
biomedicines

Review

An Alternative Cell Therapy for Cancers: Induced Pluripotent
Stem Cell (iPSC)-Derived Natural Killer Cells

Li-Jie Hsu 1,2, Chao-Lin Liu 3,4 , Ming-Ling Kuo 5,6,7,8, Chia-Ning Shen 9 and Chia-Rui Shen 1,2,6,10,*

����������
�������

Citation: Hsu, L.-J.; Liu, C.-L.; Kuo,

M.-L.; Shen, C.-N.; Shen, C.-R. An

Alternative Cell Therapy for Cancers:

Induced Pluripotent Stem Cell

(iPSC)-Derived Natural Killer Cells.

Biomedicines 2021, 9, 1323. https://

doi.org/10.3390/biomedicines9101323

Academic Editor:

Ramon Garcia Escudero

Received: 29 July 2021

Accepted: 16 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University,
Taoyuan 333, Taiwan; D0815001@cgu.edu.tw

2 PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
3 Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan;

clliu@mail.mcut.edu.tw
4 Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei 243, Taiwan
5 Department of Microbiology and Immunology, College of Medicine, Chang Gung University,

Taoyuan 333, Taiwan; mingling@mail.cgu.edu.tw
6 Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
7 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Lin-Kou Chang Gung Memorial

Hospital, Taoyuan 333, Taiwan
8 Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
9 Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; cnshen@gate.sinica.edu.tw
10 Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
* Correspondence: crshen@mail.cgu.edu.tw; Tel.: +886-3-211-8800 (ext. 3046/5200)

Abstract: Cell therapy is usually defined as the treatment or prevention of human disease by
supplementation with cells that have been selected, manipulated, and pharmacologically treated
or altered outside the body (ex vivo). Induced pluripotent stem cells (iPSCs), with their unique
characteristics of indefinite expansion in cultures and genetic modifications, represent an ideal cell
source for differentiation into specialized cell types. Cell therapy has recently become one of the
most promising therapeutic approaches for cancers, and different immune cell types are selected as
therapeutic platforms. Natural killer (NK) cells are shown to be effective tumor cell killers and do
not cause graft-vs-host disease (GVHD), making them excellent candidates for, and facilitating the
development of, “off-the-shelf” cell therapies. In this review, we summarize the progress in the past
decade in the advent of iPSC technology and review recent developments in gene-modified iPSC-NK
cells as readily available “off-the-shelf” cellular therapies.

Keywords: induced pluripotent stem cells (iPSCs); natural killer cells (NK cells); cell therapy

1. Introduction

Cell therapy (also called cellular therapy or cytotherapy) is defined as therapy in
which cellular material is injected into a patient. It is a technology that relies on replacing
diseased or dysfunctional cells with healthy, functioning ones. This idea was initialized
in 1931 when Paul Niehans (1882–1971) attempted to cure a patient by injecting material
from calf embryos or harvesting cells from young animals or the fetus to treat severely
ill patients [1]. Therefore, he is regarded as the inventor of cell therapy even though his
claims have never been validated. In fact, this major breakthrough in stem cell research is
considered the discovery of hematopoietic stem cells (HSCs), which are broadly applied
for treating hematological cancers and various disorders of the blood and immune system
in the clinic [2]. Before 2006, people believed that the cells were divided from the “organ-
specific stem cells” of the tissue in which they resided, and that the cell types were also
very limited. In addition, these cells may have irreversibly lost the capacity to generate
other cell types. In 2006, Shinya Yamanaka and Kazutoshi Takahashi introduced induced
pluripotent stem cells (iPSCs) [3], which can stably proliferate and serve as an unlimited
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source of cells to circumvent the original restriction. In the classification of stem cells, iPSCs
are descendants of totipotent cells [4] and can be sufficiently expanded for transplantation
use and disease treatment.

Currently, cell therapy can be divided into two categories (Figure 1): (1) stem cell
therapy, including HSCs, mesenchymal stem cells (MSCs), iPSCs, adult stem cells and,
most controversially, embryonic stem cells; and (2) immune cell therapy, via cell-mediated
immunity, by transplanting macrophages [5], T cells [6], dendritic cells (DCs) [7], or NK
cells [8] into patients to fight cancer cells [9]. iPSC technology has evolved rapidly and
offers new perspectives on the production of immunotherapeutic cellular products. The
generation of safe master iPSC lines bearing genetic modifications that confer the desired
characteristics of the final product can facilitate the development of “off-the-shelf” cellular
therapeutics for more patients and types of malignancy (breast cancer, neuroblastoma,
epithelial tumors, melanoma) [10].
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and immune cell therapy. They can replace and repair damaged cells, tissues, and organs in humans,
or kill target cells.

