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Abstract: Objectives: Lately, many countries have restricted or even banned transfat, and palm oil 
has become a preferred replacement for food manufacturers. Whether palm oil is potentially an 
unhealthy food mainly due to its high content of saturated Palmitic Acid (PA) is a matter of debate. 
The aim of this study was to test whether qualitative aspects of diet such as levels of PA and the fat 
source are risk factors for Metabolic Syndrome (MS) and Metabolic Associated Fatty Liver Disease 
(MAFLD). Methods: C57BL/6 male mice were fed for 14 weeks with three types of Western diet 
(WD): 1. LP-WD—low concentration of PA (main fat source—corn and soybean oils); 2. HP-WD—
high concentration of PA (main fat source—palm oil); 3. HP-Trans-WD—high concentration of PA 
(mainly transfat). Results: All types of WD caused weight gain, adipocyte enlargement, hepatomeg-
aly, lipid metabolism alterations, and steatohepatitis. Feeding with HP diets led to more prominent 
obesity, hypercholesterolemia, stronger hepatic injury, and fibrosis. Only the feeding with HP-
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Trans-WD resulted in glucose intolerance and elevation of serum transaminases. Brief withdrawal 
of WDs reversed MS and signs of MAFLD. However, mild hepatic inflammation was still detectable 
in HP groups. Conclusions: HP and HP-Trans-WD play a crucial role in the genesis of MS and 
MAFLD. 

Keywords: obesity; metabolic associated fatty liver disease (MAFLD); steatohepatitis; fibrosis; pal-
mitic acid (PA) 
 

1. Introduction 
Metabolic Associated Fatty Liver Disease (MAFLD) is characterized by the presence 

of hepatic steatosis in addition to any of the following three criteria: overweight or obesity, 
presence of Type 2 Diabetes Mellitus (T2DM) or evidence of metabolic dysregulation [1]. 
Since its initial description [2] in 1980, the incidence and prevalence of MAFLD has in-
creased dramatically, in parallel with the global epidemic of obesity. Today, it is the most 
widespread liver disease in human history, affecting about a quarter of the global popu-
lation. In European countries, 25% of individuals aged ≥15 years experienced MAFLD in 
2015 [3]. Alongside the progressive liver damage, MAFLD is becoming an established risk 
factor for the leading causes of death and disability, namely cardiovascular disease and 
cancer. Despite these already staggering facts, the MAFLD burden is expected to grow in 
the coming decades, compromising individual health and health-care systems and caus-
ing substantial economic and well-being losses [4,5]. 

MAFLD is often referred to as a self-inflicted disease, implying the influence of per-
sonal behavioral and dietary choices. However, the impact of the surrounding “fast and 
processed food” obesogenic environment on the choices of children and adults should not 
be neglected [1]. Processed or ready-to-consume food products are characteristically en-
ergy-dense, fatty, sugary or salty. At the same time, they are hyper-palatable, cheap and 
attractive, therefore highly dominant, and they comprise the majority of the total energy 
intake among young adults currently [6,7]. 

The food industry and especially the fast-food industry, extensively uses the types of 
lipids with long shelf life that are easy and inexpensive to produce [8]. Processing natural 
liquid vegetable oils, by adding hydrogen, modifies their texture from liquid to solid 
forms and results in the development of transfats (or partially hydrogenated fats). Trans 
Fatty Acids (FA) give food a desirable taste and texture. The main examples of industrial 
Trans FA are margarines, commercially baked products, deep-fried fast foods, packaged 
snack foods and other prepared food [9]. According to the U.S. Food and Drug Admin-
istration (FDA), in 1994–1996 we consumed about 5.6 g of transfat per day [10]. 

In the early 1990s, researchers began to identify the adverse health effects and re-
ported that intake of Trans FA increased the risk of coronary heart disease by altering the 
ratio between Low-Density Lipoprotein (LDL) cholesterol and the “good” High-Density 
Lipoprotein (HDL) cholesterol [11]. 

Increased consumer awareness of the health implications of Trans FA resulted in lo-
cal and state efforts to limit or ban their use [9]. 

“Anti transfat” measures introduced by governments accelerate the use of an acces-
sible alternative—palm oil, obtained from the fruit of the palm tree (Elaeis guineensis). 
Palm oil is abundant, low-cost and chemically stable. Currently, it is the most widely pro-
duced edible vegetable oil in the world [12]. Palm oil is rich in saturated FAs, especially 
Palmitic Acid (PA), unlike most of the vegetable oils, which are rich in unsaturated fat. 
For this reason, palm oil is semisolid at room temperature, making it suitable for the for-
mulation of processed food [13]. 

