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Abstract: Pemphigus vulgaris is an autoimmune disease that occurs due to pathogenic autoantibodies
that recognize the following epidermal adhesion proteins: desmogleins. Systemic corticosteroids
usually decrease the titers of anti-desmoglein autoantibodies and improve patients’ conditions.
Since modifications of IgG N-glycosylation have been described in some autoimmune diseases,
we hypothesized that changes in the pathogenic activity of pemphigus IgG could be related to
changes in their N-glycosylation profile. The purpose of this study was to assess, longitudinally, the
pathogenicity of pemphigus serum IgG and their N-glycosylation profile during phases of disease
activity and clinical remission. The pathogenic activity of serum IgG was measured in vitro on
immortalized keratinocytes, by immunofluorescence and dissociation assays, and IgG N-glycans
were analyzed by mass spectrometry. We showed (i) a correlation between pemphigus clinical activity
and the pathogenicity of serum IgG at baseline and at month 6, while the persistence of the in vitro
pathogenic activity of IgG during its evolution, even in patients in clinical remission, seemed to
be predictive of relapse; (ii) that modifications of the N-glycan structure were altered the in vitro
pathogenicity of patients’ autoantibodies; (iii) that the pathogenic properties of pemphigus IgG did
not appear to be related to the disparity in IgG N-glycans during the course of pemphigus.

Keywords: autoantibodies; pemphigus; pathogenic; glycans

1. Introduction

Pemphigus vulgaris (PV) is a rare life-threatening autoimmune blistering disease of
the skin and mucous membranes, with an estimated 0.6 (in Switzerland) to 10 (in Iran)
individuals per 1 million people per year being affected worldwide [1]. PV is characterized
by the production of pathogenic autoantibodies targeting desmoglein (DSG) 1 and 3, which
are transmembrane glycoproteins of desmosomes that confer cell–cell adhesion within the
epidermis [1]. The pathogenicity of circulating IgG antibodies from pemphigus patients has
been confirmed by passive transfer experiments in mice [2,3]. The observation of neonatal
PV in newborns of mothers with PV corresponding to a passive transfer in humans,
confirmed that autoantibodies are sufficient to cause the disease [4,5]. Mechanistically,
autoantibodies interfere with cell adhesion by steric hindrance of DSG adhesion, or induce
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DSG internalization either by autoantibody clustering or by cell signaling (mainly Src and
p38 MAPK), which contribute to the loss of cell adhesion [6].

Among IgG isotypes, IgG4 is the least represented in the serum of normal individ-
uals, corresponding to 5% of the total IgG [7]. Additionally, IgG4 is not able to activate
complement via the classical pathway [8]. In contrast, there is a predominance of the IgG4
subclass in the serum of pemphigus patients, both in the DSG-specific IgG and among
the total IgG [9,10]. IgG1 anti-DSG Ab are also frequently detected, while IgG2 and IgG3
anti-DSG Ab are less frequently detected in patients with active pemphigus [11]. In patients
in clinical remission, as in healthy relatives, anti-DSG IgG2 is the most frequently detected
IgG subclass, and is sometimes associated with IgG1 or IgG4, while the combination of
IgG1 and IgG4 anti-DSG Ab was not observed in any case [12]. Interestingly, altered
N-glycosylation of IgG4 can activate complement via the lectin pathway in membranous
nephropathy [13], as well as in rheumatoid arthritis (RA) [14].

IgG isotypes have a conserved N-linked glycosylation site located at Asn297 on
the CH2 domain of the Fc region. The N-glycans located at this site contribute to the
formation of a hydrophobic pocket on the Fc domain, which stabilizes the immunoglob-
ulin structure [15]. The composition of IgG N-glycans varies according to the IgG iso-
type [16]. In particular, variations in terminal sialic acid substitution, galactose, bisecting
N-acetylglucosamine, and fucosylation of the core have been reported [16]. These mod-
ifications of the N-glycan structures can affect and modulate antibody functions, such
as the binding to Fc receptors on effector cells [17]. In addition to the conserved IgG Fc
N-glycans, 15 to 25% of serum IgGs contain N-glycans within their variable domain. These
so-called “Fab N-glycans” mainly consist of highly processed, complex-type biantennary
N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation [18].
The amounts and types of N-glycans linked to either the Fab or Fc parts of the IgG can
vary during specific physiological and pathological conditions. Notably, it has been re-
ported that alterations in IgG and autoantibody N-glycosylation were detected in many
autoimmune diseases [19]; for instance, a decreased level of IgG galactosylation has been
observed in systemic lupus erythematosus (SLE), inflammatory bowel disease, and anti-
neutrophil cytoplasmic antibody-associated vasculitis [20–22]. On the contrary, a high level
of IgG galactosylation and sialylation can induce anti-inflammatory activity, which might
explain the persistence of circulating autoantibodies in some patients who are in clinical
remission [19].

