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Supplementary Figures  

 

Figure S1. Visualising criteria employed by the NIBR-PDXE to categorise PDX responses to a treatment from the tem-

poral evolution of tumour volume grow. NIBR-PDXE employed a set rules, which and rules are visualised here for 

clarification purposes, including an example of a PDX with complete remission (X-1906). Both rules and nomenclature 

above are defined in the Methods section of the paper (e.g. ΔTVol corresponds to the % of variation in tumour volume 

with respect to initial tumour volume). 



Biomedicines 2021, 9, 1319 2 of 12 
 

 

 

Figure S2. RF-OMC versus random predictions for each of the 13 treatments administered to Breast Cancer (BRCA) 

PDX models. The random model is based on the prior probabilities for the case (see Methods section). For each of the 

13 treatments, a turquoise boxplot summarises the MCCs of the 10 runs of RF-OMC. The magenta boxplot contains the 

MCCs of the 10 runs of the random model using prior probabilities. Each calculated MCC is presented as black point. 

From the p-values reported on the title of each plot, we can see that RF-OMC predicts 11 of the 13 treatments signifi-

cantly better than random (p-value < 0.05; one-sided paired t-test). 
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Figure S3. RF-OMC versus random predictions for each of the 13 treatments administered to Colorectal Cancer (CRC) 

PDX models. The random model is based on the prior probabilities for the case (see Methods section). For each of the 

13 treatments, a turquoise boxplot summarises the MCCs of the 10 runs of RF-OMC. The magenta boxplot contains the 

MCCs of the 10 runs of the random model using prior probabilities. Each calculated MCC is presented as black point. 

From the p-values reported on the title of each plot, we can see that RF-OMC predicts 10 of the 13 treatments signifi-

cantly better than random (p-value < 0.05; one-sided paired t-test). 



Biomedicines 2021, 9, 1319 4 of 12 
 

 

 

Figure S4. RF-all versus random predictions for each of the 13 treatments administered to BRCA PDX models. The 

random model is based on the prior probabilities for the case (see Methods section). For each of the 13 treatments, a 

turquoise boxplot summarises the MCCs of the 10 runs of RF-all. The magenta boxplot contains the MCCs of the 10 

runs of the random model using prior probabilities. Each calculated MCC is presented as black point. From the p-values 

reported on the title of each plot, we can see that RF-all predicts 6 of the 13 treatments significantly better than random 

(p-value < 0.05; one-sided paired t-test).  



Biomedicines 2021, 9, 1319 5 of 12 
 

 

 

Figure S5. RF-all versus random predictions for each of the 13 treatments administered to CRC PDX models. The 

random model is based on the prior probabilities for the case (see Methods section). For each of the 13 treatments, a 

turquoise boxplot summarises the MCCs of the 10 runs of RF-all. The magenta boxplot contains the MCCs of the 10 

runs of the random model using prior probabilities. Each calculated MCC is presented as black point. From the p-values 

reported on the title of each plot, we can see that RF-all predicts 10 of the 13 treatments significantly better than random 

(p-value < 0.05; one-sided paired t-test). 
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Figure S6. Performance comparison of RF-OMC and RF-all models in predicting tumour response. (A) BRCA RF-OMC 

models achieved better MCC than RF-all models in 9 of 13 treatments tested on BRCA PDXs (7 RF-OMC models with 

MCC of at least 0.3, for only 2 RF-all models). (B) RF-OMC models achieved better MCC than RF-all models in only 7 

of 13 treatments tested on CRC PDXs (4 RF-OMC models with MCC of at least 0.3, for only 2 RF-all models). 

 

Figure S7. Prediction performance improves as more classifier and profile types are considered for predicting response 

of BRCA PDXs to 13 treatments. (A) In each of these five plots (α to ε), each row shows the cross-validated MCC of the 

best predictor for that treatment as we consider more classifiers and tumour profiles. α – Single-gene (SG) markers 

using Single-Nucleotide Variant (SNV) data. β – Also considering Random Forest model with all features (RF-all) leads 

to an improvement in prediction performance in 7 out of 13 treatments. Both models (SG and RF-all) considered SNV 

data. γ – also considering RF-OMC helped increase the accuracy in predicting 6 out of 13 treatments in comparison to 

plot β. All three models (SG, RF-all and RF-OMC) were trained using SNV data. δ – Models considering both SNV and 

copy-number data, including real-valued (CN) and binary copy-number alterations (CNA). The addition of these pro-

files results in an increase in performance in 3 out of 13 treatments in comparison to plot γ. ε – Models also considering 

the gene expression (GEX) profiles, the performance is improved in 3 out of 13 treatments compared to plot δ. With all 

classifiers and available profiles considered, 10 of the 13 treatments can now be predicted with MCC>0.25. By contrast, 

in the common case of using a single classifier and profile represented by α and using the same PDXs, only 3 treatments 
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can be predicted with this level of accuracy. (B) Each boxplot summarises the MCC values of the employed classifiers 

across the 13 treatments for each case mentioned above. 