Recently, the impact of palm-oil consumption on the heart, especially in the develop-
ment of coronary artery disease, was a matter of considerable debate. The main argument 
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against the use of palm oil is the fact that it contains saturated PA, which may case eleva-
tion of total cholesterol and LDL levels [14].  

Currently, transfat and PA consumption remain a major source of concern within 
health policies regarding the reduction of cardiovascular and metabolic-disease risk 
[15,16]. However, evidence of the consequences of transfat and PA consumption in the 
development of MAFLD is scarce and even controversial. In the present study, we inves-
tigated whether this type of FA could have an impact on MAFLD progression. 

2. Materials and Methods 
2.1. Animal Experimentation 

All animal procedures were performed according to Spanish legal requirements and 
animal protection law, and were approved by the authority of environment conservation 
and consumer protection of the Regional Government of Madrid (PROEX210/18, 
15.06.2018). All animals were maintained in the Animal Facility at the Faculty of Biology, 
Complutense University Madrid, in a temperature-controlled room with 12-h light/dark 
cycle with ad libitum feeding condition, according to the guidelines of the Federation for 
Laboratory Animal Science Associations (FELASA). 

We randomly distributed 10-week C57BL/6J male mice into 4 groups with a sample 
size of 7 to 9 animals per group. 

Control (CTRL) group was fed with chow diet and normal water. Three treated 
groups received different types of Western Diet (WD) (Supporting Tables S1–S3) and 
sweetened drinking water containing 6.75% D-glucose (Sigma-Aldrich, St. Louis, MO, 
USA). For the withdrawal study, we established a model in which mice were exposed to 
WD and sweetened drinking water for 14 weeks, followed by 20 days of chow diet and 
normal water. The corresponding controls received chow diet and normal water for 17 
weeks. 

2.2. Supplementary Material and Methods 
Please see Supplementary online material and Supporting Tables S4–S7 for further 

information regarding material and methods on Animal Experimentation, Glucose Toler-
ance Test (GTT), Histological analysis, Immunofluorescence (IF) and Immunohistochem-
istry (IHC) staining, Image analysis, RNA isolation and RT-qPCR, Western blot, and Lipid 
extraction and quantification. 

2.3. Statistical Analysis 
Data were expressed as mean ± SD. GraphPad Prism version 8.0 

(https://www.graphpad.com/scientific-software/prism/), accessed 27.11.2018 (San Diego, 
CA, USA) was used for statistical analysis and graph design. Statistical significance was 
determined by one-way analysis of variance ANOVA, followed by a Tukey post hoc test. 
One-way paired ANOVA followed by Bonferroni’s post hoc test was used to evaluate the 
differences between feeding groups. Significant differences are denoted by * for p < 0.05, 
** p < 0.01, *** p < 0.001; **** p < 0.0001. 

3. Results 
3.1. Western Diet (WD) Is Associated with the Development of Obesity and Metabolic Syndrome 
(MS)  

Ten week-old C57BL/6J male mice were fed with three different WDs and sweetened 
water for 14 weeks. The three types of WD had a similar content of fat (40%), fructose 
(22%) and cholesterol (2%) (Supporting Tables S1 and S2). However, the origin of fat and 
the level of PA was greatly different between the groups. In group 1, the level of PA was 
low (LP-WD), and the corn and soybean oils were the main source of fat. In group 2, the 
level of PA was high (HP-WD) due to the palm oil added to the formula. In group 3, the 
level of PA was also high (HP-Trans-WD), but the transfats were the main source of the 
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fat (Supporting Tables S1–S3). Glucose was added to the drinking water in order to po-
tentiate fructose absorption from the diet [17]. Mice fed with the control chow diet and 
filtered tap water were used as controls. 

Body Weight (BW) steadily increased in all treated groups during the experimental 
period. Nevertheless, as shown in (Figure 1A,B), throughout the 14-week period the mice 
fed with LP-WD, on average, gained less weight compared to HP-WD and HP-Trans-WD.  

