

Supplementary Materials

MDPI

Association Between Serum Zinc and Calcification Propensity (T₅₀) in Patients With Type 2 Diabetes Mellitus and In Vitro Effect of Exogenous Zinc on T₅₀

Shinya Nakatani ¹, Katsuhito Mori ^{2,*}, Mika Sonoda ^{1,3}, Kozo Nishide ¹, Hideki Uedono ¹, Akihiro Tsuda ¹, Masanori Emoto ^{1,2} and Tetsuo Shoji ^{4,5}

- ¹ Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; m2026719@med.osakacu.ac.jp (S.N.); mksnd1110@gmail.com (M.S.); westoutdedede@yahoo.co.jp (K.N.);
- uedono1217@yahoo.co.jp (H.U.); naranotsudadesu@infoseek.jp (A.T.); memoto@med.osaka-cu.ac.jp (M.E.)
 ² Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- ³ Division of Internal Medicine, Inoue Hospital, 16-17 enoki-machi, 564-0053 Suita, Osaka, Japan
- ⁴ Department of Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; t-shoji@med.osaka-cu.ac.jp
- ⁵ Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- * Corresponding author: ktmori@med.osaka-cu.ac.jp; Tel.: +81-6-6645-3806; Fax: +81-6-6645-3808

Supplemental Table S1. Clinical characteristics of the pooled serum from healthy volunteers and patients with hemodialysis.

Measurement	Pooled Sample from Healthy Volunteers	Pooled Sample from Hemodialysis Patients
Creatinine (mg/dL)	0.83	9.92
Serum albumin (g/dL)	4.7	3.5
Corrected calcium (mg/dL)	9.6	9.4
Phosphate (mg/dL)	3.2	5.7
Magnesium (mg/dL)	2.4	2.6
Zinc (µg/dL)	105	66

Supplemental Figure S1. Schematic illustration of zinc and calcification.

Type 2 diabetes mellitus induces hypozincemia and hyperphosphatemia. In vascular smooth muscle cells (VSMCs), exposure to elevated phosphate levels induces NF-kB activation. That active NF-kB transcription factor translocates to the nucleus and induces target gene expression to promote osteo/chondrogenic trans-differentiation of VSMCs, leading to calcification. Zinc supplementation may increase zinc finger protein TNF- α -induced protein 3 (TNFAIP3) levels by upregulating zinc-sensing receptor ZnR/GPR39-dependent TNFAIP3 gene expression. Increased TNFAIP3 inhibits NF-kB activation and osteo-/chondrogenic reprograming, resulting in suppression of phosphate-induced VSMC calcification [38].

Zinc also inhibits osteochondrogenic phenotypic switch of VSMCs, reflected by a lower phosphate uptake, thus decreasing the osteochondrogenic gene expressions of Msx-2, BMP-2, and Sp7, as well inducing loss of smooth muscle cell-specific markers. Zinc preserves the phosphorylation state of Runx2 and Ser451, decreases pyruvate dehydrogenase kinase 4 (PDK4) level, and restores cell viability [51].