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Abstract: Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that catalyze the
oxidation of endogenous and exogenous aldehydes to their corresponding carboxylic acids. ALDHs
participate in a variety of cellular mechanisms, such as metabolism, cell proliferation and apoptosis,
as well as differentiation and stemness. Over the last few years, ALDHs have emerged as cancer
stem cell markers in a wide spectrum of solid tumors and hematological malignancies. In this study,
the pathophysiological role of ALDH1B1 in human colorectal adenocarcinoma was investigated.
Human colon cancer HT29 cells were stably transfected either with human green fluorescent pro-
tein (GFP)-tagged ALDH1B1 or with an empty lentiviral expression vector. The overexpression of
ALDH1B1 was correlated with altered cell morphology, decreased proliferation rate and reduced
clonogenic efficiency. Additionally, ALDH1B1 triggered a G2/M arrest at 24 h post-cell synchroniza-
tion, probably through p53 and p21 upregulation. Furthermore, ALDH1B1-overexpressing HT29
cells exhibited enhanced resistance against doxorubicin, fluorouracil (5-FU) and etoposide. Finally,
ALDH1B1 induced increased migratory potential and displayed epithelial–mesenchymal transi-
tion (EMT) through the upregulation of ZEB1 and vimentin and the consequent downregulation of
E-cadherin. Taken together, ALDH1B1 confers alterations in the cell morphology, cell cycle progression
and gene expression, accompanied by significant changes in the chemosensitivity and migratory
potential of HT29 cells, underlying its potential significance in cancer progression.

Keywords: aldehyde dehydrogenase; ALDH; ALDH1B1; HT29; cell proliferation; cell morphology;
chemoresistance; cell cycle; migration; cancer

1. Introduction

The aldehyde dehydrogenase (ALDH) superfamily consists of a variety of NAD(P)+-
dependent enzymes that oxidize endogenous and exogenous aldehydes to their correspond-
ing carboxylic acids. To date, 19 human ALDH isoenzymes have been characterized and
categorized to 11 families and four subfamilies [1]. ALDHs are important cytoprotective
enzymes, considering their metabolic role; however, they have also been correlated with
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additional homeostatic functions, like stemness, differentiation, cell proliferation, tumori-
genesis and retinoic acid signaling [2–7]. For instance, members of the ALDH1 and ALDH3
families protect the lens of the eye by detoxifying aldehydes produced by ultraviolet ra-
diation [8], oxidizing aldophosphamide and detoxifying oxazaphosphorines [9,10], while
their transcription is related to drug resistance [11]. Interestingly, several ALDH isoforms
have also been characterized as markers of normal and cancer stem cells (CSCs) [12,13].
CSCs exhibit stem-related properties, such as a self-renewal ability, increased clonogenic-
ity/tumorgenicity and enhanced chemo-/radio-resistance, thereby potentially driving
cancer progression and metastasis [12–19]. Indeed, ALDH expression have been asso-
ciated with several CSC-related features, like chemo- and radio-resistance [3,9,20–23],
hypoxia [6,24,25], cell proliferation and invasion [3,26,27].

ALDH1B1 is a mitochondrial NAD+-dependent enzyme that metabolizes acetalde-
hyde, 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) [28], nitroglycerin and reti-
naldehyde [29]. Still, little is known about its physiological and pathophysiological roles,
but several studies have indicated its association with colorectal [30–33], pancreatic [34,35],
osteosarcoma [4], liver [36], gastric [37] and lung [38] tumorigenesis. However, its exact role
in carcinogenesis and cancer progression remains elusive. In this study, we investigated
the role of ALDH1B1 in the pathophysiology of human colon adenocarcinoma. To this end,
we utilized the human colon adenocarcinoma cell line (HT29) and generated an isogenic
HT29 cell line pair (differing only in the expression of human GFP-tagged ALDH1B1 in
order to investigate the effect of ALDH1B1 overexpression in (i) cell morphology, (ii) cell
proliferation and colony formation efficacy, (iii) cell cycle progression, (iv) cell viability
(under conditions of exogenous stresses imposed by treatment with chemotherapeutic
agents), (v) gene expression profile of epithelial–mesenchymal transition (EMT) markers
and (vi) cell migration.

2. Experimental Section
2.1. Materials

Cell lines were obtained from American Type Culture Collection (ATCC, Manassas,
VA, USA). Culture medium, fetal bovine serum (FBS), penicillin/streptomycin (100X) solu-
tion and trypsin were from Biosera (Boussens, France). Lipofectamine 2000 was purchased
from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA), and puromycin was from
Clontech (Mountain View, CA, USA). The human ALDH1B1 clone in the pCMV6-XL4
vector (SC119705) and the lentiviral vectors pLenti-C-mGFP-P2A-Puro (PS100093) and
pLenti-P2A-Puro (PS100109) were obtained from Origene (Rockville, MD, USA). Co-vectors
for lentiviral transduction pCMVR8.74 and pCMV-VSV-G were obtained from Addgene
(Watertown, MA, USA). Propidium iodide (PI) and 4′,6-diamidino-2-phenylindole (DAPI)
were purchased from Biotium (Landing Parkway Fremont, CA, USA). Fluoromount-G™
from Thermo Fisher Scientific (Waltham, MA, USA) and sulforhodamine B (SRB) dye and
all chemotherapeutic agents were obtained from Sigma-Aldrich (St. Louis, MO, USA). For
protein estimation, the Pierce™ BCA Protein assay was purchased from Thermo Fisher
Scientific (Rockford, IL, USA), while polyvinylidene difluoride (PVDF) membranes and
chemiluminescence reagents were obtained from Millipore (Bedford, MA, USA). Primary
antibodies anti-p53 (1C12) and anti-p21 (12D1) were obtained from Cell Signaling Technol-
ogy (Boston, MA, USA), whereas anti-β actin was from Novus Biologicals (Centennial, CO,
USA). Goat anti-rabbit and anti-mouse immunoglobulin G (IgG) horseradish peroxidase
conjugated antibodies were purchased from Millipore (Bedford, MA, USA), while goat
anti-rabbit (for flow cytometry) was from Jackson Immunoresearch (Cambridge House,
St. Thomas Place, Cambridgeshire, UK). NucleoZOL was obtained from Macherey-Nagel
(Düren, Germany), whereas all primers, dNTPs, random hexamers and PrimeScript reverse
transcriptase from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA). Finally, the
KAPA SYBR Fast Master Mix solution was purchased from Kapa Biosystems (Hoffmann-La
Roche, Basel, Switzerland).
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2.2. Cell Culture