Obesity is associated with significant changes in White Adipose Tissue (WAT), which 
has profound systemic and hepatic consequences [18]. Mice fed with all types of WD diet 
accumulated epididymal WAT (eWAT) and had higher visceral fat mass compared to 
control animals (Figure 1C, Supplementary Figure S1A). The administration of WDs also 
led to hypertrophy and increase of adipocyte size up to 80% after 14 weeks of WD feeding 
(Figure 1D, Supplementary Figure S1B). Additionally, Crown-Like Structures (CLS) 
formed by macrophages aggregated around dying adipocytes were observed in all WD 
groups (Figure 1D). 

Basal glucose levels after 12 h of fasting, did not increase in all WD treated groups 
compared with CTRL (Figure 1E, left panel). However, a Glucose Tolerance Test (GTT) 
revealed significantly impaired glucose tolerance in mice fed a HP-Trans-WD (Figure 1E, 
right panel, Supplementary Figure S1C).  

Finally, the serum level of total cholesterol was significantly higher in HP-WD and 
HP-Trans-WD fed animals compared with LP-WD and CTRL groups (Figure 1F). 
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Figure 1. Metabolic profile of mice treated with different types of WD and control (CTRL) group. 
(A) Left: BW curve during the feeding period. Right: Area under the BW curve (arbitrary units) after 
14 weeks. (B) End point body weight after 14 weeks of feeding (n = 7–9). (C) Upper: eWAT weight 
(g) (n = 7–9). Lower: eWAT weight–to-BW ratio (%) (n = 7–9). (D) Representative eWAT H and E. 
Asterisks indicate CLS. Scale bar = 100 μm (n = 4–5). (E) Left: Basal glucose levels in blood after 12 h 
of fasting (n = 3–5). Right: GTT curve after 14 weeks feeding. (F) Levels of cholesterol in serum (n = 
6–8). * for p < 0.05, ** p < 0.01, *** p < 0.001; **** p < 0.0001. 

3.2. WD Consumption Triggered Hepatomegaly 
Obesity, hypercholesterolemia and glucose intolerance are the main features of MS 

and are closely associated with the progression and severity of MAFLD [19]. Anato-
mopathological examination of livers revealed that the hepatic parenchyma of all mice fed 
with WD was significantly enlarged and pale yellow in color. Accordingly, the liver mass 
and hepatosomatic ratio were increased in all treated groups compared with CTRL mice 
(Figure 2A). 
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Hepatomegaly was caused by a combination of hypertrophy and hyperplasia. 
Hepatocytes of livers from animals of all WD-fed groups were almost twice enlarged com-
pared to CTRLs, as shown by phalloidin staining (Figure 2B). At the same time, Ki-67 
staining revealed mild but significantly higher cellular proliferation in all treated groups 
(Figure 2C). 

Evaluation of histologic sections, by an experienced pathologist, revealed significant 
hepatic steatosis in 30-80% hepatocytes of WD-fed animals. The cellular content was a 
mixture of micro- and macrovesicular vacuoles, mainly located in the periportal regions 
(Figure 2D, Supplementary Figure S2A). These vacuoles were confirmed to contain lipids 
using Oil Red O (ORO) staining in liver cryosections (Figure 2E). 

 
Figure 2. WD feeding leads to hepatomegaly and steatosis. (A) Left: Liver macroscopic images after 
14 weeks of feeding. Middle: Liver weight (g) (n = 7–8). Right: Liver weight–to-BW ratio (%) (n = 7–
8). (B) Representative phalloidin-stained liver images and size of hepatocytes in phalloidin-stained 
liver pictures quantified by ImageJ software. Scale bar = 100 μm (n = 3–4). (C) Ki-67 liver IF staining 
after 14 weeks of feeding. Positive proliferating cells are stained in green and indicated by arrows. 
Nuclei are stained in blue using DAPI as a counterstain. Scale bar = 100 μm (n = 3–4). (D) H and 
representative images. Scale bar = 100 μm. (n= 7–9). (E) Illustrative ORO-stained liver sections. Scale 
bar = 100 μm. Quantification of ORO-stained area (n = 4–6). ** p < 0.01, *** p < 0.001; **** p < 0.0001. 

3.3. WD Feeding Induced Lipidome Alterations in Murine Livers 
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Next, a quantitative lipidomic analysis was performed in order to identify lipids dis-
criminating the pathological statuses of the liver. A lipidomic approach was taken to 
quantify the major lipid classes. 

