specific 5-
lobe lung model from Mortensen [29–31]. MPPD supports in silico aerosol deposition
modeling in the human lung, based on numerical calculations of equations considering
different breathing models, governing particokinetics and particle deposition, physiological
parameters of the lung, and physicochemical properties of aerosols under investigation.

Mortensen relies on lung morphometry data derived from human lung casts of indi-
viduals at different age. The model represents an asymmetric human lung with five lobes.
In brief, we divided the respiratory system into four anatomical regions: the extrathoracic
region, the bronchial (BB) region, the bronchiolar (bb) region, and the alveolar–interstitial
(AI) region [32], the latter three compose the thoracic region. Using this model of the
respiratory tract, we compartmentalized the thoracic region in up to 115 sub-regions; seg-
mentation starts with the common anatomical region of the trachea and expands to the
most distal alveolar region of each individual lobe of the lungs (Figure 1).

For modeling a comparable activity level in all three age groups, reflecting moderate
to marked physical activity, we established age-specific breathing frequencies and tidal
volumes. Based on the principle of the ventilation-perfusion matching at any activity level,
we first determined a heart rate for a half-maximal activity level (HMA) for each age group
(Figure 2A). The heart rate at rest was derived from established data by extrapolating to
the age of 19 to 21 years [33]. The maximum heart rate was calculated with the formula of
Tanaka et al. [34]. HMA was calculated midmost of heart rate maximum and heart rate at
rest. Subsequently, the relative increase of heart rate at rest, necessary to achieve the HMA,
was used to adjust the age-specific respiratory minute volumes proportionally, taking into
consideration the increased metabolic demand for this level of activity. To establish the
activity-adjusted respiratory minute volume in all investigated age groups, half of the
intensification was considered by a rise of the tidal volume and half by an acceleration of
the breathing rate, as markup to the resting state (Figure 2B).

The resting state tidal volume was established by a weight-adjusted physiological
rate of 7 mL/kg [35,36], resulting in 103.6 mL for the 3y-child, 185.5 mL for the 8y-child
and 500.5 mL for the 21y-adult. The resting state breathing frequency was adopted from
literature with 26, 21 and 14 breaths per minute [33,37]. Table 1 provides the MPPD input
parameters used:

To generate the VLP deposition heatmap for the size range between 0.3 µm and
100 µm, a series of calculations and modeling steps was performed. In a first step, a VLP
exposure dose by mass was defined and converted into an exposure dose by particle
number. Second, MPPD was applied to determine the VLP deposition per lung generation.
Finally, the data were used to calculate a VLP deposition probability for a single inhaled
VLP in each thoracic sub-region in relation to the total inhaled particles.
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based on ventilation-perfusion matching. (A) The determination of the heart rate for a half-maximal activity level (HMA)
was calculated midmost of heart rate maximum and heart rate at rest. (B) Breathing frequency and tidal volume at HMA
were calculated by adjusting the age group-specific values at rest with the relative increase of heart rate from rest to HMA
to achieve a match of the respiratory minute volume. In this simplified model the relative increase was split evenly between
breathing frequency and tidal volume. HMAs, breathing frequency and tidal volume for the three age groups (3y-child,
8y-child, 21y-adult) applied in the in silico modeling are marked in red. HR, heart rate; HMA, heart rate for a half-maximal
activity level; BF, breathing frequency; TV, tidal volume.
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Table 1. MPPD parameter settings for breathing scenario “moderate to marked physical activity”.

Input Section Scenario Parameter
Value Setting

3y 8y 21y

Airway Morphometry -
Model Age-specific 5-Lobe

FRC (mL) 48.20 501.32 2123.75
URT (mL) 9.47 21.03 42.27

Inhalant Properties Aerosol
Density (g/cm3) 1.320–1.328 (a)

Aspect Ratio 1.0 (= spherical)
Diameter (µm) 0.3–100.0 (b)

Exposure Condition Constant Exposure

Body Orientation Upright
Aerosol Concentration (mg/m3) 0.5 (c)

Breathing Frequency (per min.) 31.6 27.1 19.3
Tidal Volume (mL) 125.8 239.1 689.7

Inspiratory Fraction 0.4
Pause Fraction 0.0

Breathing Scenario Nasal
Deposition/Clearance Deposition Only

(a) Above a particle size threshold of 0.7 µm, density is constant at 1.328 g/cm3. (b) One simulation per selected aerosol particle size.
(c) concentration used (only relevant for calculating deposition probabilities and not intended to reflect real world exposure). FRC,
functional residual capacity; URT, upper respiratory tract; 3y, 3y-child; 8y, 8y-child; 21y, 21y-adult.