Human colon adenocarcinoma (HT29 and Caco2) and human embryonic kidney (HEK)
293 cells were used in the study. All cell lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) (DMEM with high glucose, for HT29 and HEK-293 and DMEM/nutrient
mixture F-12 for Caco2) supplemented with 10% FBS and 1X penicillin/streptomycin solution.
Cells were cultured at 37 ◦C with 5% CO2 in a humidified incubator.

2.3. Lentiviral Transduction

The ALDH1B1 cDNA was subcloned from pCMV6-XL4/ALDH1B1 into the pLenti-
C-mGFP-P2A-Puro lentiviral gene expression vector. Human embryonic kidney (HEK)
293 cells (ATCC) (3 × 105) were seeded in 6-well plates and, the next day, were trans-
fected with 1 µg ALDH1B1-GFP/vector or the vector alone (pLenti-P2A-Puro) with 1 µg
pCMVR8.74 and 0.5 µg pCMV-VSV-G using the Lipofectamine 2000 reagent. HT29 or
Caco2 cells (2.5 × 105) were seeded in another 6-well plate, and after a day (48 h post-
transfection), the supernatant (S/N) culture from HEK 293 cells was collected. Then, HT29
or Caco2 cells were infected with 300 µL S/N in 200 µL DMEM complete medium. Every
10 min, the plate was shaken for 30 min, and then, 500 µL DMEM complete medium was
added. After 2 h, S/N culture was removed, and 1 to 2 mL DMEM complete medium was
added. Stably transfected cells were selected in the presence of 1 µg/mL of puromycin
(5–7 days) in the culture medium 48 h post-infection. Selected cells were propagated in the
presence of puromycin.

2.4. Flow Cytometry Analysis
2.4.1. Transfection Efficiency

PBS-washed HT29/mock or Caco2/mock and HT29/ALDH1B1 or Caco2/ALDH1B1
cells were stained with PI for 3 min, placed into fluorescence-activated cell sorting (FACS)
tubes (BD Biosciences, Franklin Lakes, NJ, USA) and analyzed in an Attune NxT flow
cytometer (Thermo Fisher Scientific). Transfection efficiency of HT29 or Caco2 cells carrying
the ALDH1B1 gene was assessed as the percentage of GFP-stained cells (HT29/ALDH1B1
or Caco2/ALDH1B1) compared to control (HT29/mock or Caco2/mock) cells.

2.4.2. Flow Cytometric Analysis of Cell Size and p21 Expression

PBS-washed cells were analyzed in the Attune NxT flow cytometer and Flowjo soft-
ware (FlowJo LLC, Ashland, OR, USA) was used to generate histograms of forward and side
scatter (FCS and SCS respectively) for HT29/mock or Caco2/mock and HT29/ALDH1B1
or Caco2/ALDH1B1 cells. We evaluated the cell morphology according to the established
relationship between FSC and SSC, cell size, granularity and cell surface topography [39].
The median fluorescence intensity values of FSC and SSC were utilized as indicators for
the quantification of the morphological differences between HT29/mock or Caco2/mock
and HT29/ALDH1B1 or Caco2/ALDH1B1 cells.

PBS-washed cells were fixed with 4% formaldehyde, permeabilized with ice-cold 100%
methanol, immunostained with primary and secondary antibodies and, finally, analyzed
on the Attune NxT flow cytometer. Histograms of p21 median fluorescence intensity were
generated by Flowjo software (FlowJo LLC, Ashland, OR, USA).

2.4.3. Cell Counting and Growth Rate Determination

Cell counting was performed by flow cytometry. In brief, HT29/mock and HT29/ALDH1B1
(4× 105) cells were seeded in 10 cm culture dishes. Then, cells were trypsinized, washed with
PBS and counted every 24 h for 3 consecutive days. Growth rate of cell cultures represents the
number of doublings occurring per day (estimated by using an online doubling time calculator;
https://doubling-time.com/compute.php).

https://doubling-time.com/compute.php
https://doubling-time.com/compute.php
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2.4.4. Cell Cycle Analysis

HT29/mock and HT29/ALDH1B1 cells (1.5 × 106) were seeded in 10 cm culture
dishes and, subsequently, were placed in a humidified incubator (37 ◦C, 5% CO2). Next day,
the complete culture medium was removed, and cells were incubated for 24 h in serum-free
culture medium to get synchronized. Then, PBS-washed cells were fixed in ice-cold 75%
ethanol and incubated for at least 1 day at −20 ◦C. The cells were counted, stained with
propidium iodide (50 µg/mL), incubated for 40 min in the dark and, finally, analyzed in a
flow cytometer. The same process was performed for 12, 24 and 36 h post-synchronization
samples.

2.5. Real-Time PCR

Total RNA was extracted by utilizing the NucleoZOL reagent according to the man-
ufacturer’s instructions. For cDNA synthesis, 4 µg of total RNA and SuperScript™ First-
Strand Synthesis kits were used according to the manufacturer’s instructions. Real-time
PCR was performed using KAPA SYBR Fast Master Mix according to the manufacturer’s
instructions. Reactions were performed by using the Applied Biosystems Step One instru-
ment (Thermo Fisher Scientific, Waltham, MA, USA). The sequences of these primers are
presented in Table 1. Reactions were run as triplicates in three independent experiments.
Gene expression was normalized to β-actin using the 2−∆∆CT method.