Lipids were extracted from the liver tissue and further separated by Thin Layer Chro-
matography (TLC). Total hepatic Triglyceride (TG) content was markedly increased in all 
mice fed with WD compared with CTRL group (Figure 3A). However, the level of Diglyc-
erides (DG) was significantly increased only in mice fed with HP-WD and HP-Trans-WD 
(Figure 3B). Importantly, hepatic Free Cholesterol (FC) levels significantly increased in 
both groups fed with a HP diet (Figure 3C). The total Phosphatidylcholine (PC) content 
was decreased (Figure 3D, left panel), whilst Phosphatidylethanolamine (PE) levels sig-
nificantly increased (Figure 3D, middle panel) and the PC/PE ratio decreased only in mice 
fed with a transfat diet (Figure 3D, right panel). A trend towards decreased Phosphatidyl-
serine (PS) levels was found in the HP-Trans-WD group (Figure 3E). 

 
Figure 3. Hepatic lipidomic analysis in mice treated with WD and corresponding controls. Distri-
bution of lipid classes within hepatic lipids (μmol/g of tissue): (A) Triglycerides (TG). (B) Diglycer-
ides (DG). (C) Free cholesterol (FC). (D) Hepatic phospholipids Left: Phosphatidylcholine (PC). 
Middle: Phosphatidylethanolamine (PE). Right: PC/PE ratio. (E) Phosphatidylserine (PS) (n = 4–5). 
* for p < 0.05, ** p < 0.01, *** p < 0.001; **** p < 0.0001. 

3.4. WD Altered the Balance between Fat Storage and Oxidation in the Liver 
Subsequently, we assessed the effects of all three types of WD on major molecular 

mechanisms that regulate lipid metabolism in the liver. Consistently with previous stud-
ies [20], the excessive lipid load in all treated groups induced the expression of Pparγ, 
early induced lipogenic transcription factor mediating an adipogenic transformation of 
hepatocytes (Figure 4A, left panel). 
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We also found strong increase of Scd1 mRNA expression in all treated animals  
(Figure 4A, right panel). Scd1 desaturase converts saturated FA to monounsaturated FA 
[21], the major substrate for TG in the liver [22]. Hence, the substantial increase in Scd1 
expression was mainly induced by the excessive dietary fat, as mRNA of main regulators 
of de novo lipogenesis Acc and Srebp1 were not increase after feeding with WDs (Figure 
4B). Furthermore, FASN protein expression was remarkably suppressed in HP-Trans-WD 
group (Figure 4C). 

Increased lipid load in the liver resulted in enhanced lipid oxidation only in LP-WD, 
as observed by raised Acox and CPT-1c expression levels. In sharp contrast, the applica-
tion of both diets with high levels of PA seems to not induce the transcription of genes 
and proteins for an adequate lipid oxidation (Figure 4D,E). 

Finally, decreased Apob levels may indicate the impairment in Very Low Density Lip-
oprotein (VLDL) secretion in HP-Trans-WD (Figure 4F). 

 
Figure 4. Changes in lipid metabolism in mice fed with WD. (A) Pparγ, Scd1, (B) Acc, Srebp1 mRNA 
relative expression to GAPDH after 14 weeks on WD (n = 4–6). (C) FASN western blot using HSC-
70 as a loading control. Ratio: normalization of FASN expression by densitometry. (D) Respective 
Acox mRNA expression relative to Gapdh (n = 4–6). (E) CPT-1c WB using GAPDH as loading con-
trol. Quantification of Western blot was performed by densitometry using Image J software. (F) Apob 
mRNA expression relative to Gapdh (n = 4–6). * for p < 0.05, ** p < 0.01, *** p < 0.001. 

3.5. WD with High Levels of PA and Trans Fat Increased the Risk of MAFLD-Associated 
Hepatitis and Fibrosis 

Excessive lipid accumulation drives to cell death and inflammation in the liver [23]. 
Plasma levels of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST), 
important clinical markers of hepatocellular injury were significantly elevated in animals 
fed with HP-Trans-WD (Figure 5A). Thus, the detection of hepatic cell death in situ re-
vealed significantly higher numbers of TUNEL positive cells in HP-WD and HP-Trans-
WD fed livers in comparison with LP-WD-fed animals and the controls (Figure 5B). 