Immunotherapy has become a cornerstone in cell therapy and is an innovative ap-
proach for the treatment of cancer. The first FDA-approved gene-edited T-cell products
(chimeric antigen receptor-modified T, CAR-T) for lymphoma and leukemia came out on
the market in 2017 [11]. Recently, CAR-T cell therapy has been successful and become a
clinical hotspot in tumor immunotherapy. However, a key challenge for the wider imple-
mentation of cell therapy concerns the laborious procedures of identifying HLA-matched
healthy related or unrelated donors and harvesting their cells for engineering and infu-
sion into one patient. Additionally, this application is limited by inherent risks such as
graft-versus-host disease (GvHD), cytokine release syndrome (CRS), and immune effector
cell–associated neurotoxicity syndrome (ICANS) [12]. The process is very lengthy and
cumbersome [13,14]. Thus, the first clinical trial by Ruggeri et al., who proposed the potent
antitumor efficacy of allogeneic NK cells, was performed in the context of hematopoietic
stem cell transplantation (HSCT) [15], and the results revealed the potential realization of
off-the-shelf products, making CAR NK cell therapies universal products, which might
have a better safety profile than CAR-T cell therapy.

At present, it is known that NK cells not only detect and identify malignant cancer
cells but also induce cancer cell death and even help trigger a broader adaptive immune
response to fully engage and fight tumor cells. The safety of NK cell-based therapies is
demonstrated in both autologous and allogeneic haploidentical settings [16–19]. Clinical
studies show that NK cells are cytotoxic against a wide range of solid cancer tumor cells
in vitro. The antitumor activities of adoptively transferred NK cells in vivo have also been
demonstrated in preclinical xenograft mouse models of ovarian cancer, glioblastoma, and
metastatic colorectal cancer [20]. NK cell-based immunotherapy has emerged as a promis-
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ing therapeutic approach for hematological malignancies and solid tumors. Currently, NK
cells can be derived from autologous or allogeneic sources, such as peripheral blood (PB),
and can also be differentiated from induced iPSCs and HSCs [21]. Similar to T cells, NK
cells can be engineered to better recognize a specific tumor. However, they have some
advantages: they can detect a greater number of chemical signals from tumors than T
cells; they are less prone to attack healthy tissues than T cells are. Thus, NK cell therapy
could complement, and in some scenarios substitute for, T cell-based adoptive therapies to
maximize antitumor effects and reduce treatment toxicity [22].

2. Induced Pluripotent Stem Cells (iPSCs)

In 2006, Shinya Yamanaka and Kazutoshi Takahashi successfully developed mouse
iPSCs by using a retrovirus to deliver “Yamanaka factors” into somatic cells (mouse fibrob-
lasts) [3]. The term “Yamanaka factors” means the combination of four reprogramming
transcription factors—Oct3/4, Sox2, c-Myc, and Klf4 [23]—with the capacity to indefinitely
propagate in vitro and the ability to differentiate into all somatic cell types upon receiving
environmental cues. One year later, Shinya Yamanaka successfully generated iPSCs from
human fibroblasts [24]. However, since c-Myc and Klf4 are oncogenes, they increase the
risk of chromosomal instability and tumorigenesis. Thereafter, numerous studies have
focused on identifying different reprogramming factors [3,24,25]. For example, Nanog
and LIN28 can replace Klf4 and c-Myc, respectively [26]. Additionally, estrogen-related
receptor beta (ESRRβ) can replace Klf4 [27]. Currently, iPSCs can be routinely generated
from a variety of easily obtainable sources, such as skin and PB [24,28], and employ a
combination of different reprogramming factors [24,29–32]. Indeed, a variety of studies
have demonstrated the combination of different reprogramming factors utilized in a variety
of cell types for the generation of iPSCs [3,24,27–39].

Moreover, scientists are investigating the mechanisms of those transcription factors
involved in the generation of iPSCs [27,31,33,40]. Currently, it is well known that Oct4, Sox2,
and Nanog, when bound together, activate the promoters of both genes (Sox2 and Oct4)
and subsequently enhance the stability of pluripotency gene expression [32,41]. In fact,
Sox2 and Oct4 have attracted attention since the discovery that these genes play critical
roles during embryogenesis [42]. Sox2, which is a high-mobility group DNA-binding
domain transcription factor, is essential for early embryogenesis in mice [43]. The increased
expression (~2-fold) of Sox2 in embryonic stem cells (ESCs) induces ESC differentiation
into cells that express markers of ectoderm and mesoderm, but not endoderm [44]. Oct4
is highly expressed in pluripotent cells and becomes silenced upon differentiation [45],
such as by Oct4-deficient embryos, which fail to form an inner cell mass [46]. However, if
one of these transcription factors is utilized, no function is detected until they are grouped
together in complexes composed of a wide array of other proteins [42].