Table 1. Primers used for real-time PCR comparative quantification.

Gene Forward Primer Reverse Primer

β-actin GCGCGGCTACAGCTTCA CTTAATGTCACGCACGATTTCC
ALDH1B1 AGCCTCTGTTCAAGTTCAAG CCTTAAAGCCTCCGAATGG
E-cadherin TACACTGCCCAGGAGCCAGA TGGCACCAGTGTCCGGATTA

SNAI1 ACTATGCCGCGCTCTTTCCT GGTGGGGTTGAGGATCTCCG
SNAI2 CTACAGCGAACTGGACACAC TGTGGTATGACAGGCATGGAG

vimentin TGAGTACCGGAGACAGGTGCAG TAGCAGCTTCAACGGCAAAGTTC
ZEB1 CGAGTCAGATGCAGAAAATGAGCAA ACCCAGACTGCGTCACATGTCTT
ZEB2 ACTATGGGGCCAGAAGCCAC CTGCATGACCATCGCGTTCC

TWIST1 AGCTACGCCTTCTCGGTCTG TGGGAATCACTGTCCACGGG
N-cadherin CCTACTGGACGGTTCGCCAT GTTGCAGTTGACTGAGGCGG

2.6. Fluorescence Microscopy

Cells (2.5 × 105) were plated on the surface of coverslips and, after 24 h, were fixed
with 4% formaldehyde in 1X PBS for 20 min and then washed with 1X PBS (x3). Following a
neutralization step with the addition of 1 M of glycine (pH 8.5), nuclei were counterstained
with 4’-6-diamidino-2-phenylindole (DAPI) (1 µg/mL). Cells were washed with 1X PBS
(x3), then mounted with Fluoromount-G™ (Thermo Fisher Scientific, Waltham, MA, USA)
and, finally, processed for observation on a Nikon ECLIPSE E200 fluorescence microscope
under 40X and 100X lenses. Images of cells were captured, and pictures were analyzed by
image analysis software (ImageJ; National Institute of Health (NIH), Bethesda, MD, USA).

2.7. Colony Formation Assay

Cells (103) were plated in 10 cm culture dishes and grown in a humidified incubator
(37 ◦C, 5% CO2). Plates were monitored every 2 to 3 days for the formation of visible
colonies (approximately 15–20 days). Fixing and staining of the cells were performed
with the use of 0.5% (w/v) of crystal violet solution diluted in 25% methanol. Colonies
(containing≥50 cells) were counted using a stereomicroscope, whereas digital images were
captured and processed using ImageJ software (NIH, Bethesda, MD, USA).

2.8. Sulforhodamine B (SRB) Assay

The SRB assay was performed as described previously [40]. Briefly, 4 × 103 HT29 cells
per well were cultured in 96-well plates. After a day, cells were incubated with increasing
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concentrations of different chemotherapeutic agents for 48 h (etoposide, 0–500 µM) or
72 h (doxorubicin, 0–5 µM and fluorouracil (5-FU), 0–100 µM) while fixed by ice-cold
trichloroacetic acid (TCA) and then stained with SRB dye in 1% (v/v) acetic acid. Finally,
the bound dye was dissolved in a 10-mM Tris base, and the absorbance was measured
at 570 nm by a multi-plate reader (Tecan, Mannedorf, Switzerland). The percent (%) cell
viability was calculated using the formula

[(Sample OD570 −media blank OD570)]/[(mean control OD570 −media blank OD570)] × 100 (1)

The EC50 (effective concentration of inducing a 50% decrease in cell viability) val-
ues were calculated by Sigma Plot Software v.10 (Systat, San Jose, CA, USA) via a four-
parameter logistic curve.

2.9. Western Immunoblotting

Western immunoblotting was performed as described previously with minor modifi-
cations [41]. PBS-washed cells were lysed with radioimmunoprecipitation assay (RIPA)
lysis buffer (50 mM sodium chloride, 1% Nonidet P-40 (NP-40), 0.25% sodium deoxy-
cholate, 0.25% sodium dodecyl sulfate (SDS), 50-mM Tris, pH 8.0 and 1-mM ethylenedi-
aminetetraacetic acid (EDTA)), supplemented with protease and phosphatase inhibitors.
Cell lysates were incubated at 4 ◦C for 30 min, vortexed every 10 min and then centrifuged
at 12,500 rpm for 15 min. Approximately, forty (40) µg whole-cell fractions were prepared
and subjected to SDS-PAGE on 10% Tris-Glycine gels. Separated proteins were transferred
to PVDF membranes, blocked with 5% nonfat dry milk in Tris-buffered saline with 0.1%
Tween-20 detergent (TBST) at room temperature (RT) for 2 h and hybridized overnight at
4 ◦C with primary antibodies against anti-p53 (1/1000) and anti-β actin (1/5000). Then,
the membranes were incubated with secondary horseradish peroxidase conjugated anti-
rabbit and anti-mouse IgG antibodies (1/5000) for 1 h at RT, and immunoblot bands were
developed by utilizing a Chemidoc MD Imaging System (Bio-Rad, Hercules, CA, USA).
The stripping process was performed as described previously [41].

2.10. Sphere-Formation Assay

The sphere-formation assay was performed as described previously with minor modi-
fications [42,43]. In brief, HT29 cells were enzymatically dissociated in trypsin/EDTA (1X),
washed with PBS (1X) and then seeded at a clonal density of 10 cells/µL in a serum-free
medium (DMEM/F-12; 3:1 mixture) containing 1X B-27 supplement, 0.4% (w/v) bovine
serum albumin (BSA), 10-ng/mL recombinant epidermal growth factor (EGF), 20-ng/mL
recombinant bovine fibroblast growth factor (bFGF) and 5-µg/mL insulin in T75 flasks.
Spheres were formed after 8–12 days by changing culture medium every 2 to 3 days.
First-generation spheres were used in all subsequent experiments.