All WD treated groups showed an increased accumulation of F4/80 positive liver 
macrophages, as assessed by Immunofluorescence (IF) staining (Figure 5C). Additionally, 
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the mRNA expression of Tnf-α was significantly increased only in mice fed either with a 
HP-WD or a HP-Trans-WD (Supplementary Figure S3A). 

Cell death, inflammation and TNF-α overproduction induces the activation of He-
patic Stellate Cells (HSCs) in the liver [24]. Consistently, significant expression of α-
Smooth Muscle Actin (α-SMA), a marker of HSCs activation, was detected by Immuno-
histochemistry (IHC) staining in both groups treated with HP-WD and HP-Trans-WD 
(Figure 5D). Activated HSCs are the major source of Extracellular Matrix (ECM) during 
progression of fibrosis [2]. Hence, Sirius Red (SR) staining clearly demonstrated that feed-
ing with HP-WD and HP-Trans-WD induced collagen expression in the liver (Figure 5E, 
Supplementary Figure S3B). These findings were additionally confirmed by IF staining 
for Collagen I (Figure 5F). 
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Figure 5. Hepatitis and hepatic fibrosis in mice on the WD for 14 weeks. (A) ALT and AST measure-
ments in serum after 12 h of fasting (n = 7–9). (B) Representative TUNEL-stained photomicrographs 
at 14 weeks. Scale bar = 100 μm. Quantification of % TUNEL positive cells (n = 6–7). (C) F4/80 IF 
staining in liver sections of mice fed for 14 weeks. Positive immune cells are stained in green. Nuclei 
are stained in blue using DAPI as a counterstain. Arrows indicate F4/80 positive cells, respectively. 
Scale = 100 μm. Quantification of % F4/80 positive cells, using ImageJ software (n = 4). (D–F) Fibro-
sis-related stainings in liver and corresponding quantification of positive stained areas after 14 
weeks of treatment. Representative liver images stained with α-SMA (IHC) (D), SR (E), Collagen I 
(IF) (F). Scale bar = 100 μm. (n = 4–7). * for p < 0.05, ** p < 0.01, *** p < 0.001; **** p < 0.0001. 
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3.6. The Withdrawal ofWD, Reversed MAFLD in All Treated Groups Independently of the Diet 
Composition 

Lastly, we investigated whether WD withdrawal could ameliorate MS and MAFLD-
related liver phenotype. The restoration of a chow diet feeding regimen for 20 days was 
performed after 14 weeks of WD in all treated groups, while CTRL group was maintained 
on chow diet for 17 weeks in total (Figure 6A). The switch from all different WDs to chow 
feeding diet, induced a decrease in body weight (Figure 6B, Supplementary Figure S4A) 
and significantly reduced hepatomegaly (Figure 6C, Supplementary Figure S4B), com-
pared with the corresponding 14 weeks feeding period of the three different types of WDs 
that has been used, achieving similar levels of the CTRL group. The plasma levels of trans-
aminases and cholesterol progressively decreased over the duration of withdrawal in all 
treated groups, and eventually reached almost the same level as in the CTRL animals  
(Figure 6D). Importantly, WD withdrawal normalized impaired glucose intolerance in 
mice fed with HP-Trans-WD (Figure 6E,F). 

 
Figure 6. Effects of WD withdrawal on MS. (A) Mice were fed for 14 weeks with WD followed by 3 
weeks of withdrawing. Effects of WD withdrawal: (B) Body and (C) Liver weight (n = 5–6). (D) AST, 
ALT, Cholesterol in serum after 12 h of fasting (n = 3–5). (E) Basal glucose levels in blood after 12 h 
of fasting. (F) Left: GTT curve after the period of withdrawal. Right: Area under the curve GTT 
(arbitrary units) (n = 3–6). 

In light of these metabolic improvements, pathological changes in the liver were ex-
plored next. All WD withdrawal groups, showed significant improvement in hepatocel-
lular morphology (Figure 7A) and attenuated hepatic steatosis with improved hepatic TG 
content (Figure 7B,C). Moreover, even after 3 weeks of diet withdrawal, we observed low-
grade level of infiltration in both groups treated with high PA (Figure 7D). However, the 
withdrawal was capable to revert fibrotic changes in all treated groups (Figure 7E). 
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Figure 7. Effects of WD withdrawal on steatohepatitis and fibrosis. (A) H and E staining of liver 
sections from each group. Scale bar = 100 μm (n = 3–6). (B) Representative Oil Red O staining of liver 
cryosections after WD diet withdrawal. Scale bar = 100 μm (n = 3–6). (C) Quantification of hepatic 
TG after diet withdrawal. (D) IF staining for CD45. The number of CD45 positive cells (green, ar-
rows) was quantified and calculated as percentage of total cells (DAPI, blue). Scale bar = 100 μm (n 
= 3). (E) SR staining and quantification of positive areas after withdrawal of WD. Scale bar = 100 μm 
(n = 3–6). ** p < 0.01. 