We previously demonstrated that around half of the PV patients treated with corti-
costeroids and/or immunosuppressants achieve complete remission off therapy [23,24].
Nevertheless, some of these patients in complete remission still had detectable anti-DSG
antibodies [25]. In the present study, we longitudinally analyzed IgG from PV patients at
four different time points, in order to correlate the clinical status of the patients, the in vitro
pathogenic activity of their serum IgG, and their N-glycans profile.

2. Materials and Methods
2.1. Cell Culture

The human immortalized keratinocyte cell line HaCaT was cultured in Dulbecco’s
modified Eagle medium (DMEM) GlutaMAX, high glucose (Thermo Fisher Scientific,
Waltham, MA, USA) containing 10% FCS (fetal calf serum, Eurobio Scientific, Les Ulis,
France), 50 U/mL penicillin and streptomycin (Thermo Fisher Scientific, Waltham, MA,
USA) in a humidified atmosphere of 5% CO2 at 37 ◦C.

2.2. Sera and IgG Purification

Pemphigus sera were collected throughout a randomized clinical trial (RITUX 3:
ClinicalTrials.gov number, NCT00784589, accessed on 6 August 2021); patients were treated
with oral prednisone alone or a combination of rituximab and short-term prednisone
regimen [24]. Anti-DSG1 and anti-DSG3 IgG antibody titers were measured by ELISA
(Euroimmun, Lübeck, Germany). The mouse monoclonal antibody (mAb) AK23 was
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purified from AK23 hybridoma culture supernatant, kindly provided by Dr Masayuki
Amagai (Keio University, Minato City, Tokyo, Japan). AK23 is an anti-DSG3 mAb gen-
erated in a PV mouse model that is pathogenic both in vitro and in vivo [26,27]. AK23
mAb or serum IgG from anti-DSG3+ patients or from healthy donors (HD) were puri-
fied by automated protein-G affinity purification on an ÄKTA Start chromatograph using
HiTrap® Protein G High Performance (GE Healthcare Chicago, IL, USA ) according to the
manufacturer’s instructions.

2.3. Antibodies

The following antibodies were used in immunofluorescence assays: anti-DSG3 Alexa
Fluor 647 (clone: 5H10; Santa Cruz, Dallas, TX, USA), anti-flotillin-2 (Human Protein Atlas
number: HPA001396; Sigma, Saint-Louis, MO, USA ) and then revealed by the secondary
antibody Alexa Fluor 488 (Abcam, Cambridge, UK).

2.4. In Vitro Modification of the N-Glycans of Purified IgG

For desialylation, 10 µg of AK23 mAb was incubated with 52.5 mU of neuraminidase
from Vibrio cholerae (Sigma) for 120 h at 37 ◦C in a 50 mM sodium acetate buffer (pH 5).
Enzyme and buffer were removed using Amicon Ultra 0.5 mL centrifugal filters with cut-off
of 100 kDa (Merck Millipore, Burlington, MA, USA). Fifty micrograms of patient’s IgG
was incubated with 37.5 mU for 120 h at 37 ◦C in a 50 mM sodium acetate buffer (pH 5).
Enzymatic digestion efficiency was tested by Eastern blot using biotinylated conjugated
Maackia amurensis lectin II (MAL II, Bioworld, Dublin, OH, USA) or Sambucus nigra lectin
(SNA, EBL, Vector Laboratories, Inc, Burlingame, CA, USA).

For degalactosylation, 10 µg of AK23 mAb was incubated with 28 mU of β-galactosidase
from bovine testes (Sigma) for 72 h at 37 ◦C in a 50 mM sodium acetate buffer (pH 5) (com-
plete digestion). Enzyme and buffer were then removed using Amicon Ultra 0.5 mL
centrifugal filters with cut-off of 100 kDa (Merck Milipore, Burlington, MA, USA). En-
zymatic digestion efficiency was tested by Eastern blot using biotinylated conjugated
Erythrina cristagalli lectin (ECA, Vector Laboratories, Inc, Burlingame, CA, USA).