2.3. Deposition Modeling of Vocalization—And Breathing—Generated VLPs

Morawska et al. [22] and Johnson et al. [21] first experimentally established size
distributions for respiratory aerosol particles originating from specific human expiratory
activities. Our respiratory aerosol particle modeling is based on these data, which are
broadly confirmed by findings of other research groups [38].

In short, to generate the data, the authors of both studies combined an expiratory
droplet investigation system (EDIS) that includes an aerodynamic particle sizer (APS) to
measure particles from 0.5 to 20 µm and a droplet deposition analysis (DDA) to measure
particles larger than 20 µm. EDIS implements a wind tunnel system with an opening into
which healthy volunteers place their heads and execute defined respiratory maneuvers on
demand. The observed size distribution results were assumed to be a superposition of log-
normal distributions, representing the specific respiratory maneuvers and anatomical sites
of origin. Five distinct particle size distributions with associated count median diameters
(CMD 1–5), were identified by curve fitting and assigned to expiratory maneuvers and
anatomical origins. In our study, these five CMDs, as representatives for their particular log-
normal size distributions, were applied for the in silico investigation of particle deposition
characteristics (Table 2).

Table 2. VLP characteristics for expiratory activity “breathing and vocalization”.

CMD * Diameter (µm) Expiratory
Maneuver Origin [7] Relative Abundance in

Exhalation Plume (%) Density (g/cm3)

CMD 1 0.8 Breathing,
vocalization Bronchiolar fluid film burst 72.82 1.328

CMD 2 1.8 Vocalization Laryngeal fluid film burst 20.98 1.328
CMD 3 3.5 Vocalization Laryngeal fluid film burst 2.16 1.328
CMD 4 5.5 Vocalization Laryngeal fluid film burst 3.40 1.328
CMD 5 72.5 Vocalization Oral cavity 0.64 1.328

* count median diameter.

2.4. Compilation into Regionalized Deposition Probability and Relative Inoculum Quantum Heatmaps

A three-tier approach was used to establish different levels of heatmaps, revealing
lung lobe- and lung generations-specific VLP deposition probabilities (regionalization). A
relative quantum heatmap was established to compare the age groups’ VLP deposition
performance upon ambient air virion-laden aerosol exposure, originating from breathing
and vocalization activity.

First, MPPD was used to determine the VLP deposition probability in the thoracic
region, per lung generation, particle CMD 1–4 and age group. VLP deposition probability
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heatmaps were established, based on the total inhaled particle number. CMD 5 was
excluded from further analysis, because initial results revealed negligible contribution of
these particles to thoracic deposition.

Second, weighted VLP deposition heatmaps were established by considering the
relative abundance of CMD 1–5 VLPs in the exhalation plume and ambient air (Table 2).
This step aimed at exploring selectivity for and differences in regional thoracic deposition
patterns between investigated age.

Third, we compiled relative inoculum quantum heatmaps by normalizing the weighted
VLP deposition data with the respiratory minute volume (breathing frequency x tidal vol-
ume; Table 1) of investigated age groups. Adult’s respiratory minutes volume was set
as reference. These heatmaps represent the relative risk of an inoculating quantum upon
identical exposure conditions, time span and VLP dose, for all three age groups.

3. Results

A top-down approach was applied to elucidate differences between the three age
groups in regard of regional thoracic VLP deposition preferences. For this study, we adopt
the convention that VLPs in the size range below 5 µm are termed aerosols, bigger sizes are
referred to as droplets; both being in equilibrium with ambient air. The combined impact
of lung morphometry, breathing pattern, and aerosol characteristics were investigated at
four different levels.