2.1. Strategies for Generating iPSCs

Although reprogramming is inefficient and tedious (the reported range is 0.00002~1%
in different laboratories), technological advances have led to the tremendous develop-
ment of nonintegrated viruses [47–54] and nonviral methods [55–58]. The nonintegrated
methods include episomal DNA [47], adenovirus [48], Sendai virus [49], piggyBac (PB)
transposons [50], small circles [51], recombinant proteins [52], synthetically modified
mRNA [53] and microRNAs [54]. Among them, free DNA, synthetic mRNA, and Sendai
viruses are commonly used to derive unintegrated iPSCs due to their relative simplicity,
high efficiency, and elimination of insertional mutagenesis and transgene reactivation [58].
Nonviral methods, including plasmid transfection [55], minicircle vectors [56], transposon
vectors [57], and liposomal magnetofection (LMF) [56] are also relatively safe due to the
absence of, or minimal, integration possibilities, but are limited by their low efficiency and
slow kinetics. Therefore, these techniques are improved to overcome various bottlenecks
for their efficiency [59]. In summary, they are all able to undergo essentially unlimited
expansion in vitro without losing pluripotency.
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It appears that reprogramming towards iPSCs also benefits the introduction of genes
into iPSCs and enables the correction of disease-causing gene mutations in patient-derived
iPSCs or the delivery of specific mutations into non-disease-affected wild-type iPSCs.
This process helps to create iPSC-based disease cell models, which could be beneficial for
new drug screenings [60]. iPSC-based drug screening platforms are especially helpful for
complicated or unintelligible diseases such as Parkinson’s disease [61,62], Alzheimer’s
disease [63,64] and spinal cord injuries [65,66]. Figure 2 summarizes the generation of
iPSCs and applications.
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Figure 2. Generation of human iPSCs and their applications. The somatic cells including fibroblasts
and isolated from a patient are reprogrammed into iPSCs by transduction with the reprogramming
factors. The gene editing technology helps to create iPSCs-based disease cell model. Eventually,
iPSCs, with or without edited modifications, are differentiated into various target cells for disease
modeling, drug screening, and cell therapy.

Gene editing technology is a next-generation stem cell therapy. Nuclease-based gene
editing systems, including zinc-finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs) and the CRISPR-Cas9 system, are among the most commonly used [67].
CRISPR–Cas9 technology in particular has attracted much attention and gained wide usage
in the gene editing of human ESCs [68,69] and iPSCs [70,71], owing to its simplicity of
design and ease of use. It is defined by a guide RNA that binds to the Cas nuclease and
facilitates the design of new targeting constructs [72]. Unlike CRISPR–Cas9, ZFN and
TALEN systems require the dimerization of the attached Fok1 endonuclease to induce their
targeted double strand breaks (DSBs) [73]. However, the above technologies encounter
several challenges. The major challenge is the “off-target effect”, which may induce
unintended responses, leading to the risk of disaster damage. The societal challenge is how
to mitigate the sense of uncertainty and fear of catastrophic misuse [74]. The first clinical
trials (NCT03655678 and CT03745287) involving ex vivo “CRISPR–Cas9 genome editing
in HSCs” for the treatment of hemoglobinopathies were initiated in 2018 [75,76]. Since
off-target effects remain a challenge for the clinical translation of CRISPR, it is important to
develop ultrasensitive methods to identify them. “Prime editing” based on RNA uses a
modified Cas9 coupled to an engineered reverse transcriptase to make precise modifications
in genomic sequences without creating DSBs [77–79]. The precision and versatility of prime
editing may allow it to rival the CRISPR system as the preferred genomic editing tool [67].

2.2. Clinical Application of iPSC-Derived Products

Cell therapy appears to be the best or most common alternative choice of available
treatments for some diseases. However, immune rejection is the major challenge. Due to the
autologous cell source, this is a privilege of iPSC-derived products in regenerative medicine.
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Autologous iPSCs are immunologically identical to the host and can be established from
host somatic cells and differentiated into a variety of cell types for cell therapy, including
immune cells such as natural killer (NK) cells and macrophages. The bank for storing iPSC
cell lines was established according to donors with identified human leukocyte antigen
(HLA) and has become an effective way to provide recipients with the maximum number
of HLA-matched cell products derived from iPSC lines [80].

In 2014, the world’s first clinical trial in Japan was performed based on allogeneic
iPSCs, in which retinal pigment epithelial (RPE) cells derived from allogeneic iPSCs were
transplanted into a patient with age-related macular degeneration (AMD) [81,82]. The
2-year follow-up trial demonstrated that the AMD patient’s visual acuity improved and
was stable due to the reprogrammed cells, which remained intact. In addition, no serious
adverse effects on transplanted iPSC-derived RPE cells were observed [83]. In summary,
HLA is a molecule that enables the immune system to distinguish between self and nonself
entities, and HLA compatibility is positively correlated with graft survival rates after trans-
plantation [84]. However, the establishment of autologous iPSCs from individual patients
validated for clinical use is costly and time-consuming and hampers the standardization of
the therapy. Therefore, Japan and the European Union are promoting the use of clinical-
grade allogeneic iPSCs, which are established from the peripheral blood mononuclear cells
of HLA-matched healthy donors and are less susceptible to immune rejection. The iPSC
bank in Japan reported that the stock of their iPSCs was able to cover approximately 32%
of the Japanese population in view of HLA matching for clinical use and the targeting of
various diseases in 2018 [85].

Global trends in clinical trials including pluripotent stem cells involve ophthalmic
diseases, cardiovascular diseases, neurological disorders, metabolic diseases, genetic syn-
dromes, reproductive and urogenital diseases, hematologic disorders, otorhinolaryngologic
diseases and defects in the immune system [86]. Additionally, they can be applied for
the treatment of spinal cord injury (SCI) [87–89], which is considered a refractory trau-
matic disease. However, with recent advances in stem cell transplantation, the field of
regenerative medicine has gained hopeful momentum in developing a novel treatment for
this challenging pathology. SCI usually results in permanent disability, and its symptoms
include a loss of muscle function, sensation, or autonomic function in the parts of the body
served by the spinal cord [87]. Hideyuki O et al. reported the first study to investigate the
therapeutic efficacy and safety of human iPSC-neural precursor cell (NPC) transplantation
for animal SCI models [90]. In 2018, the Keio University Certified Special Committee
for Regenerative Medicine approved the unintegrated human iPSC product for clinically
treating SCI patients with the ASIA impairment score A [91].