2.5. Eastern Blot

IgG was loaded on a 4–12% SDS-PAGE gel under reducing conditions, transferred to
nitrocellulose or PVDF membrane using the iBlot 2 Dry Blotting System (Thermo Fisher)
and blocked with PBS—0.1% bovine serum albumin (BSA). Blots were incubated with
biotinylated conjugated Maackia amurensis lectin II (0.4 µg/mL; MAL II, Bioworld, Dublin,
OH, USA) or Sambucus nigra lectin (SNA/EBL, Vector Laboratories, Inc, Burlingame,
CA, USA) for sialic acid recognition or biotinylated conjugated Erythrina cristagalli lectin
(1 µg/mL; ECA, Vector Laboratories, Inc, Burlingame, CA, USA) for galactose recognition,
followed by incubation with streptavidin–protein, DyLight 800 (Thermo Fisher Scientific,
Waltham, MA, USA) and detection using an Odyssey scanner (LI-COR Biotechnology LI-
COR, Lincoln, NE, USA ). Sambucus nigra lectin binds preferentially to sialic acid attached
to terminal galactose in α-2,6 while Maackia amurensis II appears to bind sialic acid in an
α-2,3 linkage.

2.6. Dispase-Based Dissociation Assay

HaCaT cells were seeded onto 24-well plates and cultured in DMEM GlutaMAX
medium containing 1 mM CaCl2 and 10% FCS to confluence. Subsequently, cells were
incubated for 24 h at 37 ◦C with 10 µg/mL purified AK23 mAb or 62.5 µg/mL purified
IgG from PV patients or HD. Cells were then washed with Hanks’ buffered saline solution
(HBSS) 1× (GE Healthcare, Chicago, IL, USA) complemented with 3 mM of CaCl2 and
incubated for 25 min with Dispase II (2.4 U/mL, Sigma) at 37 ◦C to detach them from the
bottom of the plate. After washing with HBSS 1× complemented with 3 mM of CaCl2
and 5% FCS, the cells were stained with crystal violet (Sigma) and a mechanical stress was
applied by pipetting the cells 5–10 times with a P1000 pipette. The plates were centrifuged
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at 300× g at room temperature (RT) for 5 min and the number of cell fragments was counted.
A picture of each well was taken with EVOS XL core (Invitrogen, Waltham, MA, USA)
microscope ×2 magnification. For this dissociation assay, we systematically used AK23
mAb and IgG from HD as positive and negative controls, respectively. Variation in the
total number of fragments obtained with AK23 mAb or IgG from HD was observed from
one experiment to another. In order to quantify the pathogenicity of IgG, we developed a
score of pathogenicity based on the number of fragments obtained. To create this score, we
used the number of fragments obtained after mechanical stress of the layer of keratinocytes
incubated with HD IgG and the one obtained after incubation with AK23 mAb or with
patient IgG, whichever fragmented the most, as low and high limit of the score, respectively.
We used AK23 mAb as the high limit for experiments with only AK23 mAb, but due to its
high pathogenicity, we used patient IgG as the high limit for the other experiments. In our
score bar, 0 corresponded to the number of fragments below or equal to those obtained
after incubation with IgG from HD; a score of 1 corresponded to the number of fragments
between the number of fragments obtained after incubation with IgG from HD and 1/5 of
the number of fragments obtained after incubation with AK23 mAb/patient IgG. Scores of
2, 3 and 4 corresponded to the number of fragments between 1/5 and 2/5, 2/5 and 3/5, 3/5
and 4/5 of the number of fragments obtained after incubation with AK23 mAb/patient IgG,
respectively. Finally, a score of 5 corresponded to the number of fragments greater than
4/5 of the number of fragments obtained after incubation with AK23 mAb/patient IgG.

2.7. Immunofluorescence Assays

HaCaT cell line was seeded on glass coverslips with cell culture chambers (Nun Lab-
Tek II Chamber Slide System, Thermo Fisher Scientific, Waltham, MA, USA) and cultured
for at least 2 days in DMEM GlutaMAX medium containing 1 mM CaCl2 and 10% FCS
and grown to confluence. Cells were treated with either IgG from PV patients’ or HD
serum for 20 h in DMEM GlutaMAX medium containing 1 mM CaCl2 without FCS. After
removing the medium and washing with PBS 1× complemented with CaCl2 and MgCl2
(Eurobio Scientific, Les Ulis, France), the cells were then fixed with ethanol 100% for 10 min
at RT. The fixed cells were rinsed and permeabilized with Triton X-100 at 0.3% for 10 min
(Sigma). After washing, cells were blocked for 30 min with 1% rat serum in PBS 1× at RT.
Fluorescent-labeled antibodies staining DSG3 and flotillin-2, a protein associated with lipid
microdomains that interact with desmosome proteins [28], were incubated for 1.5 h in the
dark at RT in PBS 1× containing 1% BSA. Finally, coverslips were mounted with ProLong™

Diamond Antifade Mountant containing DAPI (Thermo Fisher Scientific, Waltham, MA,
USA). All samples were analyzed with a Leica SP8-UV confocal microscope.