4. Discussion 
Over the past two decades, some light has been shed on a number of aspects of 

MAFLD pathogenesis and the complex relationships between liver steatosis, obesity and 
modifiable risk factors such as food habits and sedentary lifestyle. Despite the increase in 
knowledge, there is still no universally approved medical treatment for MAFLD patients 
[4]. The current body of research suggests that the best way to prevent MAFLD is the 
combination of a balanced diet with regular exercise to achieve a healthy weight. In con-
trast, excessive fat consumption is strongly related with accumulation of fat in the liver. 
However, the quality of fat might be as important as the quantity for MAFLD progression. 
Although the effects of specific types of dietary fat on cardiovascular diseases have been 
more or less widely studied, there have been only a limited number of investigations ex-
amining the effects specifically on MAFLD in this regard. Consequently, it is critical to 
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investigate the effects of transfat and HP oils as possible triggers to the development of 
MAFLD, since the consumption of ultra-processed foods, rich in both oils, is increasing 
worldwide. 

Therefore, the aim of the present study was to investigate the effects of three different 
WDs on the liver and the pathophysiological modulation that these diets perpetrate as a 
mechanism to develop MAFLD. The consumption of all types of WDs rich in fat, fructose 
and cholesterol for 14 weeks predisposed mice to the development of obesity, hepatomeg-
aly, hepatic cell death and steatosis. Even LP-WD promoted obesity, hepatomegaly and 
significant liver fat accumulation, with modulation of FA metabolism. Thus, only HP-WD 
and HP-Trans-WD induced hypercholesterolemia and immune cell infiltration resem-
bling the pattern of Nonalcoholic Steatohepatitis (NASH). Moreover, only mice treated 
with HP-WD and HP-Trans-WD developed significant liver fibrosis, an important hepatic 
feature of MAFLD that is usually observed in patients with persistent necroinflammatory 
changes [25] (Supplementary Figure S5). 

Our observations are in line with previously published murine models fed with a 
high fat diet (HFD) containing transfats—mice receiving American Lifestyle-Induced 
Obesity Syndrome (ALIOS) diet [26]. ALIOS mice became obese and developed severe 
hepatic steatosis with associated necroinflammatory changes. Plasma ALT levels in-
creased, as liver TNF-α and procollagen mRNA, indicating an inflammatory and profi-
brogenic response to injury [25]. Feeding with a high-fructose medium-chain-transfat diet 
in another study was also associated with obesity, increased hepatic oxidative stress and 
a steatohepatitis-like phenotype with significant fibrosis [27]. 

The mechanisms of hepatic steatosis caused by transfats are the subject of considera-
ble debate. We examined mRNA expression of key lipid metabolic genes involved in FA 
uptake, export and oxidation. Our data showed that the diet rich in transfat promotes 
hepatic lipid accumulation by more than one mechanism. We found that HP-Trans-WD 
in the liver reduced expression of Apob (hepatic TG secretion) and Acox (FA β-oxidation). 
Both decreased FA oxidation and secretion are not able to offset the diet-induced increase 
in intrahepatic lipid and together contribute to the diet-induced fatty liver and hepatic 
accumulation of fat. 

Consistently, it has been demonstrated in vitro [28,29], as well as in human studies 
[30], that Trans FAs alter secretion and size of Apo-B100 containing particles produced by 
hepatic parenchymal cells and reduce the expression of FA Oxidation (FAO) enzymes 
[31]. In line with these observations, an increase of SCD1 activity in HP-Trans-WD was 
previously reported in obese subjects and associated with lower FA oxidation and higher 
fat storage [21]. 

