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Abstract: In the Compendium of Materia Medica, seahorse (Hippocampus) is considered effective for
the reinforcement of kidney and men’s health. However, the role of seahorse on human health lacks
scientific evidence. Therefore, we evaluated the effect of seahorse on human prostate cancer using
various in vitro methods and identified bioactive compound. Seahorse lipid extract (SHL) decreased
androgen receptor (AR) and prostate-specific antigen (PSA) expression in dihydrotestosterone
(DHT)-induced LNCaP cells of prostate cancer. Gas Chromatography (GC)-mass spectrometry data
showed that brassicasterol was present in H. abdominalis. Brassicasterol downregulated the expression
of AR and PSA in DHT-induced LNCaP cells. Brassicasterol induced apoptosis accompanied by
sub-G1 phase arrest and inhibited migration in LNCaP cells. We confirmed that AKT and AR
mediated the anti-cancer effect of brassicasterol using siRNA transfection. Brassicasterol exerts an
anti-cancer effect in AR-independent cancer as well as in AR-dependent cells by AKT inhibiting.
Our findings suggest that SHL has the anticancer potential via inhibition of AR and demonstrated
that brassicasterol from H. abdominalis exerted an anti-cancer effect by dual-targeting AKT and AR
signaling in prostate cancer.
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1. Introduction

Prostate cancer is the second most frequent malignancy in men worldwide. The incidence and
mortality rate of prostate cancer globally are strongly correlated to increasing age (over 65 years
of age) [1]. Prostate cancer affects the prostate, a gland in the male reproductive system that produces
seminal fluid that nourishes and transports sperm [2]. Prostate cancer can cause symptoms such as
lower urinary tract symptoms, frequent urination, nocturia, hematuria, and dysuria. The androgen
receptor (AR) plays a role in sexual and physiological development, especially development of
the prostate in men [3]. The binding of androgen to AR initiates the signal of cell growth and
proliferation in cancer [4–6]. Prostate-specific antigen (PSA) is one of the genes regulated by AR and is
considered the most sensitive biomarker for confirming the existence of prostatic disease and prostate
cancer [7]. Therefore, androgen-deprivation therapy is the first-line treatment for prostate cancer.
However, long-term androgen-deprivation therapy can cause the progression of castration-resistant

Biomedicines 2020, 8, 370; doi:10.3390/biomedicines8090370 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0001-7218-3203
https://orcid.org/0000-0003-0872-3855
https://orcid.org/0000-0003-1946-7842
http://dx.doi.org/10.3390/biomedicines8090370
http://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/2227-9059/8/9/370?type=check_update&version=2


Biomedicines 2020, 8, 370 2 of 18

prostate cancer (CRPC) [8]. CRPC tumors sustain the expression of AR and its regulated genes,
indicating that AR signaling continues to function [9–12]. CRPC tumors show advanced AR activation,
including AR gene amplification, gain-of-function mutations [13,14], alterations in expression and
function of crucial AR co-regulators, and generation of ligand-binding domain truncated AR splice
variants(AR-Vs) [15]. These data indicate that targeting AR is an important therapy in prostate cancer.

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling
is often activated and highly expressed in PCa and play a leading role in CRPC progression and
resistance to drug-induced apoptosis [16,17]. 42% of primary prostate cancers and 100% of metastatic
cancers are caused by genetic changes of elements of PI3K/AKT/mTOR pathway [16]. It has been
proved that correlative feedback activation of PI3K/AKT and AR signaling pathways let cancer cells
to use to one pathway for survival when the other pathway is pharmacologically blocked [18,19].
These findings support that co-targeting both pathways may fulfill better results for CRPC patients.

In alternative medicine, seahorse has been used for improving sexual function and curing infertility,
baldness, asthma, and arthritis, but indiscriminate overfishing has made it an endangered species.
In 2015, Hippocampus abdominalis was approved as a food product in Korea, resulting in
successful aquaculture.

Seahorse has various biomedical benefits. Seahorse has been reported to have anti-cancer [20,21],
antimicrobial [22], anti-rheumatism [23,24], anti-oxidant [25,26], anti-inflammation [27], benign prostatic
hyperplasia alleviative [28], and neuroprotective effects [29,30]. The two studies for anticancer effect of
seahorse showed bioactive compounds and peptide from seahorse and their anti-metastatic ability in
HT 1080 human fibrosarcoma cells. However, the mechanism of action of seahorse in prostate cancer
has not yet been elucidated.