2.11. Scratch Assay

HT29/mock and HT29/ALDH1B1 (7.5 × 105) cells were seeded in 6-well plates in
complete culture medium. After overnight incubation (at 37 ◦C and 5% CO2), cells were
incubated for 24 h in serum-free culture medium to get synchronized. Then, the serum-free
medium was removed, and cells were washed twice with PBS and then scratched with a
pipette tip. Cells were photographed at indicated time points with a ZEISS Primovert light
microscope (Zeiss, Göttingen, Germany) equipped with a digital camera (Axiocam ERc
5 s). For each time point, multiple photographs were analyzed by ImageJ software, and the
average % wound area (% open image area) was calculated.

2.12. Statistical Analysis

For all statistical analyses, values were expressed as mean± SD by utilizing GraphPad
Prism software, version 8.3.0 (San Diego, CA, USA). A Student’s t-test was used in order to
compare results between two groups. On the other hand, analysis of two variables among
multiple groups was performed by using a two-way ANOVA followed by Tukey’s multiple
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comparison tests. A value of p < 0.05 was considered statistically significant, and at least
three independent experiments were performed under each experimental design.

3. Results
3.1. Generation and Characterization of the HT29 Isogenic Cell Line Pair

Stable transfection of the human ALDH1B1 cDNA in HT29 cells generated the poly-
clonal HT29/ALDH1B1 cell line (Figure 1). First, the ALDH1B1 expression was evaluated
by real-time quantitative PCR, and the transcriptional levels of ALDH1B1 were found to be
>17-fold higher than those in HT29/mock cells (Figure 1a). Furthermore, the expression of
GFP-tagged ALDH1B1 was confirmed by flow cytometry. In HT29/ALDH1B1 cells, 92.9%
were GFP+ (15.9% were PI+), while, in HT29/mock cells, 96.1% were GFP− (17.8% were
PI+) (Figure 1b). Regular monitoring of the ALDH1B1 mRNA levels, together with GFP
tag fluorescence, confirmed the maintenance of stable ALDH1B1 expression. To further val-
idate the transfection, we assessed the GFP fluorescence signal by fluorescence microscopy.
Indeed, Figure 1c,d depicts the enhanced GFP fluorescence in HT29/ALDH1B1 versus
HT29/mock cells, respectively.
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Figure 1. Expression of ALDH1B1 in the HT29 isogenic cell line pair. (a) ALDH1B1 gene expression levels detected by real-time
PCR in HT29/mock and HT29/ALDH1B1 cells. (b) Evaluation of GFP+ cells (green) in HT29/mock and HT29/ALDH1B1
by flow cytometry analysis. Nuclei were stained with propidium iodide (PI) (red). Fluorescence microscopy for detecting the
GFP+ cells (green) in HT29/mock (c) and HT29/ALDH1B1 (d) cells (upper panel at 40×magnification and lower panel at
100×magnification). Nuclei were stained with DAPI (4′,6-diamino-2-phenylindole) (blue). Results are expressed as mean± SD
of three independent experiments. *** p < 0.001.

In addition, we observed that the expression of ALDH1B1 triggered significant mor-
phological differences in HT29 cells. More specifically, ALDH1B1-overexpressing cells
appeared more elongated, with lower clonogenic ability, compared to mock control cells
(Figure 2a). By utilizing an established methodology for assessing cell morphology [39],
both cell lines were analyzed through flow cytometer and by means of FSC and SSC indices.
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All generated histograms for FSC (Figure 2b) and SSC (Figure 2c) indicated increased
cell sizes and lower internal structural complexity of HT29/ALDH1B1 in comparison to
HT29/mock cells. The median fluorescence intensity values for FSC and SSC are also
shown in Table 2.
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Figure 2. Expression of ALDH1B1 triggers significant morphological alterations in HT29 cells. (a) Photographs of the HT29
isogenic cell line pair demonstrating the morphological differences under optical microscopy (magnification 20×). ALDH1B1-
overexpressing cells have different sizes (b) and granularity (c) compared to mock control cells. At least 20,000 events were
analyzed through flow cytometry, and the median fluorescence intensity of forward scatter (FCS) and side scatter (SSC)
parameters was determined in both cell lines (Table 2). Representative histograms of FSC (b) and SSC (c) of the HT29 isogenic
cell line pair. The HT29/ALDH1B1 histogram (light blue color) had appreciably right-shifted forward and left-shifted side
scatter, demonstrating the bigger size and lower granularity of ALDH1B1-overexpressing cells in comparison to HT29/mock
cells (pink color). Graphs are representative of three independent experiments performed under each experimental condition.

Table 2. Median fluorescence intensity for forward scatter (FSC) and side scatter (SSC) parameters.

Parameter HT29/mock HT29/ALDH1B1 Statistical Significance

Median Fluorescence
Intensity

FSC 247,552 ± 13,408.88 † 292,973.2 ± 37,072.24 † *
SSC 208,992 ± 20,580.28 † 167,270.4 ± 19,655.07 † *

† Results are expressed as mean ± SD of three independent experiments. * p < 0.05.

3.2. ALDH1B1 Is Related to Decreased Cell Proliferation and Clonogenicity and Induces G2/M
Arrest through p53 Upregulation in HT29 Cells