2.8. Mass Spectrometry Analysis of IgG N-Glycans

First, purified IgGs were deglycosylated by peptide N-glycosidase F (PNGase F, Roche,
Bâle, Switzerland) digestion as previously reported [29]. Briefly, for PNGase F digestion,
0.5 mg of IgG was dissolved in 450 µL of (NH4)2CO3 (20 mM) and 50 µL of denaturing
buffer containing 0.2% SDS and 100 mM of β-mercaptoethanol. The samples were heated
for 10 min at 100 ◦C for protein denaturation. After cooling down, the digestion was
performed with 10 units of PNGase F for 24 h at 37 ◦C. Finally, deglycosylated IgGs
were precipitated by the addition of 4 volumes of ethanol overnight at −20 ◦C. After
precipitation, the samples were centrifugated for 15 min at 4 ◦C at 11,400× g and the
supernatant containing the released N-glycans was retrieved and placed in glass tubes
for evaporation using an evaporator under gas flow. Then, the free N-glycans were
permethylated as previously described [30]. The permethylated N-glycans were purified
using C18 columns (Hypersep™ C18 Cartridges, 200 mg, 3 mL, Thermo Fisher Scientific,
Waltham, MA, USA). First, columns were conditioned by successive washing with 5 mL of
methanol, 5 mL of water, 5 mL of acetonitrile and 5 mL of water. Permethylated samples
were resuspended in 200 µL of a solution of methanol/water 50/50 (v/v) and were passed
over the column. Successive elution with 2 mL of 15% (v/v), 35% (v/v), 50% (v/v) and
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75% of acetonitrile (v/v) were performed. Permethylated N-glycans were recovered in the
50% and 75% acetonitrile fractions. The resulting samples were dried in a Thermo Fisher
SPD111 V SpeedVac® prior to analysis using matrix-assisted laser desorption/ionization—
time-of-flight mass spectrometry (MALDI-TOF MS; UltrafleXtreme time-of-flight mass
spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an Nd: YAG laser
(355 nm wavelength), 2kHz smartbeamTM-II [31]).

Samples were prepared for analysis as a mixture with dihydroxybenzoic acid (DHB)
used as matrix. This matrix was freshly dissolved in 20 mg/mL of an 80% methanol
solution. Permethylated N-glycans were solubilized in an acetonitrile/0.1% trifluoroacetic
acid 70/30 v/v. Samples and matrix were spotted in ratio 1/1 v/v. These spectra were
recorded in reflectron positive mode with an accumulation of minima 10,000 shots with
FlexControl 3.4 software. Mass spectra were acquired using a mass range m/z 900–4500
and analyzed with FlexAnalysis 3.4 software (Bruker Daltonics, Bremen, Germany). Based
on the m/z ratio and report from the literature on IgG N-glycosylation, each ion was
associated with an N-glycan structure, which were drawn according to the international
nomenclature recently updated [32].

To calculate the relative percentage of N-glycan intensity, the averages of partic-
ular N-glycosylation features (galactosylation, fucosylation, sialylation, additional N-
acetylglucosamine) have been made from different individual N-glycan structures and
their percentages have been calculated using the sum of the intensity of all the N-glycan
species in the sample as 100%.

2.9. Statistical Analysis

All statistical analyses were performed using GraphPad Prism (GraphPad Software,
La Jolla, CA, USA), using an unpaired, non-parametric, Mann–Whitney test. Differences
were considered significant when p < 0.05.