First, the thoracic deposition probability of single inhaled VLPs was established
by scanning the size range of 0.3–100 µm for all three age groups. Figure 3A depicts
the deposition probability chart for the three age groups. Considerable differences in
deposition preferences and deposition fractions were observed. Both juvenile (3y-child,
8y-child) lung models unveiled markedly higher (more than 2-fold) peak VLP deposition
probabilities compared to 21y-adult. This correlated with a prominent predilection to larger
particle sizes, with a deposition probability maximum at 5.0 µm and 4.0 µm, respectively.
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Figure 3. Thoracic deposition probability scan of VLPs in the size range of 0.3–100 µm for the three age groups, (A)
cumulative (B–D) dissected in bronchial (BB), bronchiolar (bb) and alveolar–interstitial (AI) fractions. (B) 21y-adult,
(C) 8y-child, (D) 3y-child. VLPs, respiratory virion-laden particles.

A second, more detailed approach was then performed to generate insight in regional-
ized thoracic VLP deposition. This was achieved by dissecting the probability data into
the BB, bb and AI compartment of each age group. Figure 3B–D depicts this view and
instantly revealed the considerable preference for VLP deposition in the BB and bb region
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in both juvenile lung morphometry models, for particle sizes exceeding 2.5 µm. This was
in significant contrast to the adult where the overall particle deposition probability peaked
at 2.0 µm and only minor deposition of particles in the BB and bb region beyond this size
threshold was observed.

A further level of refinement was made for the determination of regionalized deposi-
tion probability peaks and assigning these clusters of preferred deposition to anatomical
regions of the lungs, from most central to most distal structures. For this purpose, we
applied the detailed lung generation model presented in Figure 1. Remarkably, the chil-
dren had two deposition probability peaks, one in the peripheral lung, at the third-last
generation, associated with particle sizes of 3.0 µm (3y-child) and 2.5 µm (8y-child); the
second peak in the BB, related to particle sizes determined at 10 µm (Figure 4A,B). The
21y-adult had a probability peak at 1.8 µm right there and no deposition peaks in the bb
and BB region (Figure 4C). VLPs in the size range starting at 10 µm demonstrated negligible
deposition probabilities for all age groups and all lung generations (Figure 4A–C).

Finally, we applied our modeling to the breathing and vocalization activity-originating
VLPs presented in Table 2, to mimic an indoor exposure of susceptible individuals to virion-
laden aerosols. To generate lung lobe-specific VLP deposition heatmaps, we compiled our
deposition probability data into up to 26 generations per lobe. Only four CMDs (CMD 1–4,
0.8 µm, 1.8 µm, 3.5 µm, 5.5 µm) were considered, CMD 5 (72.5 µm) was omitted due to the
revealed neglectable probability for LRT deposition in all investigated age groups (Figure 4).
Our lobe-specific LRT deposition probability heatmaps immediately unveiled deposition
hotspots on both lower lobes in the AI region for all age groups (Figure 5A). Compared to
adults (21y-adult), children (3y-child, 8y-child) showed a tendency for increased deposition
probability of bigger-sized particle fractions in the AI hotspots; with a maximum for the
3.5 µm-sized particles, in all 5 lobes. Of note, additional hotspots in the BB region for larger
aerosols (5.5 µm) in the lower lobes emerged in children.

To improve the coherence of our modeling with actuality, we weighted the lobe-specific
LRT deposition probability values by the relative abundance of the different size classes in
the exhalation plume (Table 2). Remarkably, this abundance correction particularly reduced
the intensity and magnitude of hotspots in the heatmaps for children (3y-child, 8y-child) in
the AI region and eliminated the hotspots in the BB region, due to the minor abundance
of the 3.5 and 5.5 µm-sized particles. The hotspots in the AI region translocated to the
smallest particle sizes (0.8 µm) for all ages. Of note, the corrected deposition probabilities
in the hotspots of the adult were higher than those of the children, equivalent to a lower
susceptibility for virion-laden aerosol deposition in children’s peripheral lungs (Figure 5B).

To enable a risk estimation for and comparison of direct inoculation and immediate
disease initiation in the lower respiratory tract by virion-laden VLPs, we established
regionalized inoculum quantum heatmaps. This was achieved by normalizing the weighted
deposition probability data by the age-specific respiratory minute volume. The inoculum
quantum heatmaps revealed that children, when compared to the adult as reference, were
void of inoculum hotspots in the peripheral lungs, which were markedly present in the
distal region of both lower lobes of the adult (Figure 5C). Significant inoculation in the
central thoracic regions, in BB and bb, was not observed for any age group. Probability
values and MPPD-derived raw data are available at https://doi.org/10.5281/zenodo.5543
676, accessed on 1 October 2021.