Next, we investigated the effect of ALDH1B1 in the proliferation rate of HT29 cells.
Specifically, HT29/ALDH1B1cells exhibited lower growth rates in comparison to HT29/mock
ones (Figure 3a,b). The isogenic cell line pair was seeded and counted at four different
time points (0, 24, 48 and 72 h). The number of cells was statistically significantly lower in
HT29/ALDH1B1 compared to HT29/mock ones (Figure 3a). In fact, the doubling time (tD)
of the HT29/ALDH1B1 cells was lower, while the growth rates (GR) were higher than the
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corresponding tD and GR of the HT29/mock cells (Table 3). Similarly, it was observed that
TCA-fixed and SRB-stained HT29/ALDH1B1 cells had considerably lower growth capacity
compared to mock control cells (Figure 3b). Moreover, the counted colonies of ALDH1B1-
overexpressing cells were substantially fewer compared to mock cells, demonstrating that
ALDH1B1 may affect the clonogenicity of HT29 cells (Figure 3c). Finally, the estimated
colony formation efficiency of HT29/ALDH1B1 was approximately 58% ± 3.93% that
of the control (mock) cells (Figure 3d). Similar effects of ALDH1B1 on cell proliferation,
clonogenicity and morphological alterations were observed when a different colorectal cell
line, CaCo2, was used (Supplementary Figure S1a–d and Table S1).
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rates of HT29/mock and HT29/ALDH1B1 cells. Cells were plated at a density of 4 × 105 cells/plate in 10-cm culture plates, 
and the total number of cells was determined every 24 h over 3 consecutive days. (b) Confluency of HT29/ALDH1B1 cells 
versus HT29/mock cells at 72 h post-seeding. Cells were seeded at a density of 4 × 103 cells/well in 96-well plates, grown 
for 72 h and processed for fixation and staining by the sulforhodamine B (SRB) assay. Absorbance was measured at 570 
nm, and the cell viability percentage (%) was calculated and normalized relative to the control (HT29/mock) cells. (c) 
Representative plates of colony formation efficiency of HT29/mock and HT29/ALDH1B1 cells. Cells (1000) were seeded in 
10-cm culture plates and observed for colony formation approximately 20 days following their plating. Then, cells were 

Figure 3. Expression of ALDH1B1 decreases the cell proliferation rate and clonogenic efficiency in HT29 cells. (a) Growth
rates of HT29/mock and HT29/ALDH1B1 cells. Cells were plated at a density of 4 × 105 cells/plate in 10-cm culture plates,
and the total number of cells was determined every 24 h over 3 consecutive days. (b) Confluency of HT29/ALDH1B1
cells versus HT29/mock cells at 72 h post-seeding. Cells were seeded at a density of 4 × 103 cells/well in 96-well plates,
grown for 72 h and processed for fixation and staining by the sulforhodamine B (SRB) assay. Absorbance was measured
at 570 nm, and the cell viability percentage (%) was calculated and normalized relative to the control (HT29/mock) cells.
(c) Representative plates of colony formation efficiency of HT29/mock and HT29/ALDH1B1 cells. Cells (1000) were seeded
in 10-cm culture plates and observed for colony formation approximately 20 days following their plating. Then, cells were
stained with crystal violet. (d) Quantitative assessment of colony formation efficiency. Results are expressed as mean ± SD
of three independent experiments. * p < 0.05 and ** p < 0.01.

Table 3. Doubling time (tD) and growth rates of the HT29 isogenic cell line pair.

Sample Doubling Time (tD)
(h) Growth Rates (GR)

HT29/mock 24.16 ± 0.05 0.029 ± 0.0004
HT29/ALDH1B1 26.75 ± 0.02 0.026 ± 0.0007
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Then, we studied the potential role of ALDH1B1 in the cell cycle by assessing the
cell cycle kinetics (Figure 4). First, the HT29 isogenic cell line pair was seeded overnight
and then incubated in serum-free medium (starvation) for 24 h to get synchronized in the
G0/G1 phase. Cells were fixed in 75% ethanol, PI-stained at the indicated time points and
then analyzed by flow cytometry. Interestingly, ALDH1B1 expression induced a significant
G2/M growth arrest (Figure 4b,d). More than 20% of HT29/ALDH1B1 cells (Figure 4b,d)
were at the G2/M phase when compared to the control (mock) cells (Figure 4a,c) over 24 h
post-synchronization. Possibly, ALDH1B1-overexpressing cells were subjected to a G2/M
growth arrest through a p53-dependent cell cycle pathway. In fact, it was demonstrated
that p53 protein expression levels at 24 h post-synchronization were increased (1.3-fold) in
HT29/ALDH1B1 when compared to HT29/mock cells (Figure 4e,f). Moreover, p53 upregu-
lation resulted in p21 upregulation as well in ALDH1B1-overexpressing cells (Figure 4g–i).
p21 is known to inhibit CDK1 and induce arrest at the G2/M transition cell cycle point [44].
Median fluorescence intensity for p21 is presented in Table 4.

Table 4. Median fluorescence intensity for p21.

Time
(h) HT29/mock HT29/ALDH1B1 Statistical

Significance

Median Fluorescence
Intensity

0 90 ± 3.68 † 142 ± 5.66 † *
24 92.93 ± 2.08 † 168.67 ± 10.01 † **

† Results are expressed as mean ± SD of three independent experiments. * p < 0.05 and ** p < 0.01.
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Cell cycle kinetics in the HT29 isogenic cell line pair. Cells were synchronized in the G0/G1 phase (starvation, 24 h), and 
cell cycle kinetics were analyzed at the indicated time points. Approximately, 20% more HT29/ALDH1B1 cells were 
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(g–i). The ALDH1B1 histogram (light blue color) had appreciably right-shifted at the time of synchronization (g) and 24 h 
post-synchronization (h) in comparison with HT29/mock cells (pink color), indicating the increased p21 expression levels 
in ALDH1B1-overexpressing cells. At least 20,000 events were analyzed through flow cytometry, and the median fluo-
rescence intensity for p21 was determined in both cell lines (Table 4). Equal protein loading was verified by stripping and 
re-probing the same membranes with β-actin (e). The above graphs are representative of an experiment. At least three 
independent experiments were performed for each condition. * p < 0.05 and ** p < 0.01. 