3. Results
3.1. Role of N-Glycans in IgG Pathogenic Activity

The incubation of AK23 mAb on cell sheets of HaCaT cells resulted in the dissociation
of the cell sheets in small fragments, while the cell sheets incubated with the control
IgG from healthy donors (HD) exhibited minimal dissociation (Figure 1a). The typical
N-glycan structure is shown in Figure 1b, with sialic acid that could be present, or not,
on the terminal extremity of the N-glycan attached to the IgG. In order to evaluate the
role of N-glycans in the pathogenic activity of autoantibodies, AK23 mAb was treated
sequentially with neuraminidase, in order to remove sialic acids, and then by galactosidase
to remove terminal galactose residues. Eastern blot analysis, using Maackia amurensis (MAL)
or Sambucus nigra (SNA) lectin, and Erythrina cristagalli (ECA) lectins, showed complete
digestion with neuraminidase (Figure 1c) and galactosidase (Figure 1e), respectively. The
pathogenic activity of modified AK23 mAb was then measured in vitro on an HaCaT cell
sheet. The AK23 mAb with no sialic acid dissociated the cell sheet 2.05 ± 0.63-fold less
than the native AK23 mAb (n = 3) (Figure 1d), suggesting that the N-glycans present on
AK23 mAb could modify its pathogenicity. In contrast, the AK23 mAb with no galactose
dissociated the cell sheet more efficiently than the native AK23 mAb (Figure 1f). Purified
IgGs, from patients with active pemphigus, were then treated by neuraminidase. Eastern
blot analysis with MAL showed partial digestion, but the use of SNA lectin showed
complete digestion in all three of the patients analyzed (Figure 1g,i,k). The sialic acid-
depleted patients’ IgG dissociated the HaCaT cell sheet less than the patients’ native IgG
(Figure 1h,j,l). Altogether, these results demonstrated that the N-glycans expressed by the
patients’ IgG modified their pathogenic activity in vitro.
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Figure 1. Pathogenicity of monoclonal antibody AK23 and pemphigus patients’ IgG collected during
the active phase after the removal of sialic acid and galactose. (a) Monolayers of HaCaT cells were
treated with monoclonal antibody AK23 (10 µg/mL) or with purified IgG (62.5 µg/mL) from healthy
donors for 24 h. Dispase-based dissociation assay and calculation of the score were performed as described
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in the Section 2.6. (b) Typical sialylated N-glycan structure on IgG bearing a bisecting N-
acetylglucosamine residue. (c) AK23 were treated by neuraminidase (+) or not (−) to remove
sialic acid and digestion was verified by Eastern blot using Maackia amurensis lectin (MAL II) or
Sambucus nigra lectin (SNA). (d) Monolayers of HaCaT cells were treated with AK23 lacking sialic
acid (10 µg/mL). (e) AK23 were treated with galactosidase (+) or not (−) to remove galactose and
digestion was verified by Eastern blot using Erythrina cristagalli lectin (ECA). (f) Monolayers of
HaCaT cells were treated with AK23 lacking galactose (10 µg/mL). One experiment representative
of three is shown. Patients’ IgG from active phase were treated (+) or not (−) with neuraminidase
to remove sialic acid and digestion was verified by Eastern blot (patient 1 in (g), patient 2 in (i) and
patient 3 in (k)). Monolayers of HaCaT cells were treated with purified IgG collected during the
active phase lacking (right) or not (left) sialic acid (62.5 µg/mL) (patient 1 in (h), patient 2 in (j),
patient 3 in (l)). Pictures were taken with EVOS XL core microscope magnification ×2.

3.2. Pathogenic Activity of IgG Antibodies from Patients with Pemphigus

Pemphigus sera were collected from a randomized clinical trial, in which 45 patients
were treated with corticosteroids. Of these, 11 patients still had detectable anti-DSG3 IgGs
at the following time points analyzed: day 0, day 180, day 365, and day 730. Only 7 of these
11 sera were available in sufficient quantity for the experiments. Of the seven patients,
two achieved complete remission during the course of the study, and we analyzed one of
these two sera (patient 3) because it contained high titers of anti DSG3 Abs. The other five
patients were in incomplete remission and relapsed several times. Similarly, we selected
the two of these five sera that contained the highest titers of anti-DSG3 Abs (patients 1
and 2). Purified IgGs from three pemphigus patients were studied longitudinally, from
day 0 to day 730. The main patients’ baseline characteristics are shown in Table 1. All
the patients had a mucocutaneous PV. The evolution of corticosteroid doses and anti-DSG
antibodies are shown in Supplemental Figure S1 and Figure S2, respectively.

Table 1. Baseline characteristics of patients with pemphigus treated with corticosteroids.

Patients 3

Age, mean 69.4

Sex
Female 2
Male 1

BMI, mean 24.46

Type of pemphigus
Vulgaris 3
Foliaceus 0

Initial Presentation
Mucosal 0

Cutaneous 0
Mucocutaneous 3

PDAI score, mean 45.6

Treatment corticosteroids

All three patients initially had a major drop in anti-DSG1 and anti-DSG3 antibody
levels after the start of treatment, corresponding to between a 91.7% and 100% reduc-
tion, relative to the baseline, followed by the progressive re-increase in their anti-DSG3
antibodies before the occurrence of relapses from day 365 to day 730 (Figure 2).
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The in vitro pathogenic activity of purified serum IgG was then tested by the following
two different in vitro methods: the dispase-based dissociation assay, as described above,
and using an immunofluorescence assay on the HaCaT cell line. For the latter, the presence
of autoantibodies leads to a loss in the detection of DSG3 and a redistribution of the
cytoskeleton, as observed with the flotillin-2 staining. IgGs from five HD were used as the
control (Figure 3a).