Interestingly, we found that feeding with HP-Trans-WD did not increase the expres-
sion of key genes of de novo lipogenesis, but in fact FASN expression was profoundly 
suppressed. This appears paradoxical because FASN suppression markedly improves ste-
atosis in other experimental models of fatty liver, and FASN antagonists are under devel-
opment as plausible treatments for hepatic steatosis [32]. Therefore, it seems that in HP-
Trans-WD fed animals, FASN suppression is likely a compensatory mechanism designed 
to reduce lipid synthesis under conditions in which lipid oxidation is reduced and TG 
export is inactive. Moreover, FASN expression is impaired by hepatic inflammation in 
experimental models characterized by severe hepatocellular damage and inflammation, 
as well as in patients with steatohepatitis [33]. Consistently, mice fed with HP-Trans-WD 
showed high levels of plasma markers of liver injury and significant inflammation in liver 
tissue, accompanied by increased Tnf-α expression. Concomitant with our observation, 
recent human studies showed that Trans FAs modulate human macrophage response, in-
creasing the production of TNF-α [34]. 

Lipidomic analysis revealed a marked step from DG to TG (precursor/product) in 
HP-Trans-WD. These findings are highly consistent with human lipidomic MAFLD data 
published by A.J. Sanyal’s group [35]. Moreover, knockdown of Diacylglycerol Acyl 
Transferase (DGAT) ameliorates the fatty liver in the ob/ob mouse [36], suggesting that 
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DGAT plays an important role in the development of hepatic steatosis in mice fed HP-
Trans-WD. Several publications also supported the link between altered DG levels and 
insulin resistance [37]. 

DG are derived from lipogenesis and membrane phospholipids (PL). The lower level 
of de novo lipogenesis and the parallel decrease in PC suggest that the membrane PC may 
definitely contribute to the observed increase in DG in HP-Trans-WD mice in the current 
study [34]. Indeed, PC is one of the most abundant PL in mammals and a major compo-
nent of cellular membrane lipids. Moreover, PC levels were reported to be decreased in 
the liver samples of patients with MAFLD [35,38]. In hepatocytes, up to 30% of PC comes 
from the conversion of Phosphatidylethanolamine (PE) to PC by Phosphatidylethanola-
mine N-Methyltransferase (PEMT). Hence, the significant decrease of the hepatic PC/PE 
ratio was previously observed in MAFLD patients [39]. Additionally, a loss-of-function 
polymorphism in the PEMT gene seems to be associated with susceptibility in MAFLD 
[39]. 

Furthermore, PC is the only phospholipid molecule that is known to regulate the as-
sembly and secretion of lipoproteins. It has been found that low hepatic PC levels due to 
its synthesis disruption impair the VLDL secretion, and significantly decrease the levels 
of circulating VLDL lipoproteins and result in hepatic accumulation of TG [40], which is 
absolutely in line with low Apo-B100 gene expression in HP-Trans-WD. 

Additionally, a low PC/PE ratio possibly leads to a rearrangement of outer mono-
layer, loss of membrane integrity and increased permeability to pro-inflammatory mole-
cules such as cytokines, initiating the inflammation in HP-Trans-WD mice [41]. 

Glycerophospholipids are another component of cellular membrane associated with 
cellular signaling and cellular apoptosis. Decreased levels of PS and PI were previously 
reported in liver biopsy samples of patients with NASH [38]. 

Another striking observation was the increase in FC in mice fed HP-Trans-WD. FC is 
well-known to be highly cytotoxic [42]. FC accumulation leads to liver injury through the 
activation of signaling pathways in Kupffer Cells (KCs), HSCs and hepatocytes, promot-
ing inflammation and fibrogenesis [43]. Accordingly, we found significant hepatic infil-
tration of F4/80 positive cells as well as HSC activation in the HP-Trans-WD group. Con-
comitantly, Trans FA also increases the cellular accumulation and the secretion of free 
cholesterol by hepatocytes in vitro [30,40]. 

Notably, we found that only HP-Trans-WD induced a significantly impaired glucose 
tolerance after 14 weeks of feeding. Actually, transfats already have attracted critical at-
tention as a potential modifiable risk factor for T2DM in several previous studies. Diet 
enriched in transfat intake has been associated with diabetes, insulin sensitivity and sys-
temic inflammation [44,45]. Animal studies demonstrated that a high transfat diet causes 
weight gain and impaired insulin sensitivity in mice and monkeys [46,47]. 