  

Figure 4. ALDH1B1 induces G2/M cell cycle arrest 24 h post-synchronization through p53-dependent upregulation. (a–d)
Cell cycle kinetics in the HT29 isogenic cell line pair. Cells were synchronized in the G0/G1 phase (starvation, 24 h),
and cell cycle kinetics were analyzed at the indicated time points. Approximately, 20% more HT29/ALDH1B1 cells were
found in the G2/M phase 24 h post-synchronization compared to HT29/mock cells. The upregulation of p53 (>1.3-fold
higher than HT29/mock cells) 24 h post-synchronization (e,f) led to p21 upregulation in ALDH1B1-overexpressing cells
(g–i). The ALDH1B1 histogram (light blue color) had appreciably right-shifted at the time of synchronization (g) and 24 h
post-synchronization (h) in comparison with HT29/mock cells (pink color), indicating the increased p21 expression levels in
ALDH1B1-overexpressing cells. At least 20,000 events were analyzed through flow cytometry, and the median fluorescence
intensity for p21 was determined in both cell lines (Table 4). Equal protein loading was verified by stripping and re-probing
the same membranes with β-actin (e). The above graphs are representative of an experiment. At least three independent
experiments were performed for each condition. * p < 0.05 and ** p < 0.01.

3.3. Expression of ALDH1B1 Confers Resistance to Various Chemotherapeutic Agents in HT29 Cells

Next, we studied the response of this isogenic cell line pair to different chemothera-
peutic and oxidative agents characterized by different modes of actions. HT29/mock and
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HT29/ALDH1B1 were treated with increasing concentrations of doxorubicin and 5-FU
for 72 h and etoposide for 48 h. Cell viability curves were plotted (Figure 5), and EC50
values for each condition were determined (Table 5). Our data suggest that ALDH1B1
was related to a chemoresistant phenotype, as demonstrated by the viability curves in
HT29/ALDH1B1 compared to the HT29/mock cells. ALDH1B1-overexpressing cells ex-
hibited approximately two-fold resistance to doxorubicin (Figure 5a and Table 5) and 5-FU
(Figure 5b and Table 5) and 1.5-fold to etoposide (Figure 5c and Table 5) in comparison
with mock control cells. The increased etoposide resistance of HT29/ALDH1B1 cells was
also confirmed through flow cytometry analysis. PI-stained (late apoptotic and dead)
cells were significantly more in HT29/mock compared to HT29/ALDH1B1 under the
treatments of two different concentrations (20 and 25 µM) of etoposide (Figure 5d and
Table 6). No differences were observed between PI- and PI+ cells between HT29/mock and
HT29/ALDH1B1 (Figure 5d and Table 6).
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6a). Considering that the EMT process is connected with normal and cancer epithelial 
cells [48] (resulting in the generation of metastatic CSCs [49]), we also assessed the ex-

Figure 5. Effects of various chemotherapeutic agents on the cell viability of HT29/mock and HT29/ALDH1B1 cells. Viability
curves of HT29/mock and HT29/ALDH1B1 cells after exposure to (a) doxorubicin, (b) 5-fluorouracil and (c) etoposide for
72 h (a,b) and 48 h (c). Viability curves of the HT29/ALDH1B1 cells are shifted to the right, indicating increased cellular
tolerance to the cytotoxic effect of the agents. (d) Cells (1.5 × 106) were seeded in 10-cm culture plates and treated with
etoposide for 48 h. After washing, cells were stained with propidium iodide (PI) and analyzed by flow cytometry for the
assessing % of dead cells. At least three independent experiments were performed under each experimental condition.
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Table 5. EC50 values of doxorubicin (72 h), fluorouracil (5-FU) (72 h) and etoposide (48 h).

Sample Doxorubicin (µM)
(72 h)

5-FU (µM)
(72 h)

Etoposide (µM)
(48 h)

HT29/mock 0.59 ± 0.079 † 0.92 ± 0.15 † 67.85 ± 1.67 †

HT29/ALDH1B1 1.073 ± 0.13 † 1.79 ± 0.056 † 92.47 ± 0.65 †

Statistical significance ** *** **
† Results are expressed as mean ± SD of three independent experiments. ** p < 0.01 and *** p < 0.001.

Table 6. Percentage (%) of unstained and propidium iodide (PI)-stained cells under normal and
etoposide conditions.

Sample Untreated Etoposide 20 µM Etoposide 25 µM

HT29/mock
PI− 77 ± 1.91 † 71.2 ± 1.37 † 63.3 ± 2.33 †

PI+ 23 ± 2.16 † 28.8 ± 0.95 † 36.7 ± 1.44 †

HT29/ALDH1B1
PI− 80.5 ± 1.66 † 76.6 ± 1.14 † 71.1 ± 1.77 †

PI+ 19.5 ± 1.31 † 23.4 ± 2.03 † 28.9 ± 1.82 †

Statistical
significance

PI− vs. PI− - * ***
PI+ vs. PI+ - * ***

† Results are expressed as mean ± SD of three independent experiments. * p < 0.05 and *** p < 0.001.

3.4. ALDH1B1 Promotes Migration and EMT through ZEB1 and Vimentin Upregulation in
HT29 Cells

The lower cell proliferation and morphological changes of ALDH1B1-overexpressing
cells, along with their chemoresistant phenotype, prompted us to further evaluate if
ALDH1B1 expression could be associated with any migratory effect and EMT transcrip-
tional alternations in HT29 cells. Overall, cells, during the EMT process, proliferate at
lower rates and may be subject to cytoskeletal changes [45]. EMT induction is also corre-
lated with cancer stem-like characteristics, such as stemness and metastatic potential [46].
Therefore, we assessed the mRNA expression profile of several effector molecules and
transcription factors of EMT. In general, EMT is associated with the disintegration of tumor
cell junction and interruption of apical-basal polarity, thereby affecting the cytoskeletal
architecture and promoting an invasive potential [47]. Consequently, we analyzed the gene
expression profile of EMT-related molecules such as E-cadherin, SNAI1, SNAI2, vimentin,
ZEB1, ZEB2, TWIST1 and N-cadherin in the HT29 isogenic cell line pair. Our results demon-
strated that ALDH1B1 induced the transcriptional levels of ZEB1 and vimentin, resulting
in the downregulation of E-cadherin (Figure 6a). Considering that the EMT process is con-
nected with normal and cancer epithelial cells [48] (resulting in the generation of metastatic
CSCs [49]), we also assessed the expression of EMT-related genes in HT29-generated
spheres (Figure 6b,ci,ii). We confirmed that ALDH1B1 induces EMT through the upregu-
lation of vimentin and ZEB1 and subsequent downregulation of E-cadherin in HT29 cells.
Similar results on vimentin upregulation and E-cadherin downregulation were observed in
Caco2 cells transfected with human ALDH1B1 (Figure S1e).
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Finally, we determined the migratory potential of the isogenic cell line pair by em-
ploying the scratch assay. Our results showed that HT29/ALDH1B1 cells migrated faster 
than HT29/mock cells, as indicated in Figure 7a. The percentage of wound closure for 
ALDH1B1-overexpressing cells was approximately two-fold lower compared to control 
(mock) cells, demonstrating the increased migratory potential of 
ALDH1B1-overexpressing cells (Figure 7b). 