3.2.1. Patient 1

The patients’ serum collected during the active phase of the disease (at day 0) induced
a loss in DSG3 staining by immunofluorescence, a redistribution of flotillin-2, and fragmen-
tation of the cell monolayer, indicating that the serum IgGs were pathogenic (Figure 3b).
At day 180, when the patient was in clinical remission, with a 93.7% decrease in anti-DSG3
antibodies, his IgG did not induce fragmentation of the cell layer anymore, and a nice
staining of the DSG3 was observed, while a slight redistribution of flotillin-2 was still
observed, indicating that the patient’s IgGs had lost most of their pathogenic properties.
The patient relapsed at day 365, and the immunofluorescence and cell dissociation assays
performed at the time of relapse showed that the IgGs were pathogenic again. Finally, the
patient’s serum IgGs that were collected at the latest evaluation at day 730, when the patient
was in clinical remission again, did not show any pathogenic activity, while, surprisingly,
the anti-DSG3 IgG ELISA values of the two sera collected at day 365 (relapse) and day 730
(remission) were very close (1040 vs. 1070 IU/mL). This patient further relapsed between
day 730 and day 1080, corresponding to the 12-month evaluation after the end of the study.

3.2.2. Patient 2

The patient serum IgG collected at the baseline evaluation contained high titers of anti-
DSG3 antibodies, and induced disruption of the DSG3 staining and cell layer fragmentation
(Figure 3c). At the day 180 evaluation, the anti-DSG3 ELISA values dropped down from
1750 IU/mL at baseline to 141 IU/mL. A slight redistribution of flotillin-2 was still visible,
while a certain reappearance of the DSG3 staining was observed, as compared with the
baseline serum IgG sample. The patient further relapsed at day 470. The patient serum IgG
was collected at day 730 and still had pathogenic activity, which was in accordance with
the occurrence of a second relapse between day 730 and day 1080.
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Figure 3. Longitudinal study of IgG pathogenicity. Pathogenicity of IgG from healthy donors (a) and
three different pemphigus patients (b–d) were studied longitudinally by dispase-based dissociation
assay and immunofluorescence. For the dispase-based assay, monolayers of HaCaT cells were
treated with 62.5 µg/mL of purified IgG from healthy donors or pemphigus patients for 24 h. For
immunofluorescence, cells were treated with 62.5 µg/mL of purified IgG from healthy donors or
pemphigus patients for 20 h. Then cells were fixed and immuno-stained for DSG3 (red) and flotillin-2
(green). DAPI was used for nuclear staining (blue). Healthy donors: n = 5; patients: n = 3. Five
images were taken for each condition, in two independent experiments. Pictures were taken with a
Leica SP8-UV confocal microscope magnification ×40.
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3.2.3. Patient 3

At baseline, the patient’s serum IgGs were pathogenic, as demonstrated by the loss of
DSG3 staining, redistribution of flotillin-2, and fragmentation of the cell layer (Figure 3d).
At day 180, when the patient was in clinical remission after treatment, the DSG3 staining
reappeared and the cell layer was not fragmented anymore, indicating that the IgGs were
no longer pathogenic. At days 365 and 730, while the patient was in sustained clinical
remission, his serum IgG showed variable signs of in vitro pathogenic activity in the cell
layer fragmentation test, and DSG3 and flotillin-2 immunofluorescence assays. This patient
further relapsed at day 820.

Overall, these results showed a strong correlation between clinical activity, serum
anti-DSG3 antibodies titers, and demonstration of the in vitro pathogenic activity of serum
IgG at the onset of pemphigus, while the achievement of clinical remission under treatment,
at month 6, was also strongly correlated with a drop in anti-DSG antibodies, and a loss of
the pathogenic activity of patients’ IgG. Interestingly, a persistent pathogenicity of serum
IgG was observed in patients 2 and 3, who were in clinical remission at the time that their
sera were studied, but who further relapsed within a few months after the evaluation of
their sera. Finally, no pathogenic activity was detected at the day 730 evaluation of the
serum from patient 1, despite persistent high titers of anti-DSG3 antibodies. Unfortunately,
no serum from this patient was collected during the period from the day 730 evaluation to
the time of relapse, which did not allow us to assess the pathogenic activity of IgGs closer
to the time of relapse.