iPSCs are established from patients across a panoply of diseases, leading to the
development of a wide range of cell-based disease models, which are beneficial for under-
standing the pathogeneses of diseases and facilitating drug discovery. For example, histone
deacetylase 4 (HDAC4) is shown to be mislocalized in patient iPSC-derived dopaminergic
neurons, which model Parkinson’s disease and cause the downregulation of some critical
genes [92]. Alternatively, adoptive immunotherapy with iPSC-derived immune effector
cells (dendritic cells (also called DCs), tumor-specific T cells and NK cells) is also applied
to cancer treatments [93–97], some examples of which are provided as follows:

1. iPSC-DCs: In the study by Senju S et al., a method was developed to generate
DCs from human iPSCs. These iPSC-DCs have the characteristics of original DCs,
including the capability of T-cell stimulation, processing and presenting antigens, and
producing cytokines [93]. Kitadani J et al. successfully established iPSC-DCs from the
fibroblasts of healthy donors, as well as mouse iPSC-DCs from the iPS cell line iPS-
MEF-Ng-20D-17 [94], which were derived from C57/BL6 MEFs. They demonstrated
the therapeutic potential of mouse iPSC-DCs, in which the carcinoembryonic antigen
(CEA) was transduced and expressed in a subcutaneous tumor model using CEA
transgenic mice. These findings indicate that genetically modified iPSC-DCs, inducing
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the expression of CEA, are a promising strategy for the treatment of gastrointestinal
cancer.

2. iPSC-T: Adoptive immunotherapy with antigen-specific cytotoxic T lymphocytes
(CTLs) represents a potential therapeutic strategy that can reduce tumor development
and provide a survival advantage for patients undergoing cancer therapies. Maeda
T et al. developed a simple method to generate antigen-specific CD8αβ T cells
from the iPSCs of healthy volunteers and demonstrated their therapeutic potential
against leukemia [95]. Wilms’ tumor antigen 1 (WT1)-specific CTLs regenerated by
this method demonstrated antigen-specific cytotoxic activity in vitro and showed
comparable potential to primary CTLs in producing IFNγ and TNFα [94]. When
applied in vivo in a xenograft model, these CTLs prolonged the survival of mice
bearing WT1-expressing leukemic cells [94]. Recent advances show the potential
of the chimeric antigen receptor (CAR)-transduced T-cell immunotherapy for the
treatment of a wide variety of diseases. Themeli M et al. demonstrated in clinical trials
that CD19 CAR-modified T cells efficiently induce a complete remission in patients
with acute or chronic lymphoblastic leukemias and eradicate B-cell malignancies in
mice [96].

3. iPSC-NK: The multiple dosing of allogeneic iPSC-NK cell therapy succeeded in
treating solid tumors, such as ovarian cancer [97,98]. Hermanson D et al. estab-
lished iPSCs derived from umbilical cord blood CD34+ cells, UCBiPS7, and derived
iPSC-NK cells via spin embryoid bodies [98]. iPSC-NK cells were applied to treat
NOD/SCID/γc−/− (NSG) mice, which were inoculated with ovarian cancer cells
(MA148), and the median survival improved from 73 to 98 days. Moreover, such
iPSC-NK cells were found in the peritoneal cavity of mice and were able to markedly
inhibit tumor growth [97], indicating the therapeutic potential of iPSC-NK cells for
treating solid tumors.

Although iPSC-Ts provide an alternative cell source for allogeneic T-cell immunother-
apy, they appear to have poor outcomes and severe side effects [99,100]. Experimental
mice receiving iPSC-T treatment died of tumor relapse and/or graft-versus-host disease
(GvHD) [99]. In fact, it is reported that patients may develop cytokine release syndrome
(CRS) and/or immune effector cell-associated neurotoxicity syndrome (ICANS) [100]. In
addition, although more effective than traditional chemotherapy, T cell therapies are usually
costly (approximately USD 373–475,000 per dose), require longer preparation times, and
partly depend on the quality of the cell source after leukapheresis [101]. However, NK cells
function as allogeneic effectors and do not need to be collected from a patient or a specific
HLA-matched donor to reduce GvHD [102]; therefore, it is not necessary to spend much
effort preparing autologous NK cells, and off-the-shelf sources of allogeneic iPSC-NK cells
may become available. Several trials have demonstrated that 30–50% of patients with refrac-
tory or relapsed acute myelogenous leukemia (AML) can achieve complete remission after
receiving allogenic NK cells [16] stimulated with cytokines (typically IL-2 or IL-15) [103].