 

Figure S8. Prediction performance improves as more classifier and profile types are considered for predicting response 

of CRC PDXs to 13 treatments. (A) In each of these five plots (α to ε), each row shows the cross-validated MCC of the 

best predictor for that treatment as we consider more classifiers and tumour profiles. α – Single-gene (SG) markers 

using Single-Nucleotide Variant (SNV) data. β – Also considering Random Forest model with all features (RF-all) leads 

to an improvement in prediction performance in 8 out of 13 treatments. Both models (SG and RF-all) considered SNV 

data. γ – also considering RF-OMC helped increase the accuracy in predicting 2 out of 13 treatments in comparison to 

plot β. All three models (SG, RF-all and RF-OMC) were trained using SNV data. δ – Models considering both SNV and 

copy-number data, including real-valued (CN) and binary copy-number alterations (CNA). The addition of these pro-

files results in an increase in performance in 6 out of 13 treatments in comparison to plot γ. ε – Models also considering 

the gene expression (GEX) profiles, the performance is improved in 2 out of 13 treatments compared to plot δ. With all 

classifiers and available profiles considered, 8 of the 13 treatments can now be predicted with MCC>0.25. By contrast, 

in the common case of using a single classifier and profile represented by α and using the same PDXs, only 4 treatments 

can be predicted with this level of accuracy. (B) Each boxplot summarises the MCC values of the employed classifiers 

across the 13 treatments for each case mentioned above.  
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Figure S9: A version of Figure 2 showing MCC variability across 10 LOOCV repetitions (each with a different random 

seed). Predictive performance of the best single-gene (SG) marker, Random Forest (RF) with Optimal Model Complexity 

(RF-OMC) and RF using all features (RF-all) per treatment-cancer type pair. For each of these three models, the mean 

MCC +/- standard deviation of MCC across repetitions is shown, with the colour and shape of each classifier indicating 

the model type and employed molecular profile, respectively. For instance, binimetinib appears as a blue triangle, which 

means that binimetinib had RF-OMC-SNV as the classifier with the best mean MCC on LOOCV held-out PDXs. (A) 

BRCA PDXs. (B) CRC PDXs. 

 

Figure S10: BRCA- binimetinib whose most predictive model has the expressions of 14 genes as features. The ranking 

of these features by p-value (as in OMC) is similar to that by RF’s feature importance (Mean Decrease Accuracy). Note 

that the most notable exception is FAM100A, which is much highly ranked when taking into account other features. 
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Supplementary Information 

RF-OMC classifier to predict the response of BRCA PDXs to paclitaxel 

This model exclusively employs the mutational status of two genes MUC20 and 

UPK3BL. The MUC20 gene encodes for a member of the mucin protein family. Mucins are 

high molecular-weight extracellular glycoproteins which are secreted by epithelial cells to 

form an insoluble mucous barrier. Many mucins have been found to be abnormally ex-

pressed or glycosylated in adenocarcinomas as well as associated with carcinogenesis, tu-

mour invasion and poor patient outcome [1]. In particular, the MUC20 gene has also been 

found to promote aggressive phenotypes in ovarian cancer [2), and to be the predictor of 

recurrence and poor outcome in CRC [3]. High MUC20 expression is associated with re-

sponse to chemotherapy in esophageal squamous cell carcinoma [4]. The UPK3BL gene 

encodes for a protein in the uroplakins protein family. It has been found among the up-

regulated genes in rhabdoid glioblastoma tumour, suggesting that this gene may be func-

tionally involved in this type of cancer [5].   

RF-OMC classifier to predict the response of BRCA PDXs to binimetinib 

This model uses the expression levels of just 14 genes: CRB3, NDUFA1, MPG, ECI1, 

ING2, KIF9, TSTD1, FAM100A, TCEAL3, HAGH, PEX11G, SNORA72, SNORA70 and 

PIN1. The CRB3 gene encodes for a protein in the CRB protein family, which plays various 

roles in the control of cytokinesis, ciliogenesis and the formation of tight junctions be-

tween cells, as well as involves in the establishment of cell polarity in epithelial cells [6]. 

Dysregulation of cell polarity proteins could play an important role in cancer develop-

ment [6]. The overexpression of CRB3 gene has been show to inhibit breast cancer cell 

growth and promote apoptosis in vitro, as well as to reduce tumour growth in vivo [7]. 