https://doi.org/10.5281/zenodo.5543676
https://doi.org/10.5281/zenodo.5543676
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Figure 4. LRT deposition probability heatmaps, screening 0.3–100 µm and resolved in lung generations. Horizontal lines
separate BB, bb and AI region, vertical lines VLP size ranges from 0.3–1 µm, >1 µm and >10 µm. Peak values in hotspots in
AI regions are marked with grey boxes. Probability is color-coded according to legend. Heatmaps are shown for (A) 3y-child,
(B) 8y-child and (C) 21y-adult. LRT, lower respiratory tract; BB, bronchial; bb, bronchiolar; AI, alveolar-interstitial.
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Figure 5. Lobe-specific LRT deposition probability heatmaps based on the number of total inhaled (3y-child, 8y-child,
21y-adult) particles. For lobe-specific analysis, four count median diameters diameter (CMD 1–4) for expiration activity
vocalization and breathing (0.8 µm, 1.8 µm, 3.5 µm, 5.5 µm) were considered. As lobes have different numbers of generations,
the sub-structures were aligned. Common structures are indicated on the far left. Probability is color-coded according to
legend. Probability of deposition is depicted (A) unweighted, (B) weighted by relative abundance in the exhalation plume
(CMD 1–4: 72.8%, 21.0%, 2.2%, 3.4%) and (C) as inoculum quantum heatmap, compensated for age-specific respiratory
minutes volume. LRT, lower respiratory tract; CMD, count median diameter.
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4. Discussion

Our modeling approach focuses on elucidating age-specific disparities in the LRT
regional inoculation with SARS-CoV-2-laden aerosols and droplets, thus, explaining differ-
ences in the frequency of LRT disease in children and adults and being causal to age-specific
variants in COVID-19 pathogenesis. Such differences are expected due to the interplay of
age-specific lung morphometry, respiratory patterns, and the physiochemical properties of
VLPs determining their particokinetics. These effects may be confounded with differences
in the barrier function of age-specific afflicted respiratory epithelia and tissue-specific
capabilities of the initial immune defense. Moreover, age-specific and tissue-specific vari-
ability in the gene expression of virial docking receptors such as ACE2 and TMPRSS2 may
also contribute.

Age-related differences in the ability for self-aspiration of URT originating VLPs could
hamper SARS-CoV-2 propagation to the LRT, thus, explain the in vivo observed lower
rate of pulmonary involvement in children. The key parameter determining the potential
for translocation of VLPs is the residual URT volume, in which aerosol particles in the
oral cavity or nasal passages at the end of the expiratory phase are trapped and then
immediately aspirated at the beginning of the next inhalation cycle. Although children
have a lower URT volume than adults, they have a higher respiratory rate and a higher
fraction of translocated residual URT volume within their total respiratory minute volume
(URT volume min−1/respiratory volume min−1: 0.075 for 3y-child; 0.061 for 21y-adult;
Table 1). Hence, the potential for aspiration in children is higher than in adults and cannot
explain the lower rate of pulmonary involvement in vivo or give rise for the absence of
hotspots in the peripheral lung in silico.

Our data on VLPs’ deposition probabilities revealed a markedly increased overall
retention in the juvenile respiratory tract, being selectively driven by particles in the size
range peaking at 4–5 µm. Based on the principles of particokinetics, the deposition of
VLPs in this size class is dominated by impaction, favored by high flow rates associated
with a juvenile respiratory tract morphometry. Counter-intuitively, the comparison of
the 3y-child and 8y-child unveiled a higher deposition probability peak for the older.
However, juvenile lung development is not a linear process. Alveolarization in the AI
region and airway elongation in the BB and bb regions are not proportionally connected; the
elongation of central airway structures favors retention of bigger-sized VLPs by impaction,
alveolarization increases the deposition probability in the peripheral region by diffusion.
The children’s overall higher deposition rate of micron-sized aerosol particles is well
aligned with reported higher susceptibility of children to toxic particulate matter [11–13],
which is furthermore enhanced by higher respiratory minute volumes relative to the body
mass. The observed differences suggest a vulnerability of the juvenile respiratory tract for
deposition and SARS-CoV-2 transmission by droplets, rather than virion-laden aerosols.
A similar strong selectivity was not identified in the 21y-adult, which displayed a rather
constant VLP retention for sizes up to 2 µm.