2.3. Generation of iPSC-Derived NK Cells

Recently, several generation methods have been described to mass-produce iPSC-NK
cells to provide unlimited NK cells for research or clinical applications, and the representa-
tive NK cells are summarized in Table 1:

1. PB-iPSCs with OP9: On day 0, iPSCs derived from peripheral blood cells (PB-iPSCs)
were cocultured with OP9 cells (a bone marrow stromal cell line) in αMEM with 20%
fetal bovine serum (FBS). On day 12, the modified OP9 cell line expressing Notch
ligand Delta-like-1 (OP9-DLL1) replaced OP9 cells and was cocultured with the above
iPSCs (mainly CD34+) in the presence of the stem cell factor (SCF) and Flt3L, together
with IL-7 and IL-15. On day 26, a small population of CD45+CD56+ cells appeared;
the CD45+CD56+ cells became the dominant population, with a purity of 99% on
day 40. A yield of 7.93 × 106 CD45+CD56+ cells was obtained on day 40 and increased
to 15 × 106 cells on day 47 [104].
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2. FB-iPSCs with OP9: On day 0, the iPSC cell line from primate skin fibroblasts (FB-
iPSCs) was cocultured with OP9 in αMEM containing 20% FBS and supplemented
with a basic fibroblast growth factor (bFGF), activin A, vascular endothelial growth
factor (VEGF) and CHIR99021. On days 6 and 8, SCF, thrombopoietin (TPO), IL-3 and
IL-6 were added to the above culture medium for the differentiation of mesodermal
cells to hematopoietic stem cells. On day 10, the floating cells were harvested and
cocultured with the modified OP9 cell line expressing Notch ligand Delta-like-4 (OP9-
DLL4) in αMEM containing 20% FBS, in addition to IL-7, FLT3L and IL-2 for up to
4 weeks. On day 38, a yield of 1.0–3.5 × 106 iPSC NK cells expressing perforin and
IFNγ was obtained [105].

3. CB-iPSC: On day 0, UCBiPS7 iPSCs derived from umbilical cord blood CD34+ cells
were seeded in round-bottomed plates for the development of embryoid bodies in
a BPEL culture medium (bovine serum albumin, polyvinyl alcohol, essential lipids)
containing SCF, VEGF and bone morphogenic protein 4 (BMP-4). During days 8–12,
the formed embryoid bodies (EBs) containing CD34+CD43+ cells were directly trans-
ferred into flat-bottomed plates, and BPELs were cultured in the presence of IL-3, IL-7,
IL-15, SCF and FLT3L. After 28~32 days, iPSC-NK cells were obtained and expanded
in RPMI-1640 containing 10% FBS, 1% penicillin/streptomycin and 50 units/mL IL-2
and stimulated with irradiated (10,000 cGy) artificial antigen-presenting cells (aAPCs)
(2:1 v/v) upon initiation of culture. The culture medium was changed twice weekly,
and iPSC-NK cells could be restimulated with aAPCs every 7 days. The purity of the
expanded NK cells almost reached 97% [97].

4. CB-iPSC: On day 0, the iPSC cell lines 409B7 (B7) and CB-A11 (A11), derived from cord
blood mononuclear cells, were seeded in iMatrix 511-coated plates (Osaka, Japan) for the
development of EBs in an Essential 8 culture medium supplemented with CHIR99021,
BMP-4, and VEGF. On day 2, the formed EBs containing CD34+ cells were cultured in an
Essential 6 culture medium containing SB431542, SCF, and VEGF. During days 4–12, the
formed EBs appeared to contain CD34+, CD43+ and CD45+ hemoangiogenic progenitor
cells (HPCs) and were cultured in a Stem Line II medium together with SCF and Flt3L.
From day 12 onwards, the cells were cultured in DMEM containing 20% human AB
serum or a Stem Line II, in addition to SCF, Flt3L, IL-7 and IL-15. On day 48, the purity
of iPSC-NK cells reached 63.10 ± 7.01%~78.23 ± 5.66% [106].

Table 1. Generation methods for iPSC-derived NK cells.

Primary Differentiation Lymphoid Commitment Yield Reference

Medium Cytokine Culture Day Medium Cytokines Culture Day (per 1 × 106

iPS cells)

1 αMEM +
20% FBS - 12 αMEM +

20% FBS
SCF, Flt3L,
IL-7, IL-15 47 15.0 × 106 [104]

2 αMEM +
20% FBS

bFGF,
activin A,

VEGF,
CHIR99021

10 αMEM +
20% FBS

Flt3L,
IL-7, IL-2 38 1.0~3.5 × 106 [105]

3
BPEL

(APEL + 10%
FBS)

SCF, VEGF,
BMP-4 11 BPEL

SCF, Flt3L,
IL-3, IL-7,

IL-15
28~32 >97% [98]

4

Essential 8
BMP-4,

CHIR99021,
VEGF

0–2
DMEM +

20% human
AB-serum or
Stem line II

SCF, Flt3L,
IL-7, IL-15 48

63.10 ±
7.01%~78.23
± 5.66%

[106]
Essential 6

SCF,
SB431542,

VEGF
2–4

Stem line II SCF, Flt3L 4–12

ND: non data. CHIR99021 is an aminopyrimidine derivative that is an extremely potent glycogen synthase kinase (GSK) 3 inhibitor,
inhibiting both GSK3β and GSK3α. SB431542 is a selective and potent inhibitor of the TGF-β/Activin/NODAL pathway that inhibits
ALK5, ALK4 and ALK7 by competing for the ATP binding site. Both are commonly used to maintain human and mouse stem cell lines.
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Recently, biotechnology has advanced to the point where NK cells can be generated
directly from CD34+ HSCs and iPSCs. However, the different culture methods might give
rise to different subsets of NK cells. Therefore, there is an urgent need to standardize the
phenotyping protocol because the specific phenotypes may be associated with the function
of NK cells, which is critical for the therapeutic applications of NK cells [107].