Overall, our findings raise a red flag on the food high in transfats because of the 
harmful effects on liver and metabolism in general. However, the proposed industrial 
substitute—palm oil does not seem to be a good alternative either, mainly because of high 
saturated FA, especially PA (C16:0 ≈ 44%). PA treatment has been known to induce in-
flammation and cellular injury in various tissues. For example, Chen et al. showed that 
for each kilogram of palm oil consumed annually per capita, the mortality due to ischemic 
cardiomyopathy increases to the equivalent of 68 for 100,000 deaths in developed coun-
tries [48]. 

The effects of saturated PA on the liver are another pressing issue [8,16]. Boland et al. 
showed that the substitution of transfat with palm oil (GAN diet) resulted in maintained 
NASH phenotype in both ob/ob and C57BL/6J mice [49]. In our study, we found that ani-
mals fed with HP-WD develop obesity, hepatomegaly, steatosis, inflammatory cells infil-
tration in the liver and fibrosis as HP-Trans-WD. The changes in the lipid metabolism and 
lipidomic were also very similar between both groups: high Scd and Pparγ mRNA ex-
pression levels in combination with low FA oxidation (CPT1, Acox), leading altogether to 
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significant fat accumulation in the liver. Moreover, the levels of TG, DG and FC were sim-
ilarly increased in HP-WD. 

The main difference between groups was that HP-WD feeding was not associated 
with glucose intolerance and did not prompt the increase of transaminases as HP-Trans-
WD. In addition, the hepatic, metabolic and lipidomic changes were much more pro-
nounced in HP-WD compared with LP-WD fed animals. In accordance, a previous in vitro 
study showed that saturated PA fatty acids induce hepatocyte lipoapoptosis, and it is 
more toxic than with unsaturated fatty acids [50]. 

Lifestyle modifications including diet, exercise and weight loss have been found to 
be effective in controlling MAFLD. Indeed, we found that WD withdrawal for only 3 
weeks resulted in significant improvement in several features of MS and MAFLD, and in 
general was very efficient in returning most of the analyzed parameters to control-like 
levels. The withdrawal from all types of WDs promoted lower body mass; decreased vis-
ceral fat accumulation; remarkably improved steatosis, serum transaminases, cholesterol 
and hepatic TG content; and attenuated hepatic fibrosis. Importantly, it also normalized 
glucose tolerance in HP-Trans-WD. However, the specific lipid composition of the diet 
seems to also be important in this setting. Liver inflammation in HP and HP-Trans-WD as 
seen post-withdrawal, is not fully reversible. This, of course, raises concerns, pondering 
the frequent cycling of diet and weight in the population with obesity. 

Mouse models have been extensively used in many mechanistic studies of MAFLD 
pathogenesis. In spite of this, the natural rodent diet is not fatty-acid-based, limiting the 
extrapolation of results to humans. Moreover, mice exhibit significant differences in lipid 
metabolism versus humans. For example, mice carry most of the plasma cholesterol in 
HDL, while humans carry much of it in LDL [51]. It is still reasonable to assume that many 
of the FA harmful effects for mice may also carry over to humans, both in terms of MS 
and MAFLD. Thus, careful validation and functional comparisons of lipidomic profiles 
must still be performed. 

In summary, dietary recommendations to prevent and manage MAFLD should focus 
not only on quantity but also quality of the diet. Our study clearly demonstrated that 
modifying types of fat in the diet can lower risk of MAFLD progression and improve fea-
tures of MS. Yet, it is very important to understand that “transfat free” and/or “palm oil 
free” labeling should not indulge people in buying high fat or processed food. 

Altogether, this study provides important information on the role of different types 
of fat for development and progression of MAFLD and could be used to inform policy 
makers discussing the new European Union (EU) regulations to promote better food en-
vironments. 

Supplementary Materials: The following are available online at www.mdpi.com/article/10.3390/bi-
omedicines9101289/s1, Figure S1: Visceral obesity in mice fed with WDs; Figure S2: Pathological 
evaluation of steatosis in mice fed with WDs; Figure S3: TNF-α mRNA relative expression to 
GAPDH and pathological evaluation of fibrosis; Figure S4: Reduction of body and liver weight after 
WD withdrawal; Figure S5: Schematic representation of the hepatic and metabolic phenotypes in 
mice treated with different types of WD; Table S1: Control and WDs compositions; Table S2 Main 
ingredients of WDs; Table S3 Concentration of PA in WDs; Table S4 Antibodies used for IF staining; 
Table S5 Antibodies used for IHC staining; Table S6 Primer sequences for RT-qPCR; Table S7 List 
of antibodies uded for WB. 
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