In the present study, we evaluated H. abdominalis lipid extract (SHL) and its sterol on anti-cancer
ability in prostate cancer cells. Lipid extract has abundant sterol as expected. Therefore, we checked
brassicasterol, which is a phytosterol found in marine algae, fish, and shellfish, using GC/MS analysis.

Brassicasterol is a 28-carbon sterol synthesized by several unicellular algae (phytoplankton) and
some terrestrial plants such as rape. Brassicasterol is a phytosterol and is known for lowering the
serum cholesterol level, leading to cardiologic health benefits [31,32]. Brassicasterol is not known for
its anti-cancer effect in prostate cancer.

In the present study, we showed the anti-cancer effects of H. abdominalis and its bioactive compound,
brassicasterol, on AR and AKT expression in prostate cancer cells.

2. Experimental Section

2.1. Preparation of SHL

The blended 100 g of frozen seahorse (H. abdominalis, Seahorse Australia, Beauty Point, TAS,
Australia) was homogenized with 300 mL of chloroform/methanol (2:1) for 3 min. The homogenized
sample was filtered. The residue was homogenized in 100 mL chloroform and filtered again. KCl (0.88%,
100 mL) was added to the filtrate and incubated for 24 h in the dark at 4 ◦C. Anhydrous sodium sulfate
(5 g) was added to remove the excess of water in the chloroform layer and incubated in the dark at
4 ◦C for 30 min. Only the chloroform layer was filtered and concentrated under reduced pressure at
40 ◦C with a vacuum evaporator to obtain lipid. The lipid extract was dissolved in chloroform, filtered,
and purged. Methyl hydroxylamine chloride (50 µL) in pyridine solution and 50 µL of BSTFA in 1%
TMCS were added to the vial where all moisture was removed and allowed to react at 65 ◦C for 60 min.
Brassicasterol (Sigma-Aldrich, St. Louis, MO, USA) was prepared at five different concentrations (1, 5,
10, 20, 50, and 100 mg/L) for the preparation of calibration standards.

2.2. Gas Chromatography-Mass Spectrometry (GC-MS)

We performed Gas Chromatography-Mass Spectrometry (GC-MS) analysis to identify
brassicasterol from seahorse using an ISQ LT gas chromatograph interfaced with a single quadrupole
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mass spectrometer (Thermo Scientific, Asutin, TX, USA). GC-MS analysis was performed on a DB-5MS
column (60 m × 0.25 mm inner diameter, 0.25 mm film thickness, Agilent Technologies, Santa clara,
CA, USA). It started at 325 ◦C for 3 min, gradually increasing the oven temperature (320 ◦C at 10 ◦C /min,
330 ◦C at 2 ◦C /min (held for 8 min), 380 ◦C at 30 ◦C /min, and held for 3 min). N2 was used as a carrier
gas. The MS detection system included an electron impact ionization. Total running time was 43 min.
The injection volume was 1 µL at 280 ◦C. The energy of the electron impact ionization was 70 eV.

2.3. Cell Culture

LNCaP and PC-3 human prostate cancer cell lines from the Korean cell bank (KCLB) (Seoul, Korea)
were used for this study. The cells were cultivated in RPMI-1640 medium with 10% fetal bovine serum
(FBS), 2 µM l-glutamine, and penicillin/streptomycin (WelGene, Deagu, Korea) in a cell incubator
(Thermo Scientific, Asutin, TX, USA) brassicasterol (Sigma-Aldrich, St. Louis, MO, USA) was used for
in vitro assays and mechanism study.