3. Natural Killer Cells (NK cells)

NK cells are a type of lymphocyte (a white blood cell) that was first described in the
mid 1970s as an innate immune cell and recently reclassified as a member of the group
1 innate lymphoid cells (ILCs) [108]. Five major groups of ILCs have been defined on
the basis of their cytokine production patterns and developmental transcription factor
requirements: natural killer (NK) cells, group 1 ILCs (ILC1s), ILC2s, ILC3s and lymphoid
tissue-inducer (LTi) cells. ILC1s, ILC2s and ILC3s resemble the corresponding T helper cell
subsets (T helper 1 (TH1), TH2 and TH17 cells, respectively) and produce cytokines that
shape both innate and adaptive immune responses [109]. They are able to recognize stressed
cells in the absence of antibodies and the major histocompatibility complex (MHC), allowing
for a much faster immune reaction. NK cells are typically activated by missing MHC class I
marker-harmful cells, which play a very important role. Missing MHC class I cells cannot
be detected and destroyed by other immune cells, such as T lymphocytes [109–112].

3.1. The Physiological Conditions in NK Cells

NK cells differentiate from and mature in the bone marrow (BM), lymph nodes (LNs),
spleen, tonsils, and thymus and then enter the circulation. In humans, they are typi-
cally characterized as CD56+CD3− lymphocytes and can be broadly categorized into
two subpopulations based on the level of CD56 and CD16 (Fc receptor FcR III) expres-
sion: CD56bright/CD16neg cells and CD56dim/CD16pos cells (Figure 3). Previous stud-
ies have suggested that CD56bright/CD16neg cells are immature precursors of mature
CD56dim/CD16pos cells [113–115]. The majority of PB-NK cells are CD56dim/CD16pos cells,
which are highly cytotoxic against target cells. In contrast, approximately 2–10% of PB-NK
cells are CD56bright/CD16neg cells, which have a low cytotoxic activity while displaying
a high capacity to produce immune regulatory cytokines (such as IFNγ, TNF, and GM-
CSF) [116], interacting with dendritic cells and T-cell polarization to participate directly in
adaptive immune responses [117]. The unique characteristic of the metabolism of NK cells
is that they do not use glutamine as a fuel to drive oxidative phosphorylation (OXPHOS).
In fact, ATP production is primarily fueled by glucose. The inhibition of OXPHOS or
glycolysis in NK cells significantly impairs IFNγ production in a short time [111].

Mature NK cells are known as CD56dim/CD16pos cells that can trigger antibody-
dependent cellular cytotoxicity (ADCC), which is known as one of the important functions
of NKs. In fact, several different mechanisms are involved in the NK-mediated lysis of
target cells [118,119], including (1) the release of cytoplasmic granules containing per-
forin and granzymes, (2) the production of IFN-γ, (3) the expression of FasL and TRAIL,
and (4) the expression of ADCC. For example, in tumor cell therapy, the type III Fc-gamma
receptor (FcγR), also known as CD16, on NK cells recognizes the Fc portion of antibodies
bound to tumor cells and triggers the cell death of tumor cells through ADCC. This an-
tibody may be a monoclonal antibody (mAb), preferentially of class IgG1 or IgG3 since
these two antibodies are able to link different FcγRs [120]. Over 100 monoclonal antibodies
(mAbs) on the market involving several mechanisms of action are used as tumor cell
therapeutics [121], in addition to NK cell-mediated ADCC, including checkpoint inhibitors,
targeting radiation, blocking cell growth, inhibiting neovascularization and inducing leuko-
cyte effector functions [120,122,123].
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Figure 3. The mature human natural killer (NK) cells and their functions. NK cells differentiate
from and mature in the bone marrow, lymph nodes, spleen, tonsils, and thymus and then enter the
circulation. (A) Most of the cells in the lymph nodes (LN) and tonsils have a lower cytotoxic activity
while displaying a high capacity to produce several cytokines. They promote the activation of dendritic
cells and the polarization of Th1 cells by releasing IFN-γ, while TNF production results in the lysis of
immature DCs. (B) The cells in the peripheral blood (PB) and spleen are highly cytotoxic against target
cells. They can trigger antibody-dependent cellular cytotoxicity (ADCC) to kill target cells.

3.2. NK Cell Education

NK cell activity is tightly regulated by a complex interplay between activating and
inhibitory receptors that prevent the killing of normal autologous cells expressing an
appropriate level of all self-HLA alleles and low/negative levels of ligands for non-HLA-
specific activating receptors (aNKRs) [124]. The most frequently described activating
receptor is natural killer group 2D (NKG2D, a transmembrane protein), which belongs to
the natural cytotoxic receptor (NCR) family. The other family members include NKp46,
NKp30, and NKp44, and the leukocyte adhesion molecule DNAX accessory molecule-1
(DNAM1, also called CD226). These receptors, expressed largely on NK cells, are potent
inducers of NK cell cytotoxicity, and are crucial for NK cell-mediated tumor apoptosis. It is
known that the expression of NKp44 is induced upon NK cell activation, while NKp46 and
NKp30 are expressed on both resting and activated NK cells [125].