3.3. IgG N-glycosylation Profiles

Because IgG N-glycosylation is altered in autoimmune and chronic inflammatory
diseases, and modulates the immune response [33], we studied the N-glycosylation profiles
of purified IgGs from eight HD and three PV patients, and analyzed their evolution during
the course of the disease, at day 0, day 180, day 365, and day 730 (Figure 4a). The N-
glycans on purified IgGs from HD and PV patients were enzymatically released, purified,
and permethylated prior to MALDI-TOF MS analysis (Supplemental Figures S2 and S3).
Particular attention was paid to the different N-glycan structures, including the ones
bearing galactose, fucose, sialic acid, and additional N-acetylglucosamine residues. First,
we longitudinally analyzed the proportion of galactose, fucose, sialic acid, and additional
N-acetylglucosamine in all the patients. We showed that IgG N-glycans varied depending
on the patient and their evolution, but that N-glycans were relatively stable over the course
of pemphigus in each patient, and were in the range of the variation observed in HD
(Figure 4a). Second, we compared the relative proportions of the different substitutions
(galactose, fucose, sialic acid, and additional N-acetylglucosamine) between the samples
collected in patients at day 0 (active disease) and at day 180 (clinical remission) (Figure 4b).
No significant difference was observed for galactose, fucose, sialic acid, and additional
N-acetylglucosamine (51 ± 7% vs. 57 ± 9%, p = 0.42; 64 ± 14% vs. 65 ± 11%, p = 0.93;
12 ± 2% vs. 16 ± 7%, p = 0.40; 22 ± 0% vs. 21 ± 4%, p = 0.60, respectively). Altogether,
we did not find evidence for a correlation between the IgG N-glycans profile in the active
phase and in the remission phase of pemphigus.
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Figure 4. Study of the N-glycan profiles of IgG. (a) Comparison of the IgG galactosylation, fuco-
sylation, sialylation and presence of additional N-acetylglucosamine in healthy donors (HD) and
pemphigus patients in active phase (D0). (b) Comparison of the IgG galactosylation, fucosylation,
sialylation and presence of additional N-acetylglucosamine in active (D0) and remission phase of
pemphigus patients. HD: n = 8; patients: n = 3.

4. Discussion

In this study, we showed that (i) modifications of the N-glycan structure of patients’
IgG or the AK23 anti-DSG3 mAb modified its in vitro pathogenicity; (ii) IgG N-glycans
profiles seemed to be relatively stable during the course of pemphigus, and did not seem
to be correlated with the in vitro pathogenic effects.

Antibody Fc N-glycosylation can modify the function of antibodies by determining
which Fc receptors they can bind to, in order to recruit effector cells. Modifications in
N-glycosylation are thus a critical mechanism for improving the therapeutic efficacy of
antibodies, by increasing their effector function, as demonstrated by the increase in the
antibody-dependent cellular cytotoxicity (ADCC) of non-fucosylated rituximab [34]. Dis-
tinct vaccine regimens have been demonstrated to induce different antigen-specific IgG
N-glycosylation profiles, suggesting that antibody N-glycosylation can be modified by
various inflammatory signals during B cell priming [35,36]. A shift in patients’ antibod-
ies to a highly inflammatory N-glycosylation profile, characterized by galactosylation,
has been shown in various autoimmune diseases, such as RA, SLE, and autoimmune
vasculitis [20,22,37,38], indicating a pathogenic effect of low galactose levels.
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In the present study, we did not observe any major difference in the galactosyla-
tion level between patients’ IgG and HD IgG, as well for sialic acid, fucose, and N-
acetylglucosamine, for the duration of the study (Figure 4a). However, a low level of IgG
sialylation has been reported in patients with RA and various autoimmune diseases [37–42],
while IgG sialic acid has an anti-inflammatory role in RA [37,38]. Unfortunately, the evolu-
tion of these modifications of IgG sialic acid in patients with RA have not been studied after
treatment. Similarly, the N-glycosylation profile of IgG in other autoimmune diseases has
only been studied in patients with active diseases, but not after the start of treatment. Such
a longitudinal analysis of the serum IgG N-glycome over several years has been reported
in HD. It showed that despite the fact that high inter-individual variability was observed,
only small changes could be detected in a single person [39]. These findings suggest that
the few changes we observed at different time points, in the three patients of our study,
were likely related to their clinical status under treatment.

We showed that the in vitro pathogenic activity of AK23 mAb and that of the patients’
serum IgG were reduced by sialic acid removal, which might appear to be somewhat
contradictory to the decreased usage of sialic acid in patients with active autoimmune
disease (Figure 1). This discrepancy might be explained by a differential effect in vivo and
in vitro. Indeed, sialylated IgGs have a lower affinity to the Fc receptors that reduce their
ability to induce ADCC. Terminal sialylation confers anti-inflammatory effects in vivo [40],
while, in vitro, anti-DSG3 antibodies can directly interfere with cell adhesion by steric
hindrance of DSG adhesion or its internalization [6]. Interestingly, AK23 mAb has a
putative N-glycosylation site in its CDR2, which could affect its affinity to DSG3 following
neuraminidase digestion. In addition, the treatment of AK23 with galactosidase restored
its pathogenic activity, indicating that the pathogenic activity of AK23 can be modified
differently according to the various substitutions in its N-glycans. This highly suggests
that modifications of the N-glycosylation of AK23 may affect its affinity for DSG3, either
directly, by modifying the antigen binding site, or indirectly, by modifying the antibody
structure [16,43–45].