2.4. Cell Viability Assay

We measured cell viability using AKT siRNA and brassicasterol in LNCaP and PC-3 cells
using the CELLOMAX™ viability kit based on the tetrazolium salt (2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) (Precaregene,
Hanam, Kyungido, Korea). The control and AKT siRNA (1 pmol) and brassicasterol (10 µM)
were added to 1 × 104 cells per well in a 96-well plate for 48 h. CELLOMAX™ reagent (10 µL) was
added and incubated for 2 h at 37 ◦C in the dark. A microplate reader (Tecan, Sunrise, Männedorf,
Switzerland) was used for measuring the optical density (O.D) at 450 nm. Cell viability equation:

Cell viability (%) = (O.D (test sample) − O.D (blank)) / (O.D (control) − O.D (blank)) × 100. (1)

2.5. Western Blotting

RIPA buffer (1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 7.4, 0.25% sodium deoxycholate,
1 mM Na3VO4, 1 M EDTA, 1 mM NaF, and protease inhibitor cocktail) was used for extraction protein.
The lysates were quantified (Bio-Rad DC protein assay kit II; Bio-rad, Hercules, CA, USA), separated
proteins on SDS-PAGE gels (8–10%), and transferred the molecules to a nitrocellulose membrane
(Amersham Pharmacia, Uppsala, Sweden). The transferred membrane was blocked with 5% non-fat
skim milk and incubated with primary antibody for β-actin (Sigma-Aldrich, St. Louis, MO, USA),
PSA (Dako, Santa Clara, CA, USA), phosphor-AKT, AKT, PARP (Santa Cruz Biotechnology, Dallas,
Texas, USA), AR, E-cadherin, Vimentin, and cleaved caspase-3 (Cell Signaling, Beverly, MA, USA).
Horseradish peroxidase (HRP)-conjugated anti-rabbit or mouse secondary antibodies were added
and incubated to the membrane. Enhanced chemiluminescence (ECL) Western blotting substrate
(Amersham Pharmacia, Uppsala, Sweden) was used to detect HRP enzyme activity.

2.6. RNA Extraction and qRT-PCR

Total RNA was isolated from cells using TRIzol (Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized from the purified total RNA using the High-Capacity cDNA Reverse Transcription kit
(Promega, Madison, WI, USA). qRT-PCR was performed using the SYBR green RT-PCR kit (Bioneer,
Seoul, Korea) and custom-designed primers (AR Forward 5′-CC TGG CTT CCG CAA CTT ACA C-3′,
Reverse 5′-GG ACT TGT GCA TGC GGT ACT CA-3′ and β-actin Forward 5′-AA GAG AGG CAT
CCT CAC CCT-3′, Reverse 5′-AT CTC TTG CTC GAA GTC CAG-3′) on the Thermal Cycler Dice®

Real Time System III (Takara Bio Inc., Shiga, Japan).

2.7. Fluorescence-Activated Cell Sorting (FACS) Analysis

The cells which were treated with brassicasterol were fixed with 70% ethanol. After fixing,
RNAase A (10 mg/mL) was added to the cells and incubated for 1 h at 37 ◦C. Then, the cells were
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stained with propidium iodide (PI) (50 µg/mL). After filtering the cells using a nylon mesh, the DNA
content of stained cells was analyzed using the CellQuest Software (BD Biosciences, San Jose, CA, USA)
on a FACS caliber flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).

2.8. Wound-Healing Assay

The LNCaP cells (1 × 106 cells/mL) were seeded in a 6-well plate and incubated at 37 ◦C. When the
cells reached 70% confluence, they were scratched using a 200-µL pipette tip, followed by washing
with phosphate-buffered saline (PBS). Brassicasterol was treated to the cells for 24 h. Then, the cells
were fixed and stained with Diff-Quick solution kit. The images were taken a photo under a light
microscope (Nikon, Tokyo, Japan). The number of cells that migrated to the scratched empty area
was counted.

2.9. 3D Tumor Organoids

For the generation of the LNCaP tumor organoids, cells were seeded into 96-well round bottom
ultra-low attachment plates (Corning, Corning, NY, USA) at 2000 viable cells per well. The LNCaP
spheroids were grown in RPMI medium with 3% FBS. The plates were incubated for 5 days at 37 ◦C.
Five days after the spheroids formed, 100 µg/mL brassicasterol was added to the formed spheroids for
48 h. For apoptosis analysis, 2 µM CellEvent (Invitrogen) was added to each well and incubated for
1 h. Pictures were obtained using a fluorescence microscope (Nikon).

2.10. siRNA Transfection

The AR, control, and AKT siRNA were purchased from Bioneer (Daejeon, Korea). LNCaP and
PC-3 cells were plated at a density of 5 × 104 cells per well in a 6-well plate. Cells were transfected using
siRNA (25 pmol/final siRNA used per well) with siRNA transfection reagent (Polyplus-transfection,
Illkirch, France) for 48 h. After treatment, cells were stimulated for Western blotting and stained using
crystal violet. The O.D was measured using a microplate reader (Tecan, Männedorf, Switzerland) at
570 nm (crystal violet).