There are two main inhibitory receptors, the killer immunoglobulin-like receptor (KIR)
family, which can bind HLA-class I, and the heterodimeric receptors CD94-NKG2A/B, which
recognize HLA-E [124,126,127]. In malignancies, activating killer cell immunoglobulin-like
receptors (KARs) are often decreased, while the expression of the most prominent in-
hibitory NK cell receptors, KIRs and CD94/NKG2A, may occasionally increase [128,129].
Remarkably, NK cell activation is determined by the balance of inhibitory and activating
receptor stimulation [129,130]. Indeed, in the absence of inhibitory interactions, NK cells
kill target cells and produce cytokines in great quantities [128]. By secreting large amounts
of cytokines and chemokines, mature NK cells can not only directly kill target cells but
can also elicit other immune cells, including monocytes, DCs, and T cells. Similarly, naïve
NK cells can also be activated by different proinflammatory cytokines, such as IL-2, IL-15,
IL-18 or IL-21, which stimulate NK cell survival and proliferation, as well as upregulating
the expression of activating receptors and enhance NK cell cytotoxicity [109,110].

NK cells can recognize tumor cells and have antitumor and antimetastatic potential
in cancerous cells [131]. The chemoattractant/receptor axes appear to control tumor-
infiltrating NK cell migration, activation, survival, and persistence in the tumor microen-
vironment [132]. In the context of NK cells, chemokine receptors of note include CCR2,
CCR5, CCR7, CXCR3, and CX3CR1 [133]. CCR2 and CCR5 regulate the migration of tumor-
associated monocytes and macrophages. The cytolytic activity of NK cells is simultaneously
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augmented by CCL2 [134]. High levels of CCL2 correlate with increased monocyte and
macrophage recruitment and appear to be an indicator of an adverse prognosis in patients
with breast, ovarian, gastric, and esophageal carcinomas [135,136]. The presence of tumor-
infiltrating NK cells confers a favorable outcome in many tumors. However, due to nutrient
and oxygen deprivation, a higher concentration of tumor-derived metabolism causes the
metabolic impairment of NK cells, which ultimately limits their effector functions [137].

3.3. NK Cell-Based Therapy in Tumors

Many trials of adoptive NK cell-based immunotherapy have been performed over
the past decade and growing clinical and experimental evidence highlights the clear and
direct role of NK cells in controlling human cancer development and/or progression.
Epidemiologic studies indicate that a reduced function of NK cells is related to cancer
incidence [107]. Endogenous NK cells in cancer patients usually have impaired function be-
cause of the alteration of the receptor repertoire in the cells. Therefore, the primary method
in immunotherapy treatments is to “push” for immune activation by including additives
such as cytokines (IL-2 therapy [138], IL-15 therapy [139] and TGFβ inhibitors [140]) and
antibodies that help to modulate the mechanisms that improve the quantity and/or quality
of the antitumor immune response. For example, some immunomodulatory drugs target-
ing NK cells, such as lenalidomide and pomalidomide, are approved for the treatment of
multiple myeloma, mantle cell lymphoma and a subset of myeloid-derived suppressor
cells (MDSCs). These drugs induce cell cycle arrest and apoptosis in tumor cells. Moreover,
they increase NCR expression, expand NK cell populations and increase the immune cell
recognition of tumor cells in various models. Lenalidomide, for instance, is shown to
decrease the immunosuppressive activity of MDSCs and regulatory T (Treg) cells and
to increase NK cell cytotoxicity and IFNγ production. NK cell dysfunction in patients
with chronic myeloid leukemia (CML) is associated with immune evasion and disease
progression, but tyrosine kinase inhibitor (TKI) treatment can restore NK cell numbers and
functions [141].

However, NK cell-mediated control of large solid tumors is usually inefficient, al-
though tumors often express large amounts of activating ligands and low levels of in-
hibitory ligands, presumably due to tumor escape through the alteration of NK cell function
and resistance. Currently, the augmentation of the receptor affinity and activation of ADCC
and accessibility to the tumor site, in combination with other molecules and immune-
modulatory strategies, such as radiotherapy and checkpoint blockade, might be good
targets for NK cell-mediated attack. A new type II glycoengineered anti-CD20 mAb with
increased FcγR III binding and ADCC is represented by obinutuzumab (GA101). GA101
induces NK cell activation regardless of the inhibitory immunoglobulin-like receptor (KIR)
expression. Furthermore, its activity is not adversely modulated by KIR/HLA [120]. Monal-
izumab (IPH2201), an anti-NKG2A checkpoint inhibitor, has been evaluated in clinical trials
in ovarian cancers, head and neck cancers, advanced malignancies and chronic lymphocytic
leukemia (CLL). Its use might represent a novel approach in NK-based immunotherapy,
not only by enhancing the cytotoxic potential of the cells but also by potentially proposing
a role for them in ADCC augmentation [120].