Figure 6. Expression of ALDH1B1 induces epithelial–mesenchymal transition (EMT) in HT29 cells and spheres. The effects
of ALDH1B1 on the gene expression levels of EMT-related transcription factors in (a) differentiated and (b) cancer stem-like
cells in the HT29 isogenic cell line pair. The comparative quantification ∆∆Ct method was utilized for analyzing the fold
change in the gene expression levels. β-actin gene was used as the endogenous control for the normalization of the samples.
(c) Representative images of (i) HT29/mock and (ii) HT29/ALDH1B1 spheres (magnification 20×), which were typically
formed in approximately 10 days. Results are shown as mean± SD. At least three independent experiments were performed
under each experimental condition. * p < 0.05 and ** p < 0.01.

Finally, we determined the migratory potential of the isogenic cell line pair by em-
ploying the scratch assay. Our results showed that HT29/ALDH1B1 cells migrated faster
than HT29/mock cells, as indicated in Figure 7a. The percentage of wound closure for
ALDH1B1-overexpressing cells was approximately two-fold lower compared to control
(mock) cells, demonstrating the increased migratory potential of ALDH1B1-overexpressing
cells (Figure 7b).
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closure by ImageJ software analysis in HT29 cells. Data are presented as mean ± SD of three inde-
pendent experiments. * p < 0.05 and ** p < 0.01. 
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4. Discussion

Aldehyde dehydrogenase 1B1 is a member of the multifunctional ALDH superfamily,
which is mainly localized in the mitochondria. To date, ALDH1B1 has no clear physi-
ological and pathophysiological roles; however, recent studies have contributed to the
better functional characterization of that enzyme. Specifically, ALDH1B1 has been found
to be involved in β-cell development (in mice) [50], the maintenance of sperm motility
(in horses) [51] and ethanol and retinaldehyde metabolism (in humans) [28]. Further
studies have demonstrated that ALDH1B1 is associated with diabetes [52], colon can-
cer [30–33], pancreatic cancer [34,35] and osteosarcoma [4], as well as in regulating different
CSC-related signaling pathways, such as PI3K/Akt, Notch and Wnt/β-catenin [30]. The
overexpression of ALDHs is involved in tumor progression through CSCs [53], giving
cancer cells a survival advantage against oxidative damage, lipid peroxidation and toxic
aldehydes, all of which are involved in slowing down cell proliferation [54].

The main aim of our study was to explore the potential effect of ALDH1B1 in human
colon adenocarcinoma. Therefore, we generated an isogenic HT29 cell line pair, differing
only in the expression of GFP-tagged ALDH1B1. Interestingly, the expression of ALDH1B1,
in HT29 cells, was correlated with altered cell morphology, a lower cell proliferation rate
and clonogenic efficiency, as well as G2/M-induced p53-dependent cell cycle growth
arrest. Moreover, ALDH1B1 conferred an enhanced chemoresistance to HT29 cells against
different chemotherapeutic agents like doxorubicin, 5-FU and etoposide. We also confirmed
EMT induction in the ALDH1B1-overexpressing cells (as well as their spheres) through
ZEB1 upregulation and increased migratory potential.

Although little is known about ALDH1 in relation to cellular morphological changes,
there is evidence supporting an association of ALDH1 with breast CSC and retinoid sig-
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naling [55], in which retinoic acid can induce crucial cellular alterations such as differ-
entiation, cell cycle growth arrest and morphological changes [56]. As demonstrated in
Figure 2a, ALDH1B1-overexpressing HT29 cells acquired a more elongated shape compared
to HT29/mock cells, probably due to the induction of EMT, in which cells have increased
migratory potential and vimentin area, triggering the elongation of the cell nucleus and
cytoplasm [57,58]. Furthermore, HT29/ALDH1B1 cells displayed slower proliferation rates
than HT29/mock cells and decreased the colony-forming ability (Figure 3 and Table 3). The
overexpression of ALDH1B1 caused statistically significant p53-dependent G2/M growth
arrest at 24 h post-synchronization compared to mock control cells (Figure 4). A similar
association of ALDH expression and p53 upregulation was recently demonstrated by the
expression of ALDH3A1 in human corneal epithelial cells (HCE-2 cells), which resulted in
transcriptional upregulation of the p53 protein. This protein (p53) induces the transcription
of p21 (by binding to two sites of its promoter), thereby causing the inhibition of cyclin
B/Cdc2 complex activity and, eventually, cell cycle growth arrest at the G2/M phase [44],
which can further explain the slower proliferation rate of ALDH1B1-overexpressing cells.
Other studies have also documented the effects of ALDH1 family members in the cell
processes of proliferation, invasion and migration. When the expression of ALDH1A3 was
suppressed in human cancer cell lines, an opposite effect on cell proliferation and invasion
was observed and associated with the differential expression of the CXC chemokine receptor
4 [26]. ALDH1 expression was correlated with the properties of cancer stem cells in cervical
carcinoma, and ALDH-positive cells displayed significantly higher rates of cell proliferation,
microsphere formation and migration [59]. ALDH1B1, apart from being a potential colon
cancer biomarker, was also shown to be crucial for tumor development by modulating
canonical Wnt/β-catenin, Notch and PI3K/Akt signaling pathways [30].