We then studied a potential relationship between the in vitro pathogenic activity of
the patients’ IgG, their N-glycan profiles, and pemphigus clinical activity. During the acute
phase of the disease, clinical severity was well correlated with high titers of anti-DSG3
antibodies, and a strong in vitro pathogenic activity of patients’ serum IgG (Figure 3). At
day 180, at the end of the initial treatment phase, a strong correlation was also observed
between the achievement of clinical remission, low titers of anti-DSG3 antibodies, and the
decrease or loss of the pathogenicity of serum IgG (Figure 3). Interestingly, pathogenic
activity was detected in two of three sera (patients 2 and 3), while these patients were still
in clinical remission, corresponding to a few months before the time at which a relapse
occurred. No pathogenic activity was detected at the day 730 evaluation in the serum from
patient 1, despite the fact that this serum contained high levels of anti-DSG3 antibodies.
Unfortunately, no serum was collected from this patient from the last evaluation at day 730
to the time at which the patient relapsed (Figure 3). There were no differences in the IgG
N-glycans profiles between the three patients, which allows us to associate the pathogenic
activity of purified IgG to a particular N-glycans profile (Figure 4a).

Apart from the well-documented changes in IgG Fc N-glycosylation during inflam-
mation, N-glycans attached to Fab might also have a role in modulating autoantibody
activity [18]. Putative N-glycosylation sites in the Fab might not always become glyco-
sylated, but Fab N-glycosylation has been found to either enhance or prevent antigen
binding [43]. In mice, it has been shown that Fab N-glycosylation can prevent potentially
autoreactive antibodies from becoming autoreactive, by lowering their affinity for self-
antigens [46]. However, in patients with RA, the presence of such changes has not been
shown to correlate with disease development or the resolution of inflammation [47].

In this study, the changes observed in the activity of AK23 mAb on the keratinocyte
cell line were strikingly dependent upon whether the sialic acids or the galactoses were
removed. We hypothesize that these observations, in the absence of complement or any
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Fc receptor-expressing cells, might be related to Fab glycosylation. It would have been of
great interest to be able to purify anti-DSG3 antibodies from the patients’ sera, in order to
compare N-glycans associated with the Fc domain or the Fab. Unfortunately, the quantity
of N-glycans from the anti-DSG3 IgGs recovered from the DSG3 affinity column was
not sufficient to obtain an interpretable mass spectrum. The limited quantity of serum
available, and the sensitivity of the technic used, did not allow us to successfully perform
these experiments on purified anti-DSG autoantibodies.

One limitation of our study is that the assays used to measure the pathogenic activity
of autoantibodies were performed in vitro, in the absence of complement and Fc receptor-
expressing cells, whereas altered N-glycosylation can modify the complement pathway [13]
or the binding to the Fc receptor [17]. One may hypothesize that the use of an in vivo
passive transfer neonatal mouse model might have provided different results regarding
the relatively stable N-glycan profile during the evolution of patients that we evidenced in
the present study.

Overall, this study showed that the pathogenic activity of serum IgG from patients
with pemphigus was closely correlated with the evolution of clinical lesions during the
initial phase of treatment. Thereafter, the persistence or reappearance of the pathogenic
activity of serum IgGs in patients in clinical remission seems to be predictive of relapse. The
N-glycan profile of pemphigus IgG is different from that of HD, but seems to be relatively
stable during the evolution, although inter-individual variations could be observed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9101411/s1. Figure S1. Evolution of prednisone doses (mg/day), from D0 to D730.
Plain line with circle = patient 1; dashed line with square = patient 2; dotted line with triangle = patient 3.
Figure S2. Example of a mass spectrum of IgG Fc N-glycan from healthy donor. Blue square,
N-acetylglucosamine; red triangle, fucose; green circle, mannose; yellow circle, galactose; purple
diamond, N-acetylneuraminic acid. Glycans are drawn according to the international nomenclature
recently updated [32]. Figure S3. Example of mass spectrum obtained for IgG Fc N-glycans from
a pemphigus patient at D0. Blue square, N-acetylglucosamine; red triangle, fucose; green circle,
mannose; yellow circle, galactose; purple diamond, N-acetylneuraminic acid that belongs to the sialic
acids. Glycans are drawn according to the international nomenclature recently updated [32].
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