Conversely, many studies have described the engineering of NK cells with CARs to
improve the killing of solid tumors, and clinical trials utilizing CAR-expressing NK cells for
the treatment of both hematological malignancies and refractory solid tumors have been
initiated (ClinicalTrials.gov: NCT00995137, NCT01974479, NCT02839954, NCT02892695,
NCT02742727, and NCT02944162, https://clinicaltrials.gov/, accessed on 29 July 2021).
Most of these studies use CARs designed for T cells that are expressed in NK cells. However,
due to the limitations of CAR-T cell therapy and the patient’s specific clinical and disease-
related features, a decision was made to take an alternative approach to using CAR natural
killer (NK) cells that might circumvent these problems [141,142]. Even though allogeneic
iPSC-NK cell therapy requires multiple doses for the treatment of solid tumors, genetic
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modifications, CAR-NK can further improve the specificity, strength, and efficacy of iPSC-
CAR NK cell therapies [141].

Indeed, there is an increasing interest in iPSC-NK therapies due to their ability to
address the supply chain bottlenecks associated with primary and cell line NK therapies
(Table 2). The advantages of iPSCs include their ease of generation from accessible sources
such as fibroblasts or peripheral blood, the retention of pluripotency during expansion,
and the capacity for long-term storage. The FDA has already approved a phase I clinical
trial to investigate Fate Therapeutics’ off-the-shelf iPS-NK product, FT500, representing
the first FDA-approved clinical investigation of an iPS-derived cell product in the USA.
To generate this product, NK cells were developed from a clonal master iPSC line cell
bank. FT500 in combination with checkpoint blockade therapy was utilized to treat adults
with advanced solid tumors (ClinicalTrials.gov: NCT03841110). FT516, engineered to
include a high affinity, noncleavable CD16 (hnCD16) Fc receptor, was designed against
hematological malignancies (ClinicalTrials.gov: NCT04023071). In the preclinical FT538
study, NK cells were engineered by the knockout of the CD38 receptor and knock-in of the
high-affinity, noncleavable CD16 receptor and the fused IL-15 receptor. The cells were used
in combination with daratumumab (anti-CD38) monoclonal antibody to treat multiple
myeloma [101].

Table 2. iPSC-NK cell therapy for cancers.

Pre-Clinical Research

Disease target Strategies Outcome References

Ovarian cancer Multiple dose, IL-2 stimulated The median survival improved from 73
to 98 days [97]

Cell line
(K562, SKOV3, SW480,
HCT-8, MCF7, SCC-25)

IL-2 stimulated Efficiently killed all tested cancer cell
lines (p < 0.5) [105]

Ovarian cancer Targeting Mesothelin, engineered with chimeric,
NKG2D-CAR-iPSC-NK

NKG2D-CAR-iPSC-NK cells displayed
in vivo function similar to
NKG2D-CAR-iPSC-T cells

[141]

Hematological cancers,
Hepatocellular

carcinomas, Ovarian
cancer

Tetravalent bispecific trifunctional antibody
targeting GPC3, NKp46-CAR-iPSC-NK-EGFR

Effectively suppressed GPC3-expressing
tumor growth in vitro and in vivo and
confirmed the therapeutic quality and

safety of the final product

[142]

Clinical trial

NCT number Disease target Phase Start date Affiliation

NCT03841110

Advanced solid tumors
Lymphoma, Gastric cancer, Colorectal cancer,

Head and neck cancer, Squamous cell
Carcinoma

EGFR positive solid tumor, HER2-positive breast
cancer, Hepatocellular, Small cell lung cancer,

Renal cell carcinoma, Pancreas cancer, Melanoma,
NSCLC, Urothelial carcinoma, Cervical cancer,
Microsatellite instability, Merkel cell carcinoma

I 15-Feb-19 Fate
Therapeutics

NCT04023071 Acute myelogenous leukemia, B-cell lymphoma I 4-Oct-19 Fate Therapeutics

NCT04614636 Multiple myeloma Relapsed/Refractory acute
Myeloid leukemia, Acute myelogenous leukemia I 4-Nov-20 Fate Therapeutics

As of the data cutoff date of April 16, 2021, the encouraging outcome for pateints in
both trials of FT516 and FT538 was observed. Four patients in FT516 (n = 9) and one in
FT538 (n = 3), respectively, achieved an objective response with complete leukemic blast
clearance in the bone marrow. None of them observed dose-limiting toxicities and no events
were of any grade of CRS, ICANS, or GvHD. Recently, a third-generation anti–GPC3-CAR
28bbz has demonstrated safety and efficacy in disseminating ovarian tumors [143]. Being
engineered with chimeric antigen receptors, the iPSC-NK cells appears to be more effective
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at binding to cancer-specific antigens, enhancing the therapeutic efficacy for solid tumors,
and providing perspectives for its clinical uses.

4. Conclusions

Despite their potent antitumor activity, NK cells face substantial challenges that hinder
their efficacy, such as difficulty in obtaining a large quantity of NK cells, expansion to
the clinical scale ex vivo, and the ability to sustain in vivo survival and activity. These
challenges can be resolved with the new iPSC-NK tools and genetic engineering approaches.
However, the iPSC safety profile, particularly in relation to tumorigenic potential, remains
to be understood in sufficient detail for clinical translation. Undoubtedly, NK cells are
powerful tools in the armamentarium against cancer due to their direct cytolytic activity
against tumor cells. Recently, more treatments using NK cells have shown good results in
hematological malignancies and promise a new paradigm for the treatment of solid tumors.
Although NK cells have been overlooked in the field, we can target tumor-induced NK cell
inhibition to promote the maximum antitumor effect in NK cell-based immunotherapies.
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