On another note, ALDH1B1-overexpressing cells exhibited an enhanced tolerance
against chemotherapeutic agents like 5-FU, doxorubicin and etoposide. Our results are
in line with previous studies showing that ALDH2- and ALDH1A2-expressing K562 and
H1299 cells exhibited increased resistance against 4-hydroperoxy cyclophosphamide and
doxorubicin [60]. Noteworthy, ALDH+ cells (with a stem-cell phenotype) were related to
doxorubicin and etoposide resistance in Ewing sarcoma [61], while another study showed
that the high activity of ALDH1 was associated with 5-FU resistance [62]. Similar observa-
tions were obtained with ALDH3A1+ cells exhibiting high tolerance against three different
chemotherapeutics (e.g., doxorubicin, 5-FU and etoposide) in breast cancer Michigan Can-
cer Foundation-7 (MCF-7) cells [3]. The increased chemoresistance of HT29/ALDH1B1
prompted us to further investigate the effect of ALDH1B1 in EMT-related transcription
factors and core regulators. In addition, the increased invasion ability and metastatic
potential are also important features of CSCs, enabling them to migrate to other sites and
initiate new tumors [63]. EMT is a process, responsible for forming CSCs [47] and related
to CSC plasticity [64]. To this end, we first assessed the mRNA levels of various EMT
mediators, such as SNAI1, SNAI2, vimentin, ZEB1, ZEB2, TWIST1 and N- and E-cadherin in
the isogenic cell line pair and in their generated spheres. We demonstrated that ALDH1B1
induced EMT in HT29 cells and cancer stem-like cells (through the upregulation of ZEB1),
resulting in the downregulation of E-cadherin. We suggest that ALDH1B1 may induce the
EMT phenotype through the ZEB1 cascade pathway (↑ ZEB1→ ↓ E-cadherin) in HT29 cells.
ZEB1 is a transcription factor that is associated with development and cell differentiation,
while it negatively regulates the transcriptional levels of E-cadherin through the binding to
its promoter [65]. More specifically, ZEB1 interacts with the BRG1 protein and represses
the promoter of E-cadherin [65]. Our findings are in agreement with previous experimental
data indicating that ALDHbright MKN-45 and SGC-7901 cells exhibited increased levels of
vimentin and SNAIL, resulting in the downregulation of E-cadherin and, therefore, the ac-
quisition of an EMT phenotype [2], during which, cells have increased survival, decreased
proliferative rates and altered cytoskeletal morphology [44,66].

Finally, we studied the potential migratory effect of ALDH1B1 in HT29 cells by
employing the scratch assay. Although migration and invasion are separated terms in cell



Biomedicines 2021, 9, 44 16 of 20

biology, cell migration underlies tumor invasion. In our study, we focused on the collective
migration mode, which contributes to tumor progression through local invasion [67,68].
HT29/ALDH1B1 cells appeared to migrate faster than mock control cells, demonstrating
that ALDH1B1 expression increased the migration effect. Other ALDH members have
also been implicated in the cell migration process. Moreb et al. demonstrated that the
knockdown of ALDH1A1 and ALDH3A1 resulted in a decreased migration potential
of A549 cells [69]. However, Croker et al. reported on the differential regulation of
ALDH1A1 and ALDH1A3 on cell migration. Although ALDH1A1 knockdown led to the
decreased migration of MDA-MB-468 and SUM159 cell migration, ALDH1A3 knockdown
enhanced the migratory potential of these cells [70]. Although, at first glance, the slower
proliferation rate of ALHD1B1-overexpressing cells appears to be contradictory in relation
to their faster migration rate, they may be two sides of the same coin [71]. There are
several findings supporting that an increase in cell proliferation is critical for the initiation
and maintenance of a tumor, but on the other hand, growth inhibition could ultimately
be important for the survival of carcinoma cells, leading to the development of a more
malignant cancer phenotype. The YB-1 protein is frequently observed elevated in human
cancers and has been associated with reduced proliferation in disseminated mesenchymal-
like breast carcinoma cells. Similarly, YB-1 was reported to reduce cell proliferation and
induce EMT in breast cancer cell lines, leading to increased mobility and invasiveness
and an enhanced ability of the cells to survive in anchorage-independent conditions.
A proliferation blockade induced by the overexpression of the cyclin-dependent kinase
inhibitors p16(INK4a), p21(Cip1) or p27(Kip1) was also shown to be advantageous for the
survival of normal and breast cancer cells under anchorage-independent conditions [72].

EMT induction is related to CSC properties such as chemoresistance [73], resulting in
the decrease of cell proliferation [45] and metastasis [44]. In general, tumor cells are highly
proliferative, but they proliferate at slower rates at the invasion stage and stop dividing at
the migration stage during embryonic development and angiogenesis [44]. Recent studies
showed that, during the metastatic process, which is strongly associated with CSCs [74],
cells exhibited lower expression levels of proliferating cell nuclear antigen (PCNA) [75]
and, therefore, possess a slower proliferation potential [76]. It is tempting to speculate that
ALDH1B1 is correlated with the EMT process and/or with CSC plasticity, driving cells
to migrate to other sites and, thus, regulating their transformation between the stem and
non-stem cell stage [63].

In conclusion, HT29 ALDH1B1-overexpressing cells exhibited altered cell morphology;
decreased proliferation and clonogenicity; p53-dependent G2/M cell cycle growth arrest
and enhanced chemoresistance against doxorubicin, 5-FU and etoposide. On the other
hand, ALDH1B1-overexpressing cells demonstrated increased migratory potential, most
probably through the acquisition of an EMT phenotype via the upregulation of the ZEB1-
dependent pathway. Overall, our findings enhance our understanding on the underlined
role of ALDH1B1 in cancer progression.
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