Our regionalized LRT deposition probability heatmaps reveal three things: (i) VLPs
with a size larger than 10 µm are negligible for thoracic SARS-CoV-2 inoculation, irrespec-
tive of age, which was not shown before for a juvenile lung morphometry. Below this size
threshold, there are two major age-specific disparities in locality and intensity of bronchial
and alveolar high VLP deposition areas. (ii) The heatmaps confirm deposition hotspots
in the BB region of the juvenile lung, with no counterparts in that of the young adult.
These hotspots are in the generations represented by and adjacent to segment bronchi in
the BB region, involving VLPs in the size range of 4 up to 10 µm, which, however, are
scarcely available in the exhalation plume. (iii) Marked deposition probability hotspots,
present in all age groups, can be identified in the AI region, starting at the proximal alveolar
region and intensifying towards the penultimate distal alveolar generation, representing
the secondary pulmonary lobules. There is again an age-dependent trend of hotspot reloca-
tion towards bigger VLP sizes with decreasing age. The identification of these hotspots
merits a more thorough investigation, because successful inoculation is not hampered by
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effective clearance by ciliated epithelial cells or via abundant macrophages. A deposition
of SARS-CoV-2 virions on ciliated airway epithelia goes along with a markedly reduced
probability for swift spike-driven virus-cell-fusion and successful replication, hindered by a
high-viscous biphasic mucus layer, which has to be surmounted via stochastic, undirected
diffusional translocation, and by effective mucociliary clearance with a velocity exceed-
ing 1 mm/min in the BB region by far [39]. In addition, the alveolar fluid lining, a thin
(average 200 nm) [40] aqueous hypophase with overlying surfactant film of low viscosity,
allows diffusional translocation of virions onto alveolar epithelial cells without delay, thus,
marking these hotspots as preferential anatomical sites for disease initiation.

To further elaborate the peculiarities of the identified LRT deposition hotspots, data
were mapped to all five lung lobes and then weighted by the relative abundance of VLPs
of respective sizes in the exhalation plume. The analysis revealed that all age groups
were completely void of significant VLP deposition in the BB or bb region and implied
a striking tendency of both lower lung lobes to be the most afflicted lung compartments
with VLP deposition, associated with a dominant age-dependent intensity, highest in
the 21y-adult and lowest in the 3y-child. This is a further piece of evidence for lower
vulnerability of the juvenile lungs for disease initiation by aerosol transmission. Our
observed selectivity for the AI region of both lower lobes is of major importance, because it
is well aligned with the spatiotemporal distribution preferences of chest CT anomalies in
adult COVID-19 patients with LRT involvement. The predominant radiologic anomalies
in early stages of pulmonary involvement was the prominent peripheral distribution of
ground-glass opacity (GGO), with subpleural localization [41], and predilection to both
lower lobes [42]. GGO is described as a locally confined, delineated hazy increase in
attenuation of secondary pulmonary lobules. These structures, comprised by units of
three to five terminal bronchioles, roughly 200 in number in the AI region of both lungs.
The low number of GGOs in early disease phase suggests very focal and limited VLP
inoculation; however, sufficient for initiation of locally confined inflammation, partial
filling and collapse of alveoli, interstitial thickening and increased capillary blood flow [43].
Hence, disease initiation right there is directly linked to clinical symptoms of pneumonia,
dyspnea, and reduced blood oxygen saturation [44], thus, more severe disease.

Our data on age-specific LRT inoculum quantum heatmaps reflects the relative LRT
inoculum risk by considering the respiratory minute volume. This perspective unveils, for
the first time, that children are nearly void of inoculum quantum aggregation in the AI
region and elsewhere in the LRT, and that this is due to a combined effect of age-specific
lung morphometry, respiratory pattern, and VLPs’ particularities. This was not different
for our investigated aerosol when considering solely mouth breathing (MPPD breathing
scenario “oral”), a scenario which would reflect the situation of a person with nasal airways
obstruction. Only minor changes in the deposition probability values were observed,
consistent in all age groups. Raw data, deposition probability values and heatmaps for
mouth breathing are available at https://doi.org/10.5281/zenodo.5543676, accessed on 1
October 2021.