Meanwhile, a reduced expression of CRB3 was proved to induce carcinogenesis in mouse 

kidney epithelial cells [8]. Another study has shown that CRB3 affects the expression of 

the epithelial-mesenchymal transition (EMT) transcriptional repressor [9]. The EMT pro-

cess – the biological process in which the polarized epithelium undergoes changes in the 

cell cytoskeleton, loses epithelial features and acquires mesenchymal characteristics like 

migration and invasion – is known to play essential roles in cancer development [10]. The 

MPG gene encodes for a DNA repair enzyme, N-methylpurine-DNA glycosylase. This 

gene has increased expression in breast cancer cell lines in comparison to normal breast 

epithelial cells [11]. The ING2 gene is a member of the inhibitor of growth [ING] protein 

family. These proteins function in DNA repair and apoptosis. The expression of ING2 

gene has been found significantly reduced in human melanoma, and the under-expression 

of ING2 could be an important event in the initiation of melanoma development [12].  

Other studies have suggested that ING2 gene could be a tumour suppressor gene in the 

carcinogenesis of head and neck squamous cell cancer [13] and in lung cancer [14]. Alt-

hough no evidence has been found for the KIF9 gene relating to carcinogenesis or cancer 

progression, this gene has been shown to be required for chromosome alignment and mi-

totic progression [15]. The TCEAL3 gene encodes for a protein in the transcription elon-

gation factor A family, which may function as a nuclear phosphoprotein modulating tran-

scription in a promoter-dependent manner. A study on the association between gene ex-

pression and drug resistance in colorectal cancer patients discovered that TCEAL3 is one 

of the genes that significantly associate with patient survival [16]. The HAGH gene encode 

for the enzyme glycoxylase II in charge of catalyzing the glutathione-dependent metabo-

lism of cytotoxic methylglyoxal, which protects cells against cellular damage and apopto-

sis [17]. An increasing body of evidence has suggested that glycoxylase II participates in 

the initiation and progression of urological maglinancies, including prostate cancer 

[18,19], renal cancer [20,21] and bladder cancer [22]. PEX11G is the gene encoding for the 

Peroxisomal Biogenesis Factor 11 Gamma – a protein that joins in the regulation of num-

ber and sizes of the peroxisomes in the cells. Although no direct association has been 

found between the PEX11G gene and carcinogenesis, a study pointed out that this gene is 

one of the direct target of TP53 [23]. SNORA70 and SNORA72 are two members of the 
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small nucleolar RNA genes. While the roles of these two genes have not been comprehen-

sively studied, certain other members of this gene family were found to act as oncogenes 

or tumour suppressors genes in vitro [24,25]. Last but not least, the gene PIN1 encodes for 

the Peptidyl-prolyl cis/trans isomerases, which catalyzes the cis/trans isomerization of 

peptidyl-prolyl peptide bonds. PIN1 plays an important role in breast development, as 

well as it is a target of several oncogenic pathways and was found overexpressed in breast 

cancer [26,27]. Besides, the overexpression of PIN1 also promotes in vitro cell growth of 

osteosarcoma cell lines [28]. 

RF-OMC classifier to predict the response of CRC PDXs to cetuximab 

This model considered the gene expression levels of only four genes: ACR, 

DENND4B, NOTCH1 and RPL22. Interestingly, this model considers the gene NOTCH1, 

whose association with cancer is well known. This gene encodes a transmembrane recep-

tor participating in the Notch signalling pathway. Aberrations in the genes of this path-

way could have a large impact on cellular division leading to cancer [29]. This pathway 

has been found dysregulated in CRC, where the upregulation of NOTCH1 is associated 

with poor survival outcome [30]. Although no mutation of this gene has been reported in 

CRC, a study found that NOTCH1 amplification in metastatic CRC patients could lead to 

worse survival in this subgroup of patients [31]. The gene RPL22 encodes for a cytoplas-

mic ribosomal protein that is a component of the 60S subunit. Mutations and abnormal 

expression of RPL22 gene has been reported in various types of cancers, including T-cell 

acute lymphoblastic leukemia [32], endometrial cancer [33], colorectal cancer [34], non-

small cell lung cancer [35] and gastric cancer[36]. We could not find any study linking 

ACR or DENND4B to CRC, but the high predictive accuracy of this classifier demonstrates 

the important role of these genes. Experimental studies intended to unravel the role of 

these genes is therefore promising. 

Among the genes resulted from our multigene RF-OMC classifiers, a high number of 

them have reported to be associated with cancer in the literature. It is noteworthy that 

these genes were selected via a data-driven approach. Therefore, these results suggested 

that the models found by RF-OMC are biologically relevant and can be further investi-

gated for the application in practice. 
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