2.11. Crystal Violet Staining and Cell Growth Assay

To investigate the anti-proliferative effect of brassicasterol, crystal violet staining was used.
Brassicasterol were treated different concentrations (0, 10, and 50 µM) for 5 days to LNCaP cells
(1 × 105 cells) seeded in a 6-well plate. After 5 days, the cells were fixed with 1% glutaraldehyde
(JUNSEI, Tokyo, Japan). Then, 0.05% crystal violet (Sigma-Aldrich) was put for 30min to stain the cells.
After washing with deionized water and drying, A 70% ethanol solution was used to restain the
crystal violet. A microplate reader (Tecan) was used for measuring optical density (O.D) at 570 nm.

2.12. Statistical Analyses

The data were expressed as means ± standard deviation (SD) of three replicates per experiment.
Analysis of variance (ANOVA) was conducted to determine the significance of differences between
groups; p < 0.05 was considered significant.

3. Results

3.1. Seahorse Lipid Extract (SHL) Inhibits Androgen Receptor (AR) Expression in Dihydrotestosterone
(DHT)-Induced LNCaP Cells

We examined the effect of SHL on AR protein expression levels in DHT-induced LNCaP cells.
DHT-induced LNCaP cells showed high AR (1.2-fold) and PSA (1.5-fold) expression compared to that of
the control (Figure 1). SHL inhibited AR and PSA expression at both 100 and 200 µg/mL concentrations
in DHT-induced LNCaP cells (Figure 1). The AR expression of SHL (100 µg/mL, 0.66-fold; 200 µg/mL,
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0.54-fold) was similar to that of enzalutamide (0.69-fold), which is an anti-cancer agent and AR inhibitor
(Figure 1).Biomedicines 2020, 8, x FOR PEER REVIEW 5 of 18 
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Figure 1. The inhibitory effect of Hippocampus abdominalis (seahorse) lipid extract (SHL) on androgen
receptor (AR) and prostate-specific antigen (PSA) expression in DHT-induced LNCaP cells. LNCaP cells
were treated with DHT (2 nM) and SHL (100 and 200 µg/mL) in RPMI 1640 media with 5%
charcoal-stripped serum for 24 h; then, the cells were lysed to do Western blotting assay for AR
and PSA expression. Bar graph represents the quantification of interest protein related to β-actin,
presents as a fold change of control. (*) p < 0.05; (**) p < 0.01; (***) p < 0.001.

3.2. Identification of Brassicasterol from SHL Using GC-MS

To evaluate the bioactive compound from seahorse, we performed GC-MS. We confirmed the
existence of brassicasterol in SHL. As shown in Figure 2C,D, the retention time and mass spectrum of
SHL (38.98 min, m/z 69.11) were consistent with those of brassicasterol (elution time: 39 min, m/z 69.10)
(Figure 2A,B). SHL contained 35.5 mg of brassicasterol per 100 g.
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Figure 2. Ion chromatogram of trimethylsilyl derivatives of acidic components and ass spectra by
GC/MS analysis of (A) total ion chromatogram of brassicasterol; (B) mass spectra of brassicasterol;
(C) total ion chromatogram of lipid extraction from Hippocampus abdominalis (SHL); (D) mass spectra of
lipid extraction from Hippocampus abdominalis (SHL).