The condensed lung generation data of inoculum quantum heatmaps reveals the
particular role of the BB, bb and AI regions in age-specific initial virion deposition. Re-
gardless of age, the BB and bb region demonstrate only a minor risk allocation for direct
SARS-CoV-2 inoculation. However, the AI region instantly reveals its crucial role and
compelling age correlation (Figure 6) for initial viral deposition and potential replication.

At this point, the particular susceptibility of type II alveolar cells, which can be
considered to be defenders of the alveolar homeostasis, and their role as the progenitor
cells for type I pneumocytes in the AI region, is noteworthy [9]. Alveolar macrophage
activation and neutrophil recruitment are first key events of innate immune activation
in response to SARS-CoV-2 and the presence of alveolar damage-associated molecular
patterns. A very recent study identified IP-10 (CXCL10) as key predictive cytokine for
disease progression to severe courses of illness [45] with LRT involvement. Of note, IP-10
is a chemokine for recruitment of macrophages in response to viral invasion and tissue

https://doi.org/10.5281/zenodo.5543676
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damage, but also acts as regulator of cell growth and proliferation [46]. However, in the
absence of an adaptive immune response in the very early phase of alveolar SARS-CoV-2
infection, only a limited effect on curbing the viral replication can be expected by innate
immunity. In the context of progressive tissue damage, alveolar epithelial repair by type
II pneumocytes is crucial for the alveolar tissue restoration, and proliferative impairment
due to SARS-CoV-2 infection may favor COVID-19 progression and disease severity by
increasing loss of alveolar functionality. This may in particular contribute to the observed
increased rate of acute respiratory distress syndrome in the elderly age groups [47].
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Figure 6. Age group-specific relative inoculum quantum for thoracic regions BB, bb and AI. Relative
inoculum quantum ratios are represented by the differences in bubble area size. AI region is depicted
in blue, bb region in yellow and BB region in grey. 3y, 3y-child; 8y, 8y-child; 21y, 21y-adult; BB,
bronchial; bb, bronchiolar; AI, alveolar-interstitial.

Our data on inoculum quantum in the AI region proposes a risk ratio of roughly
1:4 (cumulative) and 1:5 (most afflicted lung generation in the lower lobes) between the
3y-child and the 21y-adult. This is well aligned with reported LRT clinical symptoms in
3.9% (29/742) [4] of children vs. 18.5% (338/1828) and 24.9% (493/1981) [48,49] reported
shortness of breath in adults, confirming LRT involvement. A minimum infectious dose for
SARS-CoV-2 is not established, but is a topic with decreasing ambiguity. Emerging deep
sequence studies of the SARS-CoV-2 genome variability before and after the transmission
bottleneck in infector–infectee pairs, report on bottleneck sizes of single digit virions,
narrowing down the numbers of earlier investigations which concluded that 43 PFU
correlated with 10% infected individuals [50] or proposed an infectious dose of 300 PFU [51]
or more. A low disease-initiating dose may favor initial viral replication at anatomical
regions with increased inoculum allocation, i.e., the AI region, as well as protect individuals
with decreased inoculum aggregation, i.e., children, both arguments well supported by
our data.

The major limitation of our study is that the lung morphometry data used for the age
group modeling do not reflect intraspecific variability. However, the elucidated disparities
of the age group’s performance are very well marked and with robust age-correlated trends,
likely offsetting the margin of error due to this model simplification.

5. Conclusions

Our data suggests that children’s juvenile respiratory physiology provides protection
against effective aerosol SARS-CoV-2 inoculation in the LRT, which complements findings
of Loske et al. reporting that children’s pre-activated antiviral innate immunity in the URT
may effectively control early SARS-CoV-2 infection [5]. Although a limited URT infection
prevents disease progression to the peripheral lung, limited aerosol inoculation in the LRT
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prevents disease initiation right there. Both mechanisms may co-found the low rate of
modest to severe clinical presentations with pulmonary involvement in children.

We provide evidence for the mechanism of age group-specific disparities of inoculation
quantum allocation in the LRT upon virion-laden aerosol exposure. This is of important
note, because virion-laden aerosol production in infected individuals strongly increases
with pulmonary involvement [52], and in consequence would exclude asymptomatic
children, void of LRT infection, from being highly contagious superspreaders. This may
be particularly relevant, as the role of children in indoor environments (kindergarten,
primary schools) within COVID-19, is politically laden and needs evidence-based discourse
and positioning.
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