3.3. Brassicasterol Inhibits AR and PSA Expression in LNCaP Cells

Cell viability of brassicasterol was analyzed in LNCaP and PC-3 cells. LNCaP or PC-3 cells
(1 × 104 cells/well) were treated with various concentrations of brassicasterol for 24 h. As shown in
Figure 3A, the viability of LNCaP cells and PC-3 cells was reduced to 36% and 18%, respectively,
when incubated with 100 µM of brassicasterol. Brassicasterol had more affective in LNCaP cells than
PC-3 cells. We examined the AR mRNA expression in LNCaP cells to investigate whether brassicasterol
isolated from SHL had an AR inhibitory effect like that of SHL. Brassicasterol (10 µM) was added
to LNCaP cells for 24 h, and the mRNA levels of AR were examined using quantitative reverse
transcription polymerase chain reaction (qRT-PCR) (Figure 3A). Brassicasterol suppressed the AR
mRNA level in LNCaP cells (Figure 3B).
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Figure 3. Inhibitory effect of brassicasterol on AR and PSA expression in LNCaP cells. (A) Cell viability
assay. LNCaP and PC-3 cells were treated with various concentrations of brassicasterol for 24 h.
(*) p < 0.05, (**) p < 0.01, and (***) p < 0.001 (in comparison to control). (B) LNCaP cells were treated
with 10 µM brassicasterol for 24 h. AR mRNA levels using qRT-PCR. Quantitative mRNA levels are
shown. (**) p < 0.01 (in comparison to control). (C) Changes of the AR and PSA expression in LNCaP
cells by treatment with brassicasterol according to concentration and time. Bar graph represents the
quantification of interest protein related to β-actin, presents as a fold change of control. (*) p < 0.01 (in
comparison to control of each time) (##) p < 0.01(in comparison to 24h control). (D) Changes of AR and
PSA expression in DHT-induced LNCaP cells by treatment with brassicasterol. Bar graph represents
the quantification of interest protein related to β-actin, presents as a fold change of control. (*) p < 0.05,
(**) p < 0.01 (in comparison to DHT-stimulated control) (##) p < 0.01 (in comparison to control).
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The change in AR and PSA protein levels induced by brassicasterol was measured in time and
dose course using Western blotting. The control group showed a time-dependent increase in both
AR (1.17-fold increase) and PSA (1.2-fold increase) expression (Figure 3C). Brassicasterol (10 µM)
inhibited PSA and AR expression at both 24 and 48 h (Figure 3C). The AR expression of 10 µM
brassicasterol for 24 and 48 h treatment was indicated 0.80-fold (24 h control, 1-fold)and 0.89-fold
(48 h control, 1.17-fold), respectively. To validate the decrease in AR and PSA expression induced by
brassicasterol, brassicasterol was added to DHT-induced LNCaP cells. DHT-induced LNCaP cells
showed upregulated AR and PSA protein expression levels. Brassicasterol inhibited the upregulated
AR and PSA expressions in DHT-induced LNCaP cells (Figure 3D).

3.4. Brassicasterol Inhibits Cell Growth and Induces Sub-G1 Phase Arrest in LNCaP Cells

Brassicasterol (10 or 50 µM) was added to LNCaP cells for 5 days to determine whether it inhibited
cancer cell proliferation after prolonged exposure. As shown in Figure 4A, brassicasterol decreased the
number of LNcaP cells in a concentration-dependent manner. 50 µM brassicasterol exhibited 79% cell
growth inhibitory effect (IC50 = 18.43 ± 0.052 µM).

We checked whether a 48 h treatment with 50 µM brassicasterol affected the cell cycle in
LNCaP cells. After 48 h treatment with 50 µM brassicasterol, the sub-G1 phase was weakly arrested
(Figure 4B). We performed Western blotting to confirm whether the induction of sub-G1 phase by
brassicasterol was associated with the expression level of apoptosis-related proteins (PARP and cleaved
caspase-3). Brassicasterol inhibited PARP expression and induced cleaved caspase-3 expression
(Figure 4C). To assess the effect of brassicasterol on tumor growth, we used LNCaP tumor organoids
(Figure 4D). The three-dimensional culture model mimics some aspects of the in vivo tumor organization
and microenvironment, providing a better understanding of the response of the cells to the drug.
We confirmed that brassicasterol induced apoptosis using CellEvent, a fluorogenic caspase-3/7 substrate.
As shown in Figure 4D, brassicasterol induced apoptosis in LNCaP cell spheroids.
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Figure 4. Inhibitory effect of brassicasterol on cell growth in LNCaP cells. (A) 10 and 50 µM of
Brassicasterol treated to LNCap Cells for 5 days. The cells were stained with a crystal violet staining
solution, and randomly chosen were photographed and resolved in 70% EtOH, and the absorbance
was measured using a microplate reader. Data represent mean ± SD. (*) p < 0.05 compared with
control. (B) Cell cycle analysis of brassicasterol in LNCaP cells. The LNCaP cells were treated with
50 µM of Brassicasterol for 48 h and analyzed by flow cytometry. Bar graphs showed the quantification
of subG1 (%). (**) p < 0.01 compared with control. (C) Brassicasterol-treated (50 µM, 48 h) LNCaP
cell lysates were prepared and subject to Western blotting for apoptosis makers (PARP and cleaved
caspase-3). Bar graph represents the quantification of interest protein related to β-actin, presents as a
fold change of control. (***) p < 0.01 (in comparison to control). (D) Inhibitory effect of brassicasterol on
LNCaP 3D tumor organoids growth. 5 days after formed spheroid, 50 µM brassicasterl was treated to
the formed spheroids (n = 6 /group) for 48 h.

3.5. AR Mediates Brassicasterol-Induced Suppression of Cell Migration and EMT in LNCaP Cells

To assess whether brassicasterol-mediated cell migration, including EMT, were dependent on AR
inhibition, we examined the effect of AR knockdown on migration in LNCaP cells. AR knockdown
by small interfering RNA (siRNA) enhanced brassicasterol-mediated cell migration as determined
using a wound-healing assay (Figure 5A). AR siRNA showed 40% cell migration inhibitory effect.
Brassicasterol showed 54% cell migration inhibitory effect. We assessed whether these changes
were associated with the regulation of the expression of cell proliferation and cell EMT-mediated
migration regulatory proteins. AR siRNA inhibited PSA, vimentin, and PARP expression and induced
E-cadherin expression. AR siRNA contributed to the anti-cancer effects of brassicasterol in LNCaP cells.
However, AR knockdown did not affect the expression of phospho-AKT, as shown in Figure 5B.
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Figure 5. Effect of AR siRNA on cell migration, proliferation, and apoptosis-related markers in
Brassicasterol treated LNCaP cells. LNCaP cells were transfected with AR siRNA for 24 h and were
incubated in the presence or absence of brassicasterol (10 µM) for 24 h. (A) A wound-healing assay
assessed cell migration. Bar graph represents the quantification of cell migration, present as a percentage
of control of siRNA. (*) p < 0.05, (**) p < 0.01 (in comparison to 24 h control of siRNA) (##) p < 0.01
(in comparison to 0h control). (B) The cell lysates were prepared and subjected to Western blotting
to determine the expression of AR, PSA, p-AKT, AKT, E-cadherin, vimentin, PARP, and β-actin. Bar
graphs represent the quantification of interest protein related to β-actin, present as a fold change of
control of siRNA. (*) p < 0.05, (***) p < 0.01 (in comparison to control).
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3.6. AKT Mediates Brassicasterol-Induced Suppression of the AR Signaling Pathway

As shown in Figure 5B, AR siRNA did not control p-AKT expression levels. To assess whether
AKT mediated AR signaling pathway inhibitory effect by brassicasterol, we examined the AR
signaling pathway regulation by AKT siRNA. AKT knockdown showed decreased AR (0.49-fold),
AKT (0.76-fold), and p-AKT (0.52-fold) expression in LNCaP cells. In addition, AKT siRNA enhanced
brassicasterol-induced AR inhibition (brassicasterol, 0.79-fold; brassicasterol + AKT siRNA: 0.33-fold)
(Figure 6B). Furthermore, AKT siRNA showed inhibition of cell growth and increased cell growth
inhibitory effect of brassicasterol (Figure 6A,C). Brassicasterol treatment showed 18% inhibitory effect
on cell growth, but cell growth inhibition of brassicasterol was increased up to 65% by AKT siRNA
(Figure 6A). Furthermore, AKT knockdown exhibited suppressed cell migration compared to control
of siRNA. Consistent with cell growth data, brassicasterol treatment showed 54% inhibitory effect on
cell migration, but cell migration inhibition of brassicasterol was increased up to 74% by AKT siRNA
(Figure 6C).Biomedicines 2020, 8, x FOR PEER REVIEW 12 of 18 
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Figure 6. Effect of AKT siRNA on cell migration- and proliferation-related makers in Brassicasterol
treated prostate cancer cells. (A–B) LNCaP cells were transfected with AKT siRNA for 48 h and were
incubated in the presence or absence of brassicasterol (10 µM) for 24 h. (A) The cells growth was
determined using Cellomax kit. The graph showed quantitative cell growth. (**) p < 0.01 and (***)
p < 0.001 compared with control. (B) The cell lysates were prepared and subjected to Western blotting to
determine the expression of AR p-AKT, AKT, E-cadherin, vimentin, and β-actin. Bar graphs represent
the quantification of interest protein related to β-actin, present as a fold change of control of siRNA.
(*) p < 0.05, (**) p < 0.01, and (***) p < 0.001 (in comparison to control of siRNA). (C) The cells were
evaluated to cell migration by wound healing assay. Bar graph represents the quantification of cell
migration, present as a percentage of control of siRNA. (*) p < 0.05, (**) p < 0.01 (in comparison to
24h control of siRNA) (##) p < 0.01 (in comparison to 0 h control). (D–F) PC-3 cells were transfected
with AKT siRNA for 48 h and were incubated in the presence or absence of Brassicasterol (10 µM) for
24 h. (D) The cells were measured cell growth by Cellomax kit. The graph showed quantitative cell
growth. (*) p < 0.05, and (***) p < 0.001 compared with control. (E) The cell lysates were prepared
and subjected to Western blotting to determine the expression of p-AKT, AKT, E-cadherin, vimentin,
and β-actin. Bar graphs represent the quantification of interest protein related to β-actin, present as a
fold change of control of siRNA. (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001 (in comparison to control of
siRNA) (F) The cells were evaluated to cell migration by wound healing assay. Bar graph represents the
quantification of cell migration, present as a percentage of control of siRNA. (*) p < 0.05(in comparison
to 24 h control of siRNA) (##) p < 0.01 (in comparison to 0 h control).
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3.7. Brassicasterol Exerts an Anti-Cancer Effect in AR-Independent Cancer as well as AR-Dependent Cells by
Inhibiting AKT

We checked the expression of EMT markers, cell migration, and cell growth in PC-3 cells using AKT
siRNA to assess whether the targeting AKT contributed to the anti-cancer effect in AR-independent
prostate cancer cells, PC-3 cells. AKT siRNA decreased vimentin expression (0.68-fold) and increased
E-cadherin expression (2.27-fold). Furthermore, AKT siRNA enhanced the brassicasterol EMT
regulation effect (Figure 6E). Similar to LNCaP data, AKT siRNA inhibited cell growth and migration
and contributed to inhibitory cell growth and migration effect of brassicasterol in PC-3 cells (Figure 6D,F).
Brassicasterol treatment showed 9% inhibitory effect on cell growth, but cell growth inhibition of
brassicasterol was increased up to 50% by AKT siRNA in PC-3 cells (Figure 6D). Furthermore, AKT
knockdown exhibited suppressed cell migration compared to control of siRNA. Consistent with cell
growth data, Brassicasterol treatment showed 50% inhibitory effect on cell migration, but cell migration
inhibition of brassicasterol was increased up to 61% by AKT siRNA (Figure 6F).

4. Discussion

LNCaP cells are commonly used in studying androgen-sensitive early-stage prostate in oncology.
LNCaP cells are a hormone-responsive cell line whose in vitro cell growth and acid phosphatase
production are regulated by DHT [33]. As shown in Figure 1, Hippocampus abdominalis lipid extract
(SHL) inhibited the elevated AR and PSA expression by DHT in LNCaP cells.

Phytosterols from Hippocampus species (Hippocampus kelloggi Jordan and Snyder, Hippocampus histrix
Kaup, Hippocampus kuda Bleeker, and Hippocampus trimaculatus Leach) have been investigated
in several studies [34,35]. However, phytosterols from H. abdominalis, has not been studied.
Furthermore, brassciasterol from Hippocampus has not been investigated. Therefore, we checked
brassicasterol in SHL. GC-MS analysis showed that brassicasterol was present in SHL (Figure 2A,B).

Brassicasterol was also tested to confirm whether it contributed to the anti-androgen effect
of SHL. We found the brassicasterol decreased both AR mRNA and protein levels in LNCaP
cells (Figure 3B,C). Further, brassicasterol decreased the upregulated AR protein level by DHT
(Figure 3D). These data showed that brassicasterol had an anti-androgenic effect. According to Yazawa’s
study, when brassicasterol was administered intraperitoneally to testosterone-treated castrated rats,
the number of cell aggregates was reduced, which confirmed inhibition of bladder carcinogenesis [36].
Those data indirectly showed the anti-androgenic effect of brassicasterol.

Long-term treatment with brassicasterol showed potent cell growth inhibition even at low
concentrations (Figure 4A). On the other hand, after short-time treatment, apoptosis was induced only
at high concentration (50 µM) (Figure 4B). Moreover, cell growth inhibition of brassicasterol was also
confirmed using 3D culture. The 3D culture model produces biochemical responses similar to parental
tumors. Therefore, 3D cell culture model is applicable to predict in vivo therapeutic efficacy [37].

We found that the cancer cell motility and growth inhibition of brassicasterol was more enhanced
after treatment with AR siRNA (Figure 5). However, the contribution of ARsiRNA to the effect of
brassicasterol did not affect the regulation of AKT phosphorylation (Figure 5B). These data indicate
that AR does not regulate AKT.

LNCaP cells shows a high constitutive AKT activity by lacking active lipid phosphatase PTEN,
a negative regulator of the phosphatidylinositol (PI) 3-kinase/AKT pathway [38,39]. Activation of
AKT is strongly correlated with prostate cancer. AKT pathway positively regulates protein synthesis,
cell cycle, proliferation, invasion, metastasis, angiogenesis, and overall survival [40,41]. AKT and AR
synergistic interaction in an in vivo prostate regeneration model [42] give evidence that PI3K/AKT and
AR pathways can be linked mechanistically. The relationship between these factors affects the progress
and development of prostate tumor growth. Many studies have demonstrated that the regulation
of AR is downstream of activated AKT; thus, AKT upregulates AR levels in prostate cancer [43–45].
Therefore, we examined whether AKT regulated AR using AKT siRNA in LNCaP cells.
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PC-3 cells do not respond to androgens, glucocorticoids, or fibroblast growth factors [46].
These cells are negative PTEN expression due to having a homozygous deletion of the PTEN gene;
on the other hand, they show a high constitutive AKT activity [47]. Brassicasterol suppressed cell
motility and growth by regulating AKT in both LNCaP and PC-3 cells (Figure 6).

Most prostate cancers have a loss of PTEN and highly constitutive AKT activation. Early anti-androgen
treatment may be helpful in AR-dependent prostate cancer. However, continuous anti-androgen
treatment causes CRPC with PI3K/AKT pathway activation [17]. Mulholland and Carver showed that
both PI3K and AR pathway inhibition by AKT inhibitor and deprivation of androgen could head
remarkable tumor reduction compared to inhibition of the single pathway [18,19].

EMT is associated with intracellular events including wound healing and cancer progression [48,49].
EMT is thought to play an important role in the development of both metastasis and therapy
resistance [50].

AR and AKT are signaling pathways associated with EMT in prostate cancer. Elevation of AR
expression and AR signaling promotes Pca metastasis by induction of EMT in prostate tumors [51].
AKT directly or in crosstalk with other signaling pathways can promote EMT [52,53]. We found AR
and AKT siRNA induced E-cadherin and decreased Vimentin in LNCaP and PC-3 cells and mediated
brassicasterol-induced suppression of EMT (Figure 6B and D).

Collectively, these data showed that brassicasterol from edible aquacultural H. abdominalis exerted
an anti-cancer effect by dual-targeting AKT and AR signaling in prostate cancer.

5. Conclusions

H. abdominalis lipid extract (SHL) inhibited AR in DHT-induced LNCaP cells. GC-MS data
showed that brassicasterol was present in the H. abdominalis. Brassicasterol inhibited AR and PSA in
LNCaP cells. Brassicasterol inhibited cell growth and induced sub-G1 phase arrest in LNCaP cells.
AR was associated with brassicasterol-induced suppression of cell proliferation, migration, and EMT
in LNCaP cells. AKT-mediated the brassicasterol-induced suppression of the AR signaling pathway.
Brassicasterol exerted an anti-cancer effect in AR-independent cancer as well as AR-dependent cells by
inhibiting AKT.

Finally, we found that brassicasterol from H. abdominalis had an anti-cancer effect. In summary,
brassicasterol from edible aquacultural H. abdominalis exerts an anti-cancer effect by dual-targeting
AKT and AR signaling in prostate